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1 Executive Summary

The National Park Service (NPS) is committed to preserving the beauty of America in
order to provide everyone amazing interactions with nature. For over 100 years, the NPS
has maintained these wonders of America; however, as it begins its second century of op-
eration, one of the NPS’s greatest concerns is the issue of climate change. Climate change
greatly influences actions the NPS takes to protect parks and events such as flooding or
other disasters can affect how many people visit the park.

In particular, rising sea levels are one of the imminent problems that the United States is
faced with because of its impact on flooding, and it is necessary for the NPS to identify
which National Parks are at risk. We were initially tasked with developing a model to
classify 5 particular parks as having either high, medium, or low risk of sea level change.
For each location, we created a probabilistic model of the sea level height in the next t
years. We determined whether a site had high, medium, or low risk levels based on the
damage that we would expect to occur based on the change in sea level. We calculated
the probability of risk associated with each region in 10, 20, 50, and even 100 years from
now. Our findings show that Cape Hatteras and the Padre Island possess the greatest
risk of all 5 national parks.

After classifying these parks as high, medium, or low risk based on sea level change
alone, we sought to determine a set of additional criteria to build a model that would as-
sign each site a ”vulnerability score.” The vulnerability score is based off of the likelihood
and severity of climate related events occurring. We selected our criteria to be the Heat
Index, which consisted of temperature and humidity, hurricane intensity and frequency,
and the Air Quality Index. These criteria were then used to construct a model that
generated the Vulnerability score by first assigning a subscore for each of the individual
criteria and then taking a weighted average of these subscores. We found that Padre
Island National Seashore and Acadia National Park are in critical condition, with Padre
Island being in a worse condition than Acadia National Park. Furthermore, Olympic
National Park and Cape Hatteras National Seashore are still safe but almost in a critical
condition, and Kenai Fjords National Park is the safest of all five.

Finally, we created a model to determine how to allocate limited funds to the parks
based off of factors including the adjusted vulnerability score we calculated in part two,
as well as the number of visitors for each park. We accomplished this by first determining
the expected number of visitors for the future based on data from previous years and the
vulnerability score. We then used the results of our model to convert our predictions
of the number of visitors and the vulnerability scores into indices that would calculate
the overall Financial Utility index. We used the financial utility indices for each site to
decide the optimal distribution of funds between the 5 parks. Based on our results, we
found that the percentage of funds should be allocated as follows from most to least: Aca-
dia National Park (30.48%), Olympic National Park (28.27%), Cape Hatteras (21.49%),
Padre Island (10.94%), Kenai Fjords (8.82%).

100



Team Number: 8597

Contents

1 Executive Summary
100

2 Part 1: Water We Going to Do?
102

2.1 Restatement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . .
102

2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2.3 Developing the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.4 Validity of Model and Generalities . . . . . . . . . . . . . . . . . . . . . . 105

3 Part 2: Modeling the Effects of Heat Index, Air Quality, and Hurricane
Frequency and Intensity on Vulnerability Scores

106

3.1 Restatement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . .
106

3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.3 Developing the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4 Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.5 Verifying the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.6 Future Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 Part 3: Profitability and Vulnerability 112
4.1 Restatement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2 Analysis of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4 Developing the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.5 Justification and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Conclusion 116
5.1 Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 References
117

101



Team Number: 8597

2 Part 1: Water We Going to Do?

2.1 Restatement of the Problem

The problem asks us to do the following:

• Build a mathematical model to determine the change in sea level for each of the
following five parks:

Acadia National Park, Maine

Cape Hatteras National Seashore, North Carolina

Kenai Fjords National Park, Alaska

Olympic National Park, Washington

Padre Island National Seashore, Texas

• Rate each of these National Parks as one of high, medium, or low risk of sea level
change for the next 10, 20, and 50 years.

• Determine whether our model could be used to make a prediction for the next 100
years.

2.2 Assumptions

• The sea level rate of change found over the past 100 years will continue to be
constant over the next 100 years as well.

Justification: Using data from the National Oceanic and Atmospheric Admin-
istration [1], we can consider the consistency in sea level rate change due to no
statistically significant difference between the calculated trends of change in sea
level. Because the 95% confidence intervals depicting sea level overlap for mean
sea level trends over the past 100 years, for all 5 sites, we can extrapolate a similar
trend for at least short run models under a few centuries.

• Increasing sea level is directly correlated with increasing risk of flood.

Justification: While it is true that as sea levels increase the local government
is more inclined to build reinforcements to minimize damage it is obvious that risk
of flood is highest when the sea level is highest.

• All sites start at a baseline of having no predisposed greater risk than another

Justification: Evidently, some sites are more likely to be favored more than
others from the start for being safer or riskier than others. However, randomness
in variables contributing towards Risk cannot be totaled and in creating a general
model to apply to any site, we limit it to ubiqutuous factors.

• Temperature will not affect our model on sea level change over the duration over
where are model operates.

Justification: While the NOAA accounts for 2 factors that play a roll in in-
creasing sea levels: thermal expansion and increased melting of land based ice
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[19], temperature can still be discounted. Plotting average yearly temperature over
roughly 20 years across each site, linear, polynomial, and lograthmic lines of best
fit all fail to exceed an R2 value of 0.1. Because not even 0.1% of difference in
the yearly temperature across 2 decades can be accounted for by any time, we can
discount the effect of temperature as it’s simply unpredictable [8]. This inability
to predict any temperature across such a short span of few years is only resolved
by comparing a few of centuries at a time. Thus, despite thermal expansion and
increased melting of land based ice being directly proportional to change in tem-
perature, temperature change only needs to be factored into models running over
a few centuries which ours does not.

2.3 Developing the Model

We begin our model by analyzing the average change in mean sea level of all the five sites
and the standard deviation of each site as well. In doing so, we hope to be able to predict
the likelihood of the sea level of each site rising above certain benchmarks. These certain
benchmarks will suffice to serve as restrictions outlining High, Medium, and Low risk.
Note that we have been given the yearly mean sea level, µ, and the upper 95% sea level
change,x′, in millimeters per year, so to calculate standard deviation, σ, we simply equate

σ = |µ− x
′

1.96
|.

Furthermore, given the yearly mean sea level, the cumulative increase in height given as
a function of year from 2016, t, can be defined as

∫ t

0
µ∂t = µ ∗ t.

Site Mean Sea Level Increase (µ) Standard Deviation (σ)

Acadia National Park 2.178 mm/yr 0.111 mm/yr
Cape Hatteras 3.84 mm/yr 0.628 mm/yr
Kenai Fjords -2.62 mm/yr 0.352 mm/yr

Olympic National Park 0.14 mm/yr 0.490 mm/yr
Padre Island 3.48 mm/yr 0.383 mm/yr

According to National Geographic [10], approximately a 1 feet per century increase in sea
level poses a dire threat to swamp out coastal regions. As all 5 sites are isles or outlets
with minimum sea levels of 0m above sea level, similar increases in height would prove
devastating and pose a High Risk threat. Therefore, a >1 feet per century (>304.8 mm)
increase in sea level would pose a high threat. Continuing on, a 0.3-1 feet per century
(91.44-300.8 mm) increase in sea level contributes to hazardous conditions for visitors
and wildlife in these national parks that disrupt a park’s operations. Thus, these two
bounds serve as a benchmark for assigning medium risk to a site. Any increase smaller
than either constraint (>91.44 mm) can be assumed to pose only a low risk.

Now, we now create a three pronged test assigned to distinguish a site’s risk rating.
Using a normal model, we can calculate the probability of each of the following occuring
as a function of time, t for t > 0. The test uses a normal model with a mean acculumated
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increase in sea level found above to be µ ∗ t and standard deviation to be σ ∗
√
t as a

repeated sum of t distinct normal models’ standard deviation. Similarly, the risk rating
assessments will bound the probability of any event occuring by the 3 intervals denoted
above. To normalize our data, we multiply through by a factor of t/100 to account for
these intervals being bounded by century long limits that validate a risk while our time
is only measured in years.

Risk Assigning Model
Risk Rating Test

High N(µ ∗ t[ t
100

], σ
√
t[ t

100
])P (x > 300.8[ t

100
])

Medium N(µ ∗ t[ t
100

], σ
√
t[ t

100
])P (300.8[ t

100
] > x > 91.44[ t

100
])

Low N(µ ∗ t[ t
100

], σ
√
t[ t

100
])P (91.44[ t

100
] > x])

Substituting a given site’s information regarding their mean sea level increase per year
and standard deviation, we can find the probability of the site being assigned a High,
Medium, or Low Risk rating in t years from now. Of the three tests for a given year,
the expression that gives the greatest probability will correspond to the Risk Rating as-
sociated with that site. Ergo, if Test 1 gave the greatest probability over the second and
third test then the Risk Rating associated with the site can be defined as High.

To illustrate, we take our model into practice using Acadia National Park as an
example.

Acadia National Park Probability of each Risk Rating
Risk Rating 10 years 20 years 50 years 100 years
High 0 0 0 0.0001
Medium 2.0856*10−11 1.59*10−4 0.83328 0.9998
Low 1 0.9998 0.1667 1.35*10−8

In general, we find that in 10 and 20 years, the risk assessment given to Acadia National
Park can be defined as a Low Risk Site. However, progressing into 50 years and 100
years, we shift to deem Acadia a Medium Risk Site.

Applying these tests, we can more generally create a guide predicting the risk of all 5
sites across 10, 20, 50, and 100 years.

General Risk Assessments
Site 10 years 20 years 50 years 100 years
Acadia National Park Low Low Medium Medium
Cape Hatteras Low Low Medium High
Kenai Fjords Low Low Low Low
Olympic National
Park

Low Low Low Low

Padre Island Low Low Medium High
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2.4 Validity of Model and Generalities

Our model outputs a risk assessment for each location based upon the predicted effect
of rising sea levels on the wildlife and the number of visitors the park will have. As a
result, we discount the potential effects of the Kenai Fjords decreasing sea level of 2.62
mm per year. With further analysis, a separate approach could potentially be adapted
to find a decreased water supply’s effect on ecosystems but ultimately that concern pales
in comparison to the catastrophic effects of rising sea levels.

Trivially, we should note that our model only takes meaning with moderate short run
periods i.e. from a couple of decades to 2 centuries. As lim t → 0, the normal model
approaches the Dirac Delta Distribution showcasing no substantive meaning where the
normal distribution yields a finding that each site has an equal chance of being High,
Medium, and Low Risk. Similarly, as lim t→∞, a similar occurrence of equal probabil-
ity of each risk occurs according to the model.

In practice, however, when considering small values of t (those of a couple of years),
our model finds most sites to be of low risk as expected. As of now, and predicted to be
so for the upcoming years, none of the 5 sites are at any immediate concern of flooding
[20]. However, for sufficiently large values of t, all sites are predicted to be underwater
at current estimates and likewise, our model accounts for it. Simple dimensional analysis
and finding that regions like Cape Hatteras have been found to be some of the greatest
regions at risk of flooding in the U.S. confirm and validate the use of our model [21].

However, applying our model centuries from now begins to display weaknesses of our
model. First, we have to consider the limitation of predicting long periods of time from
now. Note that the standard deviation is given by,

σ(
√
t
t

100
).

Then we have by the 68-95-99.7 rule that roughly 99.7% of all possible cumulative sea
levels in year t is ±3σ(

√
t t
100

)mm from the mean. If we just consider our greatest value
of σ = 0.628, then in 100 years, our model could be off by roughly

3 ∗ .628 ∗
√

100
100

100
= 18.84mm

or roughly 0.74 inches. While this approximation concludes high validity and minimal
spread for 100 years into the future, compounding this for possibly tens of centuries can
reduce the reliability of our data. Similarly, the ability to discount temperature change
as a factor in the change in sea level was only possible because of bounds on short periods
of time. Long run approximations of temperature find steady increases in temperature
over numerous centuries that would have to be accounted for. Our model is accurate up
to about 2 centuries where slowly a significant possibility of error arises. For time periods
in between, error is minimized.
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3 Part 2: Modeling the Effects of Heat Index, Air

Quality, and Hurricane Frequency and Intensity

on Vulnerability Scores

3.1 Restatement of the Problem

As there are many different climate events that effect NPS coastal park units, we are
tasked with the following:

• Develop a mathematical model that assigns a vulnerability score to any coastal
National Park and takes into account likelihood and severity of different climate
related events.

• Assign a vulnerability score using our model to the five national parks in Part 1.

3.2 Assumptions

• Temperature is not included in the model.

Justification: Since the heat index relates temperature and relative humidity,
there exists a strong, positive correlation between temperature and heat index.
Thus, by analyzing the heat index, the temperature is analyzed in the model as
well.

• Wildfires is not included in the model.

Justification: Wildfires can have both a positive and negative effect on a na-
tional park. In small amounts, fire is useful because it cleans the debris off the
forest floor, makes room for new animals and habitats, kills diseases, and allows
select plants to grow [4]. In large amounts on the other hand, wildfires can be ex-
tremely costly to extinguish and damage the ecosystems more than they help them.
Due to the varying effects of wildfires, we exclude wildfires from our model.

• Kenai Fjords National Park’s average temperature and relative humidity are 62◦F
and 97%.

Justification: Since heat index is not measured in Alaska, we used the formula
by which heat index is calculated to determine the heat index for Kenai Fjords
National Park. Since the temperature was approximately 62◦F, and thus is below
80◦F, we used the formula

1

2
· (T + 61.0 +

T − 68

2
+RH · .094)

to calculate the heat index. The relative humidity (RH) and temperature (T) were
approximated by the city Seward [6] which is 5 miles from the national park.

• The number and severity of hurricanes remains constant for the next 50 years.

Justification Based on previous statistics regarding the number of hurricanes in
the past century, there is no statistically significant trend in the number or severity
of hurricanes [7]. Hence, for lack of data and simplicity, we will assume the number
and severity of hurricanes remains constant for the next 50 years.
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3.3 Developing the Model

Our model consists of three factors: heat index(HI), hurricanes(H), and air quality(AQI).
We first established a relationship between the heat index and a Severity Index (SIHI), as
well as between hurricanes and a seperate Severity Index(SIH), and between air quality
and its own Severity Index (SIAQI). Then, after using an adjustment formula to weight
the importance of each of the factors, we found the vulnerability score(V S) by adding
the product of the Severity Indices and their respective weights. In order to facilitate the
scaling of each of the separate Severity Indices, we set the range for each Severity Index
from 0 to 100.

To find SIHI , we used a Four Parameter Logistic Regression, with the minimum at-
tainable value set at 0 and the maximum at 100. Based off of the heat index chart [8],
we established references of 80◦F, 90◦F, 103◦F, and 124◦F for levels of caution. We gave
each of these references a value on the SIHI , specifically (80, 25), (90, 55), (103, 86), and
(124, 98). These estimates were based off of the levels of caution and their likelihood of
occurance. These four points thus gave an equation of

SIHI = 100− 100

1 + ( HI
88.03121

)11.46488

where HI represents the coastal unit’s heat index and SIHI represents the corresponding
value on the Severity Index SIHI .

We then proceded to model the Severity Index for hurricanes, SIH . The danger that
hurricanes pose to national parks is based on its intensity and its return period. The in-
tensity, H, is directly proportional to the danger that hurricanes pose because the higher
intensity of the hurricane, the more damage sustained. The return period is the estimated
return period in years for hurricanes passing within 50 nautical miles of various locations
on the U.S. Coast [9]. The longer return period for a hurricane, the lesser threat that
hurricanes pose to that region. Thus, we obtain the equation

SIH =
k ·H
τ

,

where τ is the return period and k is a constant.

There are 5 classifications of hurricanes: H1, H2, H3, H4, and H5, with H5 being the
most severe. There are two classifications of tropical storms: TS (Tropical storm) and TD
(Tropical depression). There exists a third type of storm known as a ET, or extratropical
storm. ETs can be any intensity, ranging from H5 to TD. We first assign each storm
other than ET a value from 1-7, as shown in the following table.

TD TS H1 H2 H3 H4 H5
1 2 3 4 5 6 7

To assign a value to ET, we found the likelihood of each type of hurricane or tropical
storm occuring, then multiplied the likelihoods by the assigned value to find the expected
value of the storms. There were 856.8 tropical storms or depressions in the past century
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[11], and assuming that there were an equal number of tropical storms and depressions
due to lack of data, we get a value of 856.8 · 15 = 1285.2 for tropical storms. Adding the
hurricanes multiplied by their respective values, we get an expected value of

ET =
856.8 · 1.5 + 199 · 3 + 113 · 4 + 97 · 5 + 20 · 6 + 5 · 7

856.8 + 199 + 113 + 97 + 20 + 5
= 2.3059.

Now that we have assigned a value to ET, we calculate H to be the expected value
of the hurricanes:

H =
2.3059 · ET + 1 · TD + 2 · TS + 3 ·H1 + 4 ·H2 + 5 ·H3 + 6 ·H4 + 7 ·H5

ET + TD + TS +H1 +H2 +H3 +H4 +H5

where ET, TD, TS, H1, H2, H3, H4, and H5 represent the number of hurricanes of those
classifications that hit the coastal unit within a given year. Since

H ≤ τ,

which is because the return period is greater than 5 and H is less than 5, we set k = 100
to scale SIH from 0 to 100. Note that although it is possible for H to be greater than 5
in theory, it is not possible in reality. The number of ET, TS, TD, H1, and H2 storms
significantly outnumber the number of H3, H4, and H5 storms, which brings H ≤ 5. This
gives us the final model for hurricanes:

SIH =
100 ·H
τ

.

The last Severity Index is for the air quality, which is measured using the AQI, or air
quality index. We use the variables Average AQI Value (µ), Average Maximum AQI
(M), and Average Minimum AQI (m). Our base model for SIAQI is

SIAQI = k · µ+ j ·M + i ·m,

where k, j, and i are constants. In order to average the AQI, we take k = 2, j = 1, and
i = 1. Based on the data provided, 0 ≤ µ ≤ 70, 0 ≤ M ≤ 100, and 0 ≤ m ≤ 30. The
maximum value of SIAQI is thus 2 · 70 + 100 + 30 = 270, so in order to scale it down to
100, we divide k, j, and i by 2.7 to get k = 7.4, j = .37, and i = .37. This results in

SQAQI = .74 · µ+ .37 ·M + .37 ·m.

3.4 Putting it all together

Now that we have SIHI , SIH , and SIAQI , we can finally weight these to obtain an equation
for V S, the vulnerability score. We assign weights based on the severity of the threat
as well as the likelihood of the threat. Since the heat index, and thus temperature, is
rated at the highest relative threat, with hurricanes and thus flooding following, and air
quality trailing in last [12], we assign values of 1

2
, 3

10
, and 1

5
to SIHI , SIH , and SIAQI .

108



Team Number: 8597

However, since hurricanes are extremely rare in the West Coast, we adjust the weights of
hurricanes and air pollution for coastal units in the West to 1

20
and 9

20
respectively. Thus,

our vulnerability score model is:

V S =
[
.5 .3 .2

]
·

 SIHI

SIH
SIAQI


for coastal units in the East Coast, and

V S =
[
.5 .05 .45

]
·

 SIHI

SIH
SIAQI


for coastal units in the West Coast.

3.5 Verifying the Model

We used this model to assign vulnerability scores to the five national parks, and then
assessed the conditions of those five parks with the vulnerability scores to determine its
accuracy.

Site HI H τ µ M m

Acadia National Park 85.61 2.306 34 41.53 84.77 23.39
Cape Hatteras 87.66 2.395 7 43.22 82.34 20.36
Kenai Fjords 62.78 0 N/A 31.8 66.12 12.59

Olympic National Park 81.52 0 N/A 35.46 58.56 19.35
Padre Island 92.01 2.545 15 44.63 95.05 21.92

We then computed the severity indices, getting the following scores.

Site SIHI SIH SIAQI V S

Acadia National Park 42.06 6.782 70.828 50.04
Cape Hatteras 48.78 34.21 70.06 48.70
Kenai Fjords 2 0 52.72 23.724

Olympic National Park 29.31 0 55.12 39.46
Padre Island 62.40 16.97 76.38 51.57

Since the two regions were weighted differently, the bounds for the point in which the
vulnerability score becomes critical are different. For the East Coast, V Sbound = 50; while
for the West Coast, V Sbound = 40. In order to make comparisons, we used an adjusted
vulnerability score, V S∗. We calculated this by dividing the unit’s V S by the bound for
the vulnerability score in that region. The table below shows the adjusted vulnerability
scores.

Site V S∗

Acadia National Park 1.0008
Cape Hatteras 0.974
Kenai Fjords 0.5931

Olympic National Park 0.9865
Padre Island 1.0314
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If V S∗ for a coastal unit is greater than one, then it has surpassed the bound, and
thus is in a critical state. If V S∗ ≤ 1, then the closer it is to 1, the worse condition
that the park is in. Thus, according to our model, Padre Island is in the worst condition,
followed by Acadia National Park, both of which are critical. Cape Hatteras and Olympic
National Park are close to critical, and Kenai Fjords is still in good condition.

Padre Island flooded in 2015 as well as 2014, which verifies the fact that it is in crit-
ical condition. Acadia is a Class 1 Area under the Clean Air Act, which shows that it
is in need of the highest air quality protection [18]. The unusually high air pollution
in Acadia confirms that it is also in a critical state, further verifying our model. While
Olympic National Park and Cape Hatteras do not have critical issues in the status quo,
both parks have projected climate events to be a dire issue in the near future. Because
both parks fear climate-related events to be a prominent issue in the near future, this
confirms that both parks are still safe but close to critical. Kenai Fjords is still in good
condition, thus completing the validation of our model.

In order to apply this model for other NPS coastal units, the following information is
necessary:

• Heat Index

If the heat index is not available, as was the case for Kenai Fjords National
Park, then the average temperature and relative humidity are necessary.

• Hurricanes

The intensity of each of the hurricanes and the frequency of the hurricanes is
necessary.

• Air Quality

The average, average maximum, and average minimum AQI in the current year
is necessary

With this information, the Severity Index for that site can be calculated, and depending
on whether or not the coastal unit is in the East or West Coast, the weights would be
different. Then, the V S would be calculated for the NPS coastal unit, and then using
the respective benchmark would give the current state of the national park.

3.6 Future Projections

After assigning vulnerability scores to each of the different parks, we were curious as to
when the two parks, Cape Hatteras and Olympic National Park, would enter a critical
state. To do so, we projected the heat index and AQI, and kept hurricanes constant
according to Assumption 4.

Using the data provided, we created a logarithmic curve of best fit for the AQI and
a linear line of best fit for the heat index. We used a linear model for projecting heat
index because the linear model with 95% confidence intervals showed a statistically sig-
nificant trend at the 95% confidence level for heat waves in India [22]. Although we were
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concerned about the heat indices in the United States, the trends for heat indices are of
the same type throughout the world. For example, if a logarithmic curve was the general
trend, then the heat indices would follow a logarithmic curve in the United States. The
logarithmic model was chosen for projecting AQI because the variance was the highest
out of all of the different models.

For the heat index, we took the provided data and applied a linear model. We cal-
culated the following equations for four out of the five national parks (Kenai Fjords was
excluded due to lack of data).

Site Line of Best Fit

Acadia National Park HI = .0074t+ 80.841
Cape Hatteras HI = −.004t+ 83.821

Olympic National Park HI = .0023t+ 79.529
Padre Island HI = .0036t+ 91.552

These equations are for the four specific national parks, so to estimate the heat index
for other national parks, we averaged these equations to obtain

HI = .00279t+ 83.94,

where t represents the number of years that we are projecting. Converting to the Severity
Index, we get

SIHI = 100− 100

1 + ( .00279t+83.94
88.03121

)11.46488
.

For the AQI, since we used the average (µ), average maximum (M), and average minimum
(m), we projected all of these values, then combined them to obtain a model projecting
AQI.

Site µ M m

Acadia NP µ = −6.3 ln t+ 107.9 M = −1.7 ln t+ 45 m = 4.8 ln t+ 22.4

Cape Hatteras µ = −4.7 ln t+ 68.2 M = −2.9 ln t+ 46.5 m = −1.6 ln t+ 22.9

Kenai Fjords µ = −5.1 ln t+ 76.5 M = −3.2 ln t+ 32.6 m = −1.6 ln t+ 15.9

Olympic NP µ = −9.9 ln t+ 92 M = 1.4 ln t+ 32.6 m = 3.6 ln t+ .2

Padre Island µ = −7.4 ln t+ 100 M = 1.2 ln t+ 42.1 m = 2.1 ln t+ 17.6

Again, since these equations are specific for the different sites, we averaged these
equations to obtain a general equation for µ, M , and m:

µ = −6.68 ln t+ 88.92,

M = −1.01 ln t+ 40.89,

m = .58 ln t+ 18.19.

Thus, our general model for SIAQI is

SIAQI = −3.44 ln t+ 69.96.

Combined with the constant SIH , we can thus project V S.
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4 Part 3: Profitability and Vulnerability

4.1 Restatement of the Problem

As the NPS only has a limited amount of resources and budget to split among its many
sites, we are tasked with deciding just how much each site will receive in financial backing.
Our task consists of two parts:

• Develop a mathematical model that predicts the number of visitors in each park as
a function of time, taking into account the adjusted vulnerability score.

• Using the output of our model that predicts the future number of visitors to decide
how much each site will receive in financial resources.

4.2 Analysis of the Problem

When considering the factors that affect the number of visitors to a given site, there are
a number of unknown variables like the economic state of the nation at that time and
unpredictable natural disasters like earthquakes and tornadoes that we cannot account
for. Factors that we can model more accurately are the general popularity of the specific
site, which is reflected by trend of the number of visitors, along with the environmental
state of the site, which is reflected through the adjusted vulnerability score.

4.3 Assumptions

• There is a fixed budget for the money that is assigned to be distributed among the
5 sites.

Justification: Although the problem only concerns 5 sites, in reality the NPS
deals with far more sites. However, we must assume the NPS has a fixed budget so
that the model can generate concrete values.

• Unless adjusted vulnerability is higher than a certain threshold, it plays no role in
affecting the the number of visitors per year.

Justification: Although a high adjusted vulnerability can affect a visitor’s de-
cision to attend a park, the visitor will not care about the difference between two
relatively low adjusted vulnerability scores.

• The benchmark adjusted vulnerability score is 1.

Justification: A benchmark adjusted vulnerability score of 1 is not justified but
is necessary in order to analyze the impact of vulnerability on v(t).

• Growth in number of visitors each year for a given site is approximately linear.

Justification: The population of the United States is growing at an exponential
rate; however, with the increasing immersion on technology and the virtual world,
there is decreasing interest in nature and national parks among the general populace.
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• The two main factors in determining the amount of money that should be allocated
to a site are adjusted vulnerability score and number of visitors.

Justification: Adjusted vulnerability score represents the environmental state of
the park which helps us determine how likely it is that the park will need funding
for climate-related events. The number of visitors represents the magnitude of
potential change the funding a park can accomplish, because we want the funds to
reach to as many people as possible and generate revenue for the park.

• The number of visitors is more important to consider than adjusted vulnerability
score.

Justification: While the goal of the NPS is to enhance the natural experience as
much as possible, earning revenue is much more essential in securing a substantial
budget for future years. Therefore, it is imperative that the number of visitors is
emphasized more so that more entrance revenue is generated.

• We use the predicted adjusted vulnerability scores of the sites in 20 years rather
than the present adjusted vulnerability scores to determine how the NPS should
allocate funds.

Justification: To account for long-term changes in the adjusted vulnerability of
the site, and better fund the sites that will be changing significantly over time, we
take into account the future adjusted vulnerability of a site rather than the current
adjusted vulnerability. Our model is based on a linear regression with a low R2

value, so it will not hold for long periods of time. The model will hold for about 20
years, but not much longer.

4.4 Developing the Model

The first part of our process consists of developing a model representing the change in
number of visitors for a given site. We use a linear regression for the model as it fits the
data better than regressions of higher degrees. However, we must also take into account
the impact of high adjusted vulnerability on a visitor’s decision to travel to a park. Thus,
our equation is as follows:

v(t) =

{
at+ b− k(V S∗site − V S∗bench) V S∗bench ≤ V S∗site
at+ b V S∗bench ≥ V S∗site

where a and b are constants to be determined through the data we collected [13], different
for each site, V S∗bench = 1, k = 1, 000, 000 and V S∗site is the adjusted vulnerability of
the site. When V S∗bench ≥ V S∗site, the adjusted vulnerability is no longer a factor in
determining the number of visitors.
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Site a b V S∗site

Acadia National Park 73106 2008000 1.008
Cape Hatteras 7283.4 2000000 0.974
Kenai Fjords 5633.6 241541 0.5931

Olympic National Park 21701 3000000 0.9865
Padre Island −9543.9 715031 1.0314

Using v(t), we calculate the visitor index by dividing v(t) by the v(t) of the site with the
greatest v(t). We use t = 20, as again, the model will have inaccuracies in the long run.

v(20)index =
v(20)site

max(v(20)i)

We normalize the visitor indices by using the predicted maximum number of visitors
across all five sites in 20 years. This allows us to compare each site relative to one another
based on the predicted number of visitors in 20 years. However, the predicted maximum
number of visitors changes each year, and as a result, using a different year would lead
to different visitor indices for each site. This would also change how funds should be dis-
tributed between the five parks. As long as the visitor indices do not change dramatically
in other years, the indices calculated using the predicted number of visitors in 20 years
will be reasonable to use in determining how the NPS should distribute funding. However,
if the visitor indices differ drastically in other years, it would be necessary to consider
visitor indices for multiple years when calculating how funds should be distributed.

From the adjusted vulnerability score we determined for each of the sites in Part 2 of this
problem, we calculate an adjusted vulnerability index which is defined by the adjusted
vulnerability score of current site divided by the adjusted vulnerability score of the site
with the greatest adjusted vulnerability:

V S∗index =
V S∗site

max(V S∗i )

Once we determine the adjusted vulnerability index and visitor index of each site, we
can define that site’s financial utility by multiplying .75 by the visitor index and .25 by
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the adjusted vulnerability index and adding those two numbers up. Note that the sum
should still be a number in between 0 and 1. Once we calculate the financial utility for
each site, we can calculate the percentage of funds allocated to each site as follows:

Percentage of Funds =
Fsite∑

(Fi)

where F stands for financial utility.

Site Financial Utility Percentage of Funds

Acadia National Park 0.9943 30.48%
Cape Hatteras 0.7009 21.49%
Kenai Fjords 0.2876 8.82%

Olympic National Park 0.9219 28.27%
Padre Island 0.3567 10.94%

4.5 Justification and Discussion

The model heavily relies on weighted averages since in reality, the finances should take
precedence over preservation because finances determine potential for future actions.
With an enlarged budget, the NPA is able to further fund projects that would’ve other-
wise not been possible.

Moreover, the v(t) function was designed to model the visitor growth; however, based on
the data that we had, the linear regression equation had a low R2 value. There was no
apparent pattern to the number of visitors per year in each site because they fluctuated
randomly. Thus, although our model has some inaccuracies, we believe that it repre-
sented the data more fairly than most other models could have.

In addition, we ensured that all the national parks received a non-negligible amount
of funding in this case, and even in other non-trivial cases each site should get significant
funding.

Testing this model for accuracy is difficult, because it would require coming up with
a way to measure the success. In addition, even in the case that there was some measure
of success, we would have to collect data over the future years.

The first part of our model, the equation of visitors against time is quite sensitive to
assumptions. We had to make many assumptions in order to implement the model in the
first place because of the sporadic nature of the visitor data. In addition, the model does
hold for long periods of time because of this.
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5 Conclusion

5.1 Strengths

• Our model addresses a variety of criteria that have significant influences on sea
level, safety, visitor count, and the distribution of funding.

• Our model outputs a number of intermediate values, making troubleshooting easier
when presented with faulty errors.

• Our model relied heavily on prior data and utilizing that data to make projections
for the future which lends credibility.

• Assuming we have sufficient information, our models can be extended to more
national parks.

5.2 Weaknesses

• While multiple intermediate steps makes troubleshooting easier, there would be
more steps to rework in the case of an early error.

• Our projections were not completely correlated with the data (moderately low R2

values).

• Our third model made a significant number of assumptions which while not logically
incorrect may introduce unaccounted variation.

• The first and second models we developed cannot be reasonably extended to more
than one century.
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