
SYNCHRONY BREAKING BIFURCATIONS
IN SMALL NEURONAL NETWORKS

DIKO J. HEMMINGA∗

SPONSOR: BOB W. RINK†

DEPARTMENT OF MATHEMATICS

VRIJE UNIVERSITEIT AMSTERDAM

Abstract. We investigate synchrony breaking bifurcations in neuronal networks. These bifur-
cations occur from synchronous steady-states. In the mutual dyad and a three-neuron feed-forward
chain we show that the generic bifurcation behaviour can be derived from the physical modelling
parameters, in particular from the sign of the interaction between neurons. Each neuron is equipped
with a simplified FitzHugh-Nagumo model and the coupling is based on synaptic coupling. An
inhibitory or excitatory coupling can determine if the bifurcation is ‘soft’ (supercritical) or ‘hard’
(subcritical). For the analysis of the three-neuron feed-forward chain we follow the work of Rink and
Sanders (2013): we can relate excitatory and inhibitory coupling to a ‘soft’ and a ‘hard’ transition,
respectively. For the mutual dyad system we make use of a centre manifold reduction to find the
type of pitchfork bifurcation. As we find an expression in terms of physical parameters, we can state
whether the bifurcation is subcritical or supercritical in the weak coupling limit, and for slow and
fast input.

1. Introduction. We will consider neuronal networks as dynamical systems
with a network structure. The nodes of the network model the neurons. Real life
neuronal networks are immensely complex but in this paper we will consider small net-
works. Such small networks are called ‘motifs’ and are often present as sub-networks
of large neuronal networks. In this paper we consider the mutual dyad and a feed-
forward chain. The mutual dyad contains two identical neurons, mutually coupled
by identical coupling. The feed-forward chain contains three identical neurons with a
specific feed-forward coupling. These two motifs are shown in figures 1.1 and 1.2.

Figure 1.1. Mutual dyad network: two
identical neurons with identical coupling.

Figure 1.2. Feed-forward network of
three identical neurons.

The state of a neuron can be modelled by several state variables, where the most im-
portant variable is the membrane potential. Neurons are often connected by synapses,
providing communication via neurotransmitters. Such a set of connected neurons can
be described by a coupled dynamical system. We model the time-dependence of the
membrane potentials explicitly. We add the interaction between neurons by means
of a current in the equation for the membrane potential. This results in a dynamical
system given by an ordinary differential equation (ODE): a FitzHugh-Nagumo type
equation.

In the theory of dynamical systems with a network structure, the generic behaviour
of the motifs is known. In this paper we will take a specific set of equations to model
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the membrane potential of each of the neurons in a motif. We will find restrictions on
the generic behaviour of these networks based on the modelling equations. This will
reveal which generic behaviour really occurs in our explicit model. In this paper the
sign of the interaction between neurons distinguishes the types of generic behaviour.

More specifically, we will examine bifurcations from synchronous steady-states. Such
bifurcations are also called synchrony breaking bifurcations. In a coupled dynamical
system we speak of a synchronous steady-state if the system is in equilibrium and the
values of the state variables of the cells are equal. A bifurcation occurs if the stability
of a steady-state changes by changing a parameter value. This paper contributes to
answering the question: Does there exist a relation between the sign of interactions
between the nodes of a network and its generic dynamics and bifurcations? Answering
this question is also interesting outside of neuroscience, for general networks. In an
ideal case we would be able to predict the dynamics and bifurcations in a network
from the nature of the interactions between nodes.

The sign of an interaction between two neurons can be defined in terms of the depen-
dence of the evolution of the membrane potential V of one neuron on the membrane
potential of the other neuron. So the sign of the interaction between cell i and cell j
can be seen as the sign of a partial derivative

∂V̇i
∂Vj

∣∣∣∣∣
Vi=V0

(1.1)

In our analysis we will work with a simplified FitzHugh-Nagumo model for the indi-
vidual neurons. The coupling between the neurons will be described by a simplified
model for synaptic coupling. We assume that a neuron is dependent on at most one
other neuron. We simplify the system of the FitzHugh-Nagumo equations including
synaptic coupling to a scalar model (one-dimensional) such that bifurcation analysis
is relatively easy. This work is done in section 2.

The result is an equation for the membrane potential of a single neuron depending on
its coupling to one other neuron. We use subscripts to distinguish between the two
neurons conform the terminology of synapses. The differential equation describes the
evolution of the potential of the ‘postsynaptic’ neuron situated ‘after the synapse’,
denoted Vpost. This neuron receives input via the synapse from the ‘presynaptic’
neuron situated ‘before the synapse’. Its membrane potential is denoted by Vpre. The
equation for the time dependence of the postsynaptic neuron is

V̇post = Vpost(Vpost − a)(1− Vpost)− g · k[Vpre − VT ] · (Vpost − ν) (1.2)

The right-hand side of eq. (1.2) consist of two parts. The first part, the internal term, 
is a bistable term depending on Vpost, where 0 < a < 1. Without the second part 
this term results in three equilibria Vpost = 0, a, 1, which are a stable, a unstable and 
a stable equilibrium, respectively. The second part, the coupling term, is the term 
corresponding to the input current, which is both dependent on Vpost and Vpre. The 
parameter g models the conductivity, so weak coupling can be described by the limit 
of g → 0.
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The input of the presynaptic neuron to the postsynaptic neuron is modelled by a
sigmoidal function k. Its argument is dependent on Vpre and VT . The parameter
VT corresponds to a certain threshold potential. We take k proportional to a certain
increasing sigmoidal function with one parameter (p), which is given by

k[x] ∝ 1

1 + exp(−px)
. (1.3)

We choose this increasing sigmoidal function to describe saturation by the input
current: the synaptic current is bounded by a maximal value. The expression of
the input current is also dependent on a parameter ν, called the reversal potential.
The difference between excitatory and inhibitory input is determined by its value.
Consider the resting potential Vrest for which the neuron is ‘at rest’ or in steady-state
mathematically. If the reversal potential ν makes Vrest−ν positive, then the coupling
is inhibitory (at Vrest). If Vrest − ν is negative, then the coupling is excitatory. We
can actually make the sign of the interaction explicit. In terms of Vpost and Vpre we
have

∂V̇post
∂Vpre

∣∣∣∣∣
Vpost=Vpre=Vrest

= −g · k′[Vrest − VT ] · (Vrest − ν). (1.4)

We stress that the sign of the interaction is a local quantity: we take the derivative 
in a point. This quantity is particularly important if we evaluate it in a bifurcation 
point. The sign may be both positive and negative, as it is determined by (Vrest − ν).

In section 3 we consider a feed-forward chain of three identical neurons with identi-
cal coupling. Each neuron is equipped with an equation for its membrane potential 
as given in eq. (1.2). We follow the analysis of Rink and Sanders [16]. The system 
can show a synchrony-breaking bifurcation of a ‘soft’ or ‘hard’ type. For the soft 
type there exists a stable steady state close to the synchronous steady-state after the 
bifurcation, but for the hard type there does not. In other words ‘soft’ and ‘hard’ 
transitions are distinguished by the order of the jump in the response of the system, 
which is of order O(1) and O(1), respectively. This can be seen in figures 1.3 (soft) 
and 1.4 (hard). The difference is dependent on one certain Taylor coefficient, which 
is calculated explicitly. We find that this Taylor coefficient is directly dependent on 
the sign of the coupling between neurons. Our result is summarised in the following 
theorem.

Theorem 1.1. Consider the feed-forward chain with three identical neurons, 
described by simplified FitzHugh-Nagumo equations (eq. (1.2)). Assume that a syn-
chronous steady state undergoes a generic synchrony breaking bifurcation. If the cou-
pling between neurons is excitatory, the system shows a ‘soft’ transition (figure 1.3) 
and when the coupling is inhibitory, a ‘hard’ transition is found (figure 1.4).

In section 4 we consider the mutual dyad. We apply a bifurcation analysis to the 
two-dimensional system. In this network the situation is more delicate than for the

feed-forward network. In view of the Z2 symmetry of the mutual dyad, its generic 
synchrony-breaking bifurcation is a pitchfork bifurcation. Our analysis of this bi-
furcation is based on centre manifold reduction. This method provides a reduced 
expression for the dynamics around the synchronous steady-state. We can determine
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Figure 1.3. Bifurcation in the feed-
forward chain of the soft type

Figure 1.4. Bifurcation in the feed-
forward chain of the hard type

if the pitchfork bifurcation is subcritical or supercritical. These different pitchfork
bifurcations can be seen in figures 1.5 and 1.6. The subcritical and supercritical
pitchfork bifurcations also correspond to a ‘hard’ and a ‘soft’ transition, respectively.

Figure 1.5. Supercritical pitchfork bi-
furcation, x′ = c1 xλ + c2 x3 for positive c1
and negative c2.

Figure 1.6. Subcritical pitchfork bifur-
cation, x′ = c1 xλ+ c2 x3 for positive c1 and
positive c2.

To determine whether the transition is ‘hard’ or ‘soft’ we calculate the determinant 
Taylor coefficient in three different limits. First, we look at the case of weak coupling 
between the neurons. The steady states then lie close to the steady states of the 
uncoupled system, which are V = 0, a, 1. The result is formulated in the following 
lemma.

Lemma 1.2. In the weak coupling limit, corresponding to g → 0, a generic syn-
chrony breaking bifurcation originating from the synchronous steady state V ∗ ≈ 0 will 
be a subcritical pitchfork bifurcation. For V ∗ ≈ a we find a supercritical pitchfork bi-
furcation and for V ∗ ≈ 1 again a subcritical pitchfork bifurcation. So in this limit we 
find no relation between the sign of the coupling and the type of pitchfork bifurcation.

The other two limits apply to the sigmoidal function k, which is used to define the 
coupling between two neurons. In the limit p → 0, corresponding to a slowly changing 
input, we find a delicate set of implicit conditions determining the type of pitchfork 
bifurcation. This is summarised in the following lemma.
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Lemma 1.3. In the slow coupling limit, corresponding to p → 0, a generic syn-
chrony breaking bifurcation is classified based on an implicit set of conditions. The
steady states V ∗ in this limit solve V ∗(V ∗ − a)(1− V ∗)− g · (V ∗ − ν) · 12

α
α+β = 0. If

we write

N(V ∗; a, ν) = 12(V ∗)3−9(V ∗)2(1+a+ν)+2V ∗(1+a)(1+a+3ν)−ν(2+a+2a2) (1.5)

and

Q(V ∗; a, ν) = −2(V ∗)3 + (V ∗)2(1 + a+ 3ν)− 2V ∗(1 + a)ν + aν, (1.6)

we can summarise the conditions as follows.

The synchrony breaking bifurcation is subcritical if N(V ∗; a, ν) and Q(V ∗; a, ν) have 
opposite sign and supercritical if N(V ∗; a, ν) and Q(V ∗; a, ν) have the same sign.

In the limit p → ∞, we find that the type of pitchfork bifurcation is again directly 
dependent on the sign of the coupling. The results are summarised in the following 
theorem.

Theorem 1.4. Consider the mutual dyad network of two identical neurons, de-
scribed by simplified FitzHugh-Nagumo equations where g 6= 0 and p → ∞. Assume 
that the synchronous steady state undergoes a generic synchrony breaking bifurcation. 
If the coupling between the neurons is excitatory, the type of pitchfork bifurcation is 
subcritical (a hard transition), and when the coupling is inhibitory, the type is super-
critical (a soft transition).

We note that Theorem 1.1 and Theorem 1.4 state quite opposite results. Whereas 
Theorem 1.1 (for the feed-forward chain) connects a soft transition with excitatory 
coupling and a hard transition with inhibitory coupling, this connection is precisely 
opposite in Theorem 1.4 for the mutual dyad network.

This paper shows that by using a simplified form of the FitzHugh-Nagumo equa-
tions for the membrane potential, it is possible to investigate synchrony breaking 
bifurcations in small neuron networks analytically. We see that from the parame-
ters describing the neuron and its coupling to other neurons, we can find the type of 
bifurcation that occurs. In a mutual dyad we can determine if the bifurcation is a 
subcritical or supercritical pitchfork bifurcation for each synchronous steady state. In 
a feed-forward chain we can also distinguish between a ‘soft’ and a ‘hard’ transition. 
In the case of the feed-forward chain and in the limit of p → ∞ in the mutual dyad 
system, the difference between excitatory or inhibitory coupling determines the type 
of bifurcation. However, the relation is exactly opposite.

2. Neuron modelling.

2.1. Neuroscience. A neuron is a special cell type, with the function to trans-
port electric signals through the body. The fundamental quantity is the membrane 
potential. The membrane potential is defined as the electric voltage, or potential dif-
ference, between the inside and outside of the cell membrane [4]. Connected neurons 
influence each others potential. This forms the basis of action potentials or ‘spikes’, 
carrying neural signals. If a neuron is not spiking, it is said to be ‘in rest’.
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The potential difference is caused by the different ion concentrations in the cell. This 
potential is maintained by active transport of ions across the cell membrane and the 
selective permeability of the membrane to these ions. The most important ions are 
Na+, K+ and Cl−. The ions can travel through the membrane by channels. The cell 
membrane itself is impermeable to ions. The channels can be gated or non-gated. If 
the probability of opening depends on the membrane potential, the gated channels are 
called voltage-gated channels. Most of these channels are closed at rest. An action 
potential is generated when these channels open and allow ions to flow across the cell 
membrane, causing a spike in the membrane potential.

Neurons can influence each other by synapses. These limbs contain gates for neuro-
transmitter. These small chemicals work on the ion gates of the neurons next to the 
synapse. Depending on the type of ion this can lead to either an increase or decrease 
in membrane potential. If the membrane potential is increased by the neurotransmit-
ter, we call the neurotransmitter excitatory. If the membrane potential is decreased, 
the neurotransmitter is inhibitory. We use the same terminology for coupling between 
two neurons.

2.2. The Hodgkin-Huxley model. Hodgkin and Huxley published a paper 
describing the giant squid axon in 1952 [10]. This founded the field of mathematical 
neuroscience. They proposed a four-dimensional system of differential equations for 
the dynamics of the membrane potential and three gating variables. The Hodgkin-
Huxley model is based on the dependence of the membrane voltage on the ion currents 
crossing the neuron cell membrane. The ions can travel through the cell membrane by 
voltage-gated channels. Thus the differential equation for the membrane potential is 
dependent on gating variables. The precise coefficients have been derived by Hodgkin 
and Huxley from experimental data of measurements of the giant squid axon. Their 
research was highly recognized by the scientific community: they were awarded the 
Nobel prize in Physiology or Medicine in 1963 [14].

2.3. The FitzHugh-Nagumo model. FitzHugh stated a neuron model in 
1961, based on the Hodgkin-Huxley equations with some large simplifications. It 
is a two-dimensional model developed to capture the essence of the Hodgkin-Huxley 
equations. The model is based on a modification of the Van der Pol equation. So 
FitzHugh called it the “Bonhoeffer-Van der Pol model” [5, 6]. The equivalent is an 
electrical circuit developed by Nagumo in 1962 [13]. The system of equations for the 
FitzHugh-Nagumo model is given in eq. (2.1). The membrane potential V shows bi-
stable behaviour. The variable w is called a recovery variable.

By an input current I, the membrane potential can be influenced by an external ap-
plied current or the membrane potentials of other neurons. This will be discussed 
in section 2.4. The recovery variable is modelled as slow with respect to the mem-
brane potential V , so the positive parameter ε is assumed to be small [4]. The goal 
of the FitzHugh-Nagumo model is to isolate conceptually the essential mathematical 
properties of excitability. Excitability means that the model can describe a ‘firing’ 
neuron: a peak in the membrane voltage. The Hodgkin-Huxley model describes this 
by the electrochemical properties of sodium and potassium ion flow. While this makes 
the Hodgkin-Huxley model more realistic, the basic properties of excitability are ex-
plained by the FitzHugh-Nagumo model. Although not clearly derivable from biology, 
the FitzHugh-Nagumo model allows for simplified dynamics, without being a trivial 
simplification [11].
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In this paper we base our model for one neuron on the FitzHugh-Nagumo equations.
The system of equations for the FitzHugh-Nagumo model is

dV

dt
= V (V − a)(1− V )− w + I,

dw

dt
= ε(V − γw), (2.1)

where 0 < a < 1, ε > 0, and γ ≥ 0 [4]. Our main reason for the choice of this model
is that it is low-dimensional to keep the analysis manageable. The FitzHugh-Nagumo
model is two-dimensional, compared to the four-dimensional Hodgkin-Huxley model.
However, by isolating the essential mathematical components it displays several fea-
tures of neurons. The Hodgkin-Huxley model is biologically more precise, but needs
biological data and computer simulations to be analysed. In this paper we consider
small networks of neurons instead of a single neuron. This implies that keeping the
equations for one neuron manageable is more important than the biological correctness
for one neuron.

2.4. Modelling input current by synaptic coupling. The parameter I in
the first equation of the system (2.1) is called an input current. The coupling between
neurons is implemented assuming synaptic connections. Chemical synapses are the
communication devices between neurons. They excrete neurotransmitter to influence
receptors on other neurons. The mathematical implementation is as follows [4]: We
define the synaptic input current Isyn as

Isyn := gsyn · s(t) · (Vpost − νsyn), (2.2)

where s(t) is the fraction open channels. Let us call the voltage variable Vpost, the
membrane potential of the postsynaptic cell. The postsynaptic cell receives the in-
put current. The parameter gsyn is a factor with an interpretation of conductivity.
The parameter νsyn is called the synaptic reversal potential. It is the trans-membrane
voltage at which the diffusive and electrical forces counterbalance. Whether a synapse
is excitatory or inhibitory is dependent on this parameter, see the introduction. The
terms excitatory and inhibitory are defined in biology in this manner: An excitatory
input increases the membrane potential, an inhibitory decreases the membrane po-
tential.

We assume that the fraction of open channels, s = s(t), satisfies the differential
equation

ds

dt
= α(1− s) ·H(Vpre − VT )− βs, (2.3)

Eq. (2.3) is an example of a gate model. This equation is dependent on the presynaptic 
membrane potential, Vpre, and some threshold potential, VT . In this equation α and 
β are the rates at which the synapse turns on and off, respectively, modelled by the 
rate of opening and closing of the neurotransmitter gates. In eq. (2.3) H represents a 
smooth approximation of a Heaviside function. The true Heaviside function satisfies 
H∞(Vpre − VT ) = 0 if Vpre − VT < 0 and H∞(Vpre − VT ) = 1 if Vpre − VT > 0 and a 
smooth and increasing approximation is often called a sigmoidal function, which has 
the same limiting behaviour, but is smooth around Vpre − VT = 0.
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Now that the equations for the coupling between neurons are established, we state
the complete set of modelling equations for one neuron. To get the correct exci-
tatory/inhibitory behaviour we set I = −Isyn in the FitzHugh-Nagumo equations
(eq. (2.1)). Each neuron is described by a set of equations such as given in (2.4).
These equations describe a neuron with membrane potential Vpost and state variables
w and s. The equations are

dVpost

dt = Vpost(Vpost − a)(1− Vpost)− w − gsyn · s(t) · (Vpost − νsyn),
dw
dt = ε · (Vpost − γw),
ds
dt = α(1− s) ·H(Vpre − VT )− βs.

(2.4)

2.5. Reductions. The parameter ε is small, which makes the changes in w slow
with respect to V . Unfortunately, this means that the assumption that w is always
in equilibrium does not hold. If w would change fast with respect to V , the dynamics
of V would find w always close to equilibrium. The simplification we make for w is
that we approximate w = 0 and w′ = 0 which simplifies both the first and second
equation in eq. (2.4). This dimensional reduction is necessary to be able to carry out
the analysis in chapters 3 and 4.

For the second simplification we eliminate the differential equation for s and write
s = s̄(Vpre−VT ) in the equation for Vpost. Here s̄ denotes the steady-state of eq. (2.3).
It is easy to find this steady-state for eq. (2.3), that is the value of s such that ds

dt = 0.
This result in

s̄ = s̄(Vpre − VT ) =
αH

αH + β
=

{
0 if Vpre − VT < 0
α

α+β if Vpre − VT > 0
(2.5)

where the last equality only follows if H∞ is the true Heaviside function.

The function s̄(Vpre − VT ) can be approximated by a sigmoidal function dependent
on Vpre. A simple form of a sigmoidal function will be used here, which is known as
the logistic function kp(x)

k(x) = kp(x) =
α

α+ β

1

1 + exp(−px)
(2.6)

with parameter p. The logistic function is one from a variety of sigmoidal functions
that have been used as activation function of artificial neurons [12]. Concluding, we
define s = s̄(Vpre − VT ) = kp(Vpre − VT ).
This simplification, by using the steady-state approximation of s, makes bifurcation
analysis possible, as the explicit equations are only one-dimensional. This means that
the equation for membrane potential Vpost is directly dependent on membrane poten-
tial Vpre. So the terminology ‘direct coupling’ is introduced after this simplification.
After these two simplifications the system of equations in eq. (2.4) is reduced to a
single equation as the model for one neuron,

V̇post = Vpost(Vpost − a)(1− Vpost)− g · k[Vpre − VT ] · (Vpost − ν). (2.7)
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Figure 3.1. Schematic representation of a homogeneous feed-forward network consisting of
three neurons.

3. Three-neuron feed-forward chain. In this section we consider the three-
cell feed-forward motif. The name is derived from the fact that this network is a chain
of coupled neurons, without feedback to neurons earlier in the chain. Feed-forward
chains occur often as ‘motifs’ in larger networks, because a feed-forward chain can
act as an amplifier [9]. This behaviour is proved mathematically in Rink and Sanders
(2013) as they found faster amplitude growth for state variables further in the chain
[15, 16]. Figure 3.1 shows the network under consideration, a homogeneous feed-
forward chain of three neurons.

We consider a chain of three neurons as shown in figure 3.1, where the response
function for the membrane potential is of the form of eq. (2.7). The system of equations
for the three neurons in the feed-forward network will be

V̇1 = f(V1, V1) = V1(V1 − a)(1− V1)− g · k[V1 − VT ] · (V1 − ν),

V̇2 = f(V2, V1) = V2(V2 − a)(1− V2)− g · k[V1 − VT ] · (V2 − ν),

V̇3 = f(V3, V2) = V3(V3 − a)(1− V3)− g · k[V2 − VT ] · (V3 − ν). (3.1)

In these equations the simplified FitzHugh-Nagumo model with direct coupling is
used, so k denotes the sigmoidal function defined in eq. (2.6). This system of equa-
tions is a special case of a general feed-forward network [16]. The system is studied
in Rink and Sanders [16] and is often encountered in the literature on coupled cell
networks [3, 7, 8, 9].

3.1. Analysis of the feed-forward system. We begin the analysis by stating
a modified form of Theorem 2.3 in Rink and Sanders [16]. The theorem stated in Rink
and Sanders [16] is valid for a more general class of n-neuron feed-forward networks
with one parameter λ. In our situation any of the parameters a, g, p, ν can play the
role of λ.

Theorem 3.1 (Modified from Theorem 2.3 in Rink and Sanders [16]).

Let f̂ : R2 × R→ R be a smooth function. Assume that f̂(0;λ) = 0. Here we denote

ai = ai(λ) := Dif̂(0;λ) for a = 1, 2 [16]. Assume that a1(0) = 0. Furthermore,

assume the following generic conditions on f̂(X;λ):

1. a1(0) + a2(0) 6= 0,
2. da1

dλ (0) 6= 0,
3. a2(0) 6= 0,

4. ∂2f
∂X2

1
(0; 0) 6= 0.
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Then the equations

ẋ1 =f̂(x1, x1;λ), (3.2)

ẋ2 =f̂(x2, x1;λ), (3.3)

ẋ3 =f̂(x3, x2;λ), (3.4)

support 4 branches of hyperbolic steady states (counted excluding the trivial steady
state x = 0) near (x;λ) = (0; 0). More precisely, there are two steady state branches
with asymptotics

x1 = x2 = 0, x3 ∼ |λ|, (3.5)

and two with asymptotics

x1 = 0, x2 ∼ |λ|, x3 ∼ |λ|
1
2 . (3.6)

From Remark 2.4 in Rink and Sanders [16] we conclude that only one of the branches
proportional to

√
λ can be stable while the branches proportional to λ are never stable.

Remark 2.4 in Rink and Sanders [16] states that this happens if a1(0)+a2(0) < 0 and
a2(0) > 0. We call the transition a ‘soft’ transition if a stable branch exists on both
sides of λ = 0. So we see that a ‘soft’ transition, as shown in figure 3.2, corresponds
to a positive sign of a2(0). When a2(0) < 0 the bifurcation diagram shows a ‘hard’
transition, which is shown in figure 3.3.

In the paper by Rink and Sanders (2013) the (general) response function f̂ satisfies

f̂(0, 0, 0, λ) = 0 for all λ, which implies that the equations describing the system admit
a fully synchronous steady state solution (0, 0, 0) for all values of λ. This does not hold
for f in eq. (3.1). However, as the condition ∂1f(0, 0, 0) + ∂2f(0, 0, 0) 6= 0 holds, we
find that by the Inverse Function Theorem there exists a synchronous steady state V ∗.

This synchronous steady state V ∗, that is V1 = V2 = V3 = V ∗(λ), satisfies f(V ∗, V ∗, λ) =

0. To accommodate the condition in Theorem 3.1, f̂(0, 0, 0, λ) = 0, we define new
variables x1, x2, x3 as x1 := V1−V ∗(λ), x2 := V2−V ∗(λ) and x3 := V3−V ∗(λ). This
results in the redefinition of the response function f from eq. (3.1),

f̂(x1, x2, λ) = (3.7)

(x1 + V ∗)((x1 + V ∗) − a)(1 − (x1 + V ∗)) − g · k[(x2 + V ∗) − VT ] · ((x1 + V ∗) − ν).

so that the condition f̂(0, 0, 0, λ) = 0 for all λ holds. Hence x = (x1, x2, x3) = (0, 0, 0) 
is a fully synchronous steady state solution for the system.

3.2. Bifurcations for the three-neuron feed-forward chain. Assume there 
is a synchronous steady state V1 = V2 = V3 = V ∗ for the homogeneous feed-forward 
chain consisting of three neurons. The bifurcation behaviour of the system of equa-
tions based on eq. (3.7) can be described as a soft (figure 3.2) or a hard (figure 3.3) 
transition for small changes of λ around 0. As will be shown below, the type of tran-
sition is directly dependent on the sign of the coupling between the neurons. This 
result is summarized in the following theorem.
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Theorem 3.2. Consider the system of the feed-forward chain with three iden-
tical neurons, described by simplified FitzHugh-Nagumo equations. Assume that a
synchronous steady state undergoes a generic synchrony-breaking bifurcation as one
of the parameters a, g, p, ν is varied. If the coupling between cells is excitatory at the
bifurcation, the system shows a ‘soft’ transition and when the coupling is inhibitory,
a ‘hard’ transition is found.

Figure 3.2. Bifurcation in the feed-
forward network of the soft type

Figure 3.3. Bifurcation in the feed-
forward network of the hard type

Proof. From Remark 2.4 in Rink and Sanders [16] we find that a2(0) determines
if the transition is ‘soft’ (a2(0) > 0, figure 3.2) or ‘hard’ (a2(0) < 0, figure 3.3) The
expression for the response function is explicitly known, as stated in eq. (3.7). So we

can calculate a2(λ) = D2f̂(0, 0;λ) = D2f̂(x1, x2;λ) |x1=0
x2=0

. The result is

a2(λ) =
∂f̂(x1, x2, λ)

∂x2
= −g · k′[x2 + V ∗ − VT ] · (x1 + V ∗ − ν),

which gives

∂f̂(x1, x2, λ)

∂x2

∣∣∣∣∣x1=0
x2=0

= −g · k′[V ∗ − VT ] · (V ∗ − ν),

The signs of g and k′ are both positive, based on their physical meaning, see section 2.
This makes the sign of the expression completely dependent on the sign of the expres-
sion V ∗ − ν. The interpretation of this sign is clear from the physical meaning of the
parameter ν, as mentioned in the Introduction. For a inhibitory coupling between two
neurons, the sign of V ∗−ν is positive, which implies that a2(λ) < 0, corresponding to
a hard transition in the bifurcation diagram (figure 3.3). If the coupling is excitatory,
the sign of V ∗ − ν is negative, which implies that a2(λ) > 0, corresponding to a soft
transition in the bifurcation diagram (figure 3.2).

4. Mutual dyad. In this final chapter we consider the system of the mutual
dyad with the simplified system of equations for two identical neurons. The differential
equations for the membrane potentials are directly dependent on each other, by means
of the sigmoidal function k. We find the following system of equations

V̇1 = V1(V1 − a)(1− V1)− g · k[V2 − VT ] · (V1 − ν) =: f(V1, V2),

V̇ (4.1)2 = V2(V2 − a)(1 − V2) − g · k[V1 − VT ] · (V2 − ν) =: f(V2, V1)
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We can perform a bifurcation analysis on this system. The results of this section are
statements about the type of pitchfork bifurcation in this system for different sets of
parameters.

4.1. Bifurcation analysis. This system shows (V1, V2) ↔ (V2, V1) symmetry.
Assume that (V1, V2) = (V ∗, V ∗) is a synchronous steady state. Now we introduce
the following notation

X = ∂1f(V ∗, V ∗) = −3(V ∗)2 + 2(a+ 1)V ∗ − g · k[V ∗ − VT ]− a (4.2)

Y = ∂2f(V ∗, V ∗) = −g · (V ∗ − ν) · k′[V ∗ − VT ] (4.3)

for the entries of the Jacobian evaluated in the synchronous point V1 = V2 = V ∗.
Then the eigenvalues of the Jacobian are X ± Y , where both X and Y can positive
and negative. The result is that the corresponding eigenvectors are (1, 1) for the
eigenvalue X + Y and (1,−1) for the eigenvalue X − Y .

We are interested in a synchrony breaking bifurcation, where the system moves away
from the synchronous steady state. A bifurcation occurs if an eigenvalue goes through
zero, when changing a parameter λ. The synchrony breaking bifurcation can happen
if the corresponding eigenvalue is zero: X − Y = 0 so if X = Y [17].

Assume we have a synchronous steady-state where a synchrony-breaking bifurcation
takes place for V1 = V2 = V ∗ and λ = λ∗. We will continue the analysis with a centre
manifold reduction. The centre manifold consists of orbits whose behaviour around
the equilibrium point is not controlled by either attraction of the stable manifold or
repulsion of the unstable manifold. In our application the centre manifold is tangent
to the eigenspace of eigenvalue X − Y , when that eigenvalue is zero (X = Y ). One
of the main methods of simplifying a dynamical system is to reduce the dimension of
the system. Centre manifold theory is a rigorous mathematical technique that makes
this reduction possible, at least near equilibria [1, 2, 18].

We first transform the coordinates (V1, V2) of the coupled system in eq. (4.1) to new
coordinates (x, y) such that the x-axis is the span of (1,−1) and the y-axis is the span
of (1, 1). We also move the point where the bifurcation takes place to the origin. Both
transformations result in the definition of x and y

x = V1 − V2, (4.4)

y = V1 + V2 − 2V ∗(λ)

where V ∗(λ) denotes the value of the synchronous equilibrium point.

So we have a synchronous steady-state at x = 0, y = 0 with the symmetry (x, y) ↔ 
(−x, y). From the equations for V1 and V2 we can deduce the differential equations 
for x and y. So given the equations for V̇1 and V̇2 in eq. (4.1) and the transformations 

from (x, y) to (V1, V2) by inverting eq. (4.4) we can compose the equation for ẋ and ẏ. 
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So the equations governing the dynamics of x and y are

ẋ = f

(
(y + x)

2
+ V ∗,

(y − x)

2
+ V ∗, λ

)
− f

(
(y − x)

2
+ V ∗,

(y + x)

2
+ V ∗, λ

)
,

=: g(x, y, λ), (4.5)

ẏ = f

(
(y + x)

2
+ V ∗,

(y − x)

2
+ V ∗, λ

)
+ f

(
(y − x)

2
+ V ∗,

(y + x)

2
+ V ∗, λ

)
,

=: h(x, y, λ),

where V ∗ = V ∗(λ).

Remember the linearisation of the system in V1 and V2, with X = ∂1f(V ∗, V ∗, λ) and
Y = ∂2f(V ∗, V ∗, λ) as defined before, at the synchronous point (V ∗, V ∗, λ). After
the change of coordinates the linearised system shows the eigenvalues of the Jacobian
explicitly

ẋ = (X − Y )x+ h.o.t., (4.6)

ẏ = (X + Y )y + h.o.t..

A bifurcation takes place for λ = λ∗, for which X − Y = 0 but also X + Y 6= 0 by
assumption.

We state here the result of the centre manifold reduction in a general form. We will
later derive the Taylor coefficients of the equation on the centre manifold explicitly.
These expressions are dependent on a set of Taylor coefficients of the functions g and
h. In this section we will evaluate these expressions for the explicit form of g and h
defined in terms of the response function f in eq. (4.5).

Lemma 4.1. Consider the smooth system of ordinary differential equations{
ẋ = g(x, y, λ),

ẏ = h(x, y, λ),
(4.7)

where g is odd in x, ∂g
∂x (0, 0, 0) = 0 and ∂g

∂y (0, 0, 0) = 0. Also h is even in x,

h(0, 0, 0) = 0, ∂h
∂x (0, 0, 0) = 0 and ∂h

∂y (0, 0, 0) 6= 0. By the centre manifold theorem

([1, 2, 18]) there exists a smooth real-valued function m(x, λ) such that y = m(x, λ)
is an invariant manifold and ∂xm(0, 0) = 0. This manifold contains all the solutions
close to 0 that remain near 0 for all t ∈ R, such as equilibria and periodic solutions.

A centre manifold reduction at the synchronous point (x, y, λ) = (0, 0, 0) produces an
equation on the centre manifold of the form

dx

dt
= c1 xλ+ c2 x

3 +O(|x|5 + |x|3|λ|+ |x||λ|2), (4.8)

Here c1 and c2 can be computed from the coefficients of the Taylor expansion of g and
h around (x, y, λ) = (0, 0, 0), namely

c1 = G− FD̂

Ĉ
, (4.9)

c2 = H − FÊ

Ĉ
, (4.10)
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where

Ĉ =
∂h

∂y
(x, y, λ), D̂ =

∂h

∂λ
(x, y, λ), Ê =

∂2h

∂x2
(x, y, λ), (4.11)

F =
∂2g

∂x∂y
(x, y, λ), G =

∂2g

∂x∂λ
(x, y, λ), H =

∂3g

∂x3
(x, y, λ). (4.12)

The proof of this lemma omitted. It is based on calculating the Taylor expansion of
the differential equation of the centre manifold. By imposing the invariance equations
on expansions of g, h and the equation of the centre manifold m, we find the stated
expression of m in terms of the Taylor coefficients of g and h. We also do not prove
Corollary 4.2 below which simply follows from the definitions of f , g and h.

Corollary 4.2. From the explicit equation of f in eq. (4.1) combined with the
definitions of g and h in eq. (4.5) we can find that the explicit expression of c2 from
eq. (4.8) is equal to

H − FÊ

Ĉ
=

1

4

(
− 6 + g · (V ∗ − ν) · k′′′[V ∗ − VT ]− 3g · k′′[V ∗ − vT ]

)
−1

4

1

−3(V ∗)2 + 2(a+ 1)V ∗ − g · k[V ∗ − VT ]− a− g · (V ∗ − ν) · k′[V ∗ − VT ]((
− 6V ∗ + 2(a+ 1)

)2 − (g · (V ∗ − ν) · k′′[V ∗ − VT ]
)2

+2g · k′[V ∗ − VT ]
(
− 6V ∗ + 2(a+ 1) + g · k′[V ∗ − VT ]

))
(4.13)

4.2. Subcritical and supercritical pitchfork bifurcations. In the previous
section we found that the reduced equation on the centre manifold is given by the
expression in eq. (4.8). The generic bifurcation in systems with Z2 symmetry is a
pitchfork bifurcation which occurs if c1, c2 6= 0. We consider a synchronous steady
state V1 = V2 = V ∗ which undergoes a bifurcation for λ = λ∗. Such a synchronous
steady state V ∗ is the solution to the equation f(V ∗, V ∗, λ) = 0 where V ∗ = V ∗(λ).
For our explicit f this is

V ∗(V ∗ − a)(1− V ∗)− g · k[V ∗ − VT ] · (V ∗ − ν) = 0,

where we can also put in k[V ∗ − VT ], resulting in

V ∗(V ∗ − a)(1− V ∗)− g ·
(

α

α+ β

)
1

1 + e−p(V ∗−VT )
· (V ∗ − ν) = 0. (4.14)

A pitchfork bifurcation can occur in two different forms, the supercritical and subcrit-
ical pitchfork bifurcation. In figures 4.1 and 4.2 we show the form of the supercritical 
and subcritical pitchfork bifurcation, respectively. We can use the terms soft or hard 
transition as well. A supercritical pitchfork bifurcation corresponds to a soft tran-
sition (figure 4.1), whereas a subcritical pitchfork bifurcation corresponds to a hard 
transition (figure 4.2). The same terminology is used for the variants with negative 
c1, corresponding to diagrams mirrored in the vertical axis.
By checking these four cases explicitly we can deduce that the sign of the coefficient c2
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in front of x3 determines the type of pitchfork bifurcation. The supercritical variant
occurs for a negative coefficient c2 in front of x3 and the subcritical variant for a pos-

itive coefficient c2. Therefore the coefficient H − FÊ
Ĉ

is the subject for the following

analysis. We already found that this coefficient can be written as in eq. (4.13).

Figure 4.1. Supercritical pitchfork bi-
furcation, x′ = c1 xλ + c2 x3 for positive c1
and negative c2.

Figure 4.2. Subcritical pitchfork bifur-
cation, x′ = c1 xλ+ c2 x3 for positive c1 and
positive c2.

As the expression in eq. (4.13) contains a large number of parameters, it is not pos-
sible to find all possible scenarios which result in a certain sign of the coefficient of
x3. We will simply analyse the expression in the case for certain limits of some of the
parameters.

Weak coupling limit. Consider the limit where the parameter g approaches zero.
The physical interpretation is that the conductivity g decreases, corresponding to
weak coupling in biological terms. We find the expression for the relevant coefficient
to determine the type of bifurcation in this limit, which states

lim
g→0

(
H − FÊ

Ĉ

)
= −3

2
− 1

4

(−6V ∗ + 2(a+ 1))2

(−3(V ∗)2 + 2(a+ 1)V ∗ − a)
.

We consider the limit for g to zero, so we assume that the steady states V ∗ lie close
to the steady states for g = 0. In that case the expression for the response function
f reduces to a cubic polynomial, resulting in steady states V ∗ = 0, a, 1.

For the first case of V ∗ = 0 we find

lim
g→0

(
H − FÊ

Ĉ

)∣∣∣∣∣
V ∗=0

= a+
1

2
+

1

a
> 0, (4.15)

where the last inequality follows from 0 < a < 1. Now for the steady state V ∗ = a we
find that

lim
g→0

(
H − FÊ

Ĉ

)∣∣∣∣∣
V ∗=a

=
5

2
− 1

1− a
− 1

a
< 0, (4.16)

again using that 0 < a < 1. For V ∗ = 1

lim
g→0

(
H − FÊ

Ĉ

)∣∣∣∣∣
V ∗=1

= −a+
3

2
+

1

1− a
> 0. (4.17)
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We summarise the conclusions in the following lemma.
Lemma 4.3. In the weak coupling limit, corresponding to g → 0, a generic syn-

chrony breaking bifurcation originating from the synchronous steady state V ∗ ≈ 0 will
be a subcritical pitchfork bifurcation, for V ∗ ≈ a we find a supercritical pitchfork bi-
furcation and for V ∗ ≈ 1 again a subcritical pitchfork bifurcation. So in this limit we
find no relation between the sign of the coupling and the type of pitchfork bifurcation.

Limit of slow changing input. Next, we consider taking the limit of p → 0. The
physical interpretation of the limit p → 0 corresponds to small changes in input
current for changes in potential in the inputting neuron. An example of a sigmoidal
function for a small value of p is shown in figure 4.3. The sigmoidal function with
parameter p introduced in eq. (2.6) reads

k[x] = σ(x; p) =
α

α+ β

1

1 + exp(−px)
. (4.18)

For finding the steady states for p→ 0 we assume they will be close to the states we
find for p = 0. If p = 0 we find that k[x; 0] = 1

2
α

α+β . The steady states must solve

V ∗(V ∗ − a)(1− V ∗)− g · (V ∗ − ν) · 1

2

α

α+ β
= 0. (4.19)

Recall that we have the parameter bounds 0 < a < 1 and g > 0.

Figure 4.3. Sigmoidal function for pa-
rameter p = 1

10
.
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Figure 4.4. Sigmoidal function for pa-
rameter p = 100.

The results for the limit p→ 0 are stated in the following lemma.
Lemma 4.4. In the slow coupling limit, corresponding to p → 0, a generic syn-

chrony breaking bifurcation is classified based on an implicit set of conditions. The
steady states V ∗ in this limit solve eq. (4.19). If we write

N(V ∗; a, ν) = 12(V ∗)3−9(V ∗)2(1+a+ν)+2V ∗(1+a)(1+a+3ν)−ν(2+a+2a2) (4.20)

and

Q(V ∗; a, ν) = −2(V ∗)3 + (V ∗)2(1 + a+ 3ν)− 2V ∗(1 + a)ν + aν, (4.21)

we can summarise the conditions as follows.

The synchrony breaking bifurcation is subcritical if N(V ∗; a, ν) and Q(V ∗; a, ν) have
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opposite sign and supercritical if N(V ∗; a, ν) and Q(V ∗; a, ν) have the same sign.

Proof. As we are taking a limit to the parameter inside the sigmoidal function k,
it is natural to look at the size of k and its derivatives in this limit. The sigmoidal
function k is defined in eq. (4.18). In the work of Minai et al. [12] concise formulas for
the derivatives of a sigmoidal function are derived, which are given by

k[x] = σ(x; p) =
α

α+ β

1

1 + exp(−px)
, (4.22)

k′[x] = p k(1− k), (4.23)

k′′[x] = p2
(
k(1− k)2 − k2(1− k)

)
, (4.24)

k′′′[x] = p3
(
k(1− k)3 − 4k2(1− k)2 + k3(1− k)

)
. (4.25)

In the limit for p → 0, the terms without derivative of k will dominate in the
expression of eq. (4.13). We thus set k = 1

2
α

α+β because k → 1
2

α
α+β if p → 0. The

resulting expression is

lim
p→0

(
H − FÊ

Ĉ

)
=

1

4
(−6)− 1

4

(−6V ∗ + 2(a+ 1))2

(−3(V ∗)2 + 2(a+ 1)V ∗ − a− g
2

α
α+β )

. (4.26)

The steady states V ∗ solve eq. (4.19), which we can rewrite as follows

V ∗(V ∗ − a)(1− V ∗)
V ∗ − ν

= g · 1

2

α

α+ β

if we assume that V ∗ − ν 6= 0. This expression can be substituted in eq. (4.26),
resulting in

lim
p→0

(
H − FÊ

Ĉ

)
=
−3

2
− (−3V ∗ + (a+ 1))2(
−3(V ∗)2 + 2(a+ 1)V ∗ − a− V ∗(V ∗−a)(1−V ∗)

V ∗−ν

) (4.27)

=
−3

2
− (−3V ∗ + (a+ 1))2(V ∗ − ν)

(−3(V ∗)2(V ∗ − ν) + 2(a+ 1)V ∗(V ∗ − ν)− a(V ∗ − ν)− V ∗(V ∗ − a)(1− V ∗))
.

For clarity define P and Q as the numerator and denominator of the second fraction,
so

P = (−3V ∗ + (a+ 1))2(V ∗ − ν), (4.28)

Q = −3(V ∗)2(V ∗ − ν) + 2(a+ 1)V ∗(V ∗ − ν)− a(V ∗ − ν)− V ∗(V ∗ − a)(1− V ∗).

As we are interested in the sign of this coefficient, let us find expressions in terms of
V ∗, a, ν such that the coefficient is positive in this limit. We write the inequality in
terms of P and Q

lim
p→0

(
H − FÊ

Ĉ

)
> 0⇔ −3

2
− P

Q
> 0
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which can be rewritten as

−2P + 3Q

2Q
> 0⇔ 2P + 3Q

Q
< 0.

We see that the coefficient is positive if the numerator N := 2P +3Q and the denomi-
nator Q have a different sign. The expressions can be written in terms of third-degree
polynomials. We find that

N(V ∗; a, ν) = 12(V ∗)3−9(V ∗)2(1+a+ν)+2V ∗(1+a)(1+a+3ν)−ν(2+a+2a2) (4.29)

and

Q(V ∗; a, ν) = −2(V ∗)3 + (V ∗)2(1 + a+ 3ν)− 2V ∗(1 + a)ν + aν. (4.30)

We conclude that the coefficient H−(FÊ)/Ĉ in limit p→ 0 is positive if N(V ∗; a, ν) <
0 and Q(V ∗; a, ν) > 0 or if N(V ∗; a, ν) > 0 and Q(V ∗; a, ν) < 0. In other words if
N(V ∗; a, ν) and Q(V ∗; a, ν) have a different sign.

The coefficient H − (FÊ)/Ĉ in limit p → 0 is negative if N(V ∗; a, ν) > 0 and
Q(V ∗; a, ν) > 0 or if N(V ∗; a, ν) < 0 and Q(V ∗; a, ν) < 0. In other words if
N(V ∗; a, ν) and Q(V ∗; a, ν) have the same sign.

We remind ourselves that a positive value of the coefficient H − (FÊ)/Ĉ corresponds
to a subcritical pitchfork bifurcation from a synchronous steady state V = V ∗ and a
negative value corresponds to a supercritical pitchfork bifurcation.

Limit of fast changing input. Next, we consider the limit p → ∞ in the expres-
sion for the sigmoidal function. Physically this corresponds to a fast change in input
current when the membrane potential of the inputting neuron reaches the threshold
potential. In more mathematical terms, the sigmoid approximates a Heaviside func-
tion. An example of a sigmoidal function for a large value of p is shown in figure 4.4.
For this limit of p the higher order derivatives of k are important.

In this limit p→∞ we find the result summarized in the following theorem. It turns
out that the type of pitchfork bifurcation in this limit is only dependent on the sign
of the coupling between the neurons.

Theorem 4.5. Consider the mutual dyad network of two identical neurons, de-
scribed by simplified FitzHugh-Nagumo equations where g 6= 0 and p → ∞. Assume
that the synchronous steady state undergoes a synchrony breaking bifurcation. If the
coupling between the neurons is excitatory, the type of pitchfork bifurcation is subcrit-
ical (a hard transition), and when the coupling is inhibitory, the type is supercritical
(a soft transition).

Proof. Based on the behaviour of the sigmoid for p → ∞, we consider two cases
to find the steady states. In case that V ∗ < VT , only the cubic part of eq. (4.14)
remains and yields V ∗ = 0, a, 1. For V ∗ > VT we find the expression

V ∗(V ∗ − a)(1− V ∗)− g · α

α+ β
· (V ∗ − ν) = 0.
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Taking the limit p→∞ in eq. (4.13) results in

lim
p→∞

(
H − FÊ

Ĉ

)
=

1

4
g · (V ∗ − ν) ·

(
k′′′[V ∗ − VT ]− (k′′[V ∗ − VT ])2

k′[V ∗ − VT ]

)
. (4.31)

From the physical interpretation follows that conductivity g > 0. The sign of (V ∗−ν)
depends on excitatory or inhibitory coupling to the input. We rewrite the expression
involving the derivatives of k using the results in eq. (4.23-4.25) from Minai et al. [12].

By using the form of these derivatives we can see that the expressions for k′′′ and (k′′)2

k′

are both of third order in p. We find that

k′′′ − (k′′)2

k′
= −2p3k2(1− k)2.

The resulting expression in the limit p→∞ states

lim
p→∞

(
H − FÊ

Ĉ

)
= −1

2
g(V ∗ − ν)p3k2(1− k)2. (4.32)

To determine the sign of this expression we note that g > 0, p3 > 0 and k2(1−k)2 > 0,

so the sign of limp→∞

(
H − (FÊ)/Ĉ

)
is directly dependent on the sign of V ∗−ν. As

V ∗ is a (synchronous) steady state it fills the role of resting potential, which is present
in the definition of ν. If the coupling is excitatory, then ν > V ∗ or V ∗− ν < 0, which
results in H − (FÊ)/Ĉ > 0. If the coupling is inhibitory, then ν < V ∗ or V ∗ − ν > 0
resulting in H − (FÊ)/Ĉ < 0. From these results we can deduce that if the coupling
is excitatory the type of pitchfork bifurcation is called subcritical and for inhibitory
coupling the pitchfork bifurcation is called supercritical.
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