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Abstract

Previous literature has investigated the run-up and draw-down of tsunami
waves on a one-dimensional, constant-sloped beach, but the existing so-
lutions are complex and computationally unwieldy. Our research aims to
establish a simpler model while still obtaining accurate results. We do so
by using a quasi-linear theory derived from the nonlinear shallow-water
wave equations. These equations are considered over a linear beach with
properly imposed initial and boundary conditions. The main difficulty in
solving this problem is the moving boundary associated with the shoreline
motion. To eliminate this difficulty, we apply an appropriate substitu-
tion to the spatial variable, and thus replace the moving boundary of the
computational domain with a stationary boundary. A key feature of our
tsunami problem is the presence of the small parameter ε = η0

h0
, where

η0 is the characteristic amplitude of the wave and h0 is the characteris-
tic depth of the ocean. Due to the presence of this small parameter, the
problem can be essentially linearized using the method of perturbations
and then solved analytically via an integral transformation. Our explicit
solution enables us to swiftly predict the behavior of the wave using an
essentially linear model. We test the accuracy of our model against the
numerical solution obtained using Mathematica, and find minimal discrep-
ancies. Finally, we extend our results to a modified beach configuration
that more accurately reflects real-world shoreline topography.

1 Introduction

1.1 Background Information

Tsunamis cause widespread and devastating damage to coastal communities. 
These natural disasters can quickly harm the lives of thousands due to their great 
power and inertia. Tsunamis are typically the result of underwater earthquakes 
or underwater volcanic eruptions which cause major displacements of water [2],
[7]. Although they have minimal amplitude (usually no greater than 30 cm), 
making them extremely difficult to spot offshore, tsunamis can have lengths of 
up to hundreds of kilometers, generally far greater than the depth of the ocean. 
As the tsunami reaches the shoreline the speed decreases, but the amplitude 
increases drastically, leading to a devastatingly powerful wave impact against 
the shoreline and coastal civilization. Any analysis of these phenomena can 
be useful in the effort to minimize the potentially catastrophic effects of future 
tsunamis.
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An excellent way to aid this effort is to understand and predict mathe-
matically how a tsunami will behave during its run-up and draw-down on the
shoreline. Exact analytic solutions have been previously found for nonlinear
non-breaking shallow water waves on a constant-sloped beach [4], [10]. These
findings, while accurate, are difficult to represent in a concise, concrete fashion
and consequently are extremely challenging to use in computational applica-
tions. In our investigation we attempt to accurately predict the same behavior
using a simpler model. A key feature of our solution, which makes it espe-
cially relevant in real-world application, is that it can easily be adapted to any
piecewise-linear configuration of the beach floor. While we primarily discuss our
results for a consant-sloped configuration in order to allow easy comparison with
the majority of previous literature, the ability to model the wave behavior for
differing seafloor patterns allows engineers to test possible barriers and perhaps
determine methods to minimize the effects of tsunamis on the coast.

To find our solutions, we first non-dimensionalize the nonlinear shallow-water
wave equations and make a substitution to simplify our initial problem. Apply-
ing the method of perturbations by using the small parameter ε and dropping
terms with high powers of this parameter allows us to obtain the desired simpli-
fication. The resulting system can be solved using an integral transformation;
this yields our approximate analytic solution, the accuracy of which is tested
successfully against a numerical approximation. The increased simplicity of our
solution will help make moving boundary problems more accessible and might
help in the effort to protect coastal regions from tsunami destruction.

1.2 Problem Statement

The following diagram illustrates the set-up of our problem and the most
essential variables.

Figure 1: Schematic of a wave approaching a constant-sloped beach.

The dotted line represents the moving water surface and the solid diagonal
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line marks the ocean floor. Its important to note that the superscript ′ denotes
a dimensional variable (i.e. a variable with units of measurement) rather than
a derivative. As the wave moves up the beach, its amplitude, η′, increases while
the fluid velocity, u′ decreases. The beach is assumed to have constant slope
−α (the choice of −α rather than α is simply for ease of calculation later). At
the point x′ = 0, the height of the beach is equal to that of the initial sea level
(marked by the dashed line). The relevant nomenclature for our problem is
summarized in Table 1 (with primes excluded).

Table 1: Description of Relevant Variables

Variables Descriptions

x Horizontal position coordinate, positive to the right of x = 0

t Time

η(x, t) Amplitude of wave above neutral ocean height

u(x, t) Horizontal fluid velocity

ϕ(x) = h(x) Vertical distance from ocean surface to ocean floor at position x

λ Characteristic wavelength

xs(t) Horizontal position coordinate of the moving shoreline, positive to the left of x = 0

f(x) Equation modeling initial wave form

−α The constant slope of the shoreline

ε = η0
h0

The ratio of characteristic wave height to still-water depth

g Gravitational constant

We recall that for a tsunami, the wavelength is significantly greater than
the ocean depth, whereas the characteristic amplitude is extremely small. This
allows us (in keeping with previous literature) to use the shallow-water wave
equations, a system of partial differential equations given by (1) and (2) [9] [11].
These well-documented equations are derived from the more general Navier-
Stokes equations by scale analysis, eliminating some terms such as bottom fric-
tion whose effects are minimized in the shallow-water scenario. Due to the
nature of tsunamis they can be modelled using the shallow-water equations
even in the middle of the ocean (and certainly close to shore as in the present
case). We begin with the more general nonlinear form of these equations rather
than the simplified linear version used in some literature.

∂u′

∂t′
+ u′

∂u′

∂x′
+ g

∂η′

∂x′
= 0 (1)

∂η′

∂t′
+

∂

∂x
[(η′ + ϕ′)u′] = 0 (2)

To complete our problem, we add initial and boundary conditions. We 
assume the wave begins with a particular shape given by f(x) while fluid is
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initially stationary, as shown in equations (3) and (4). Since the tsunami is a
local phenomenon, the amplitude and velocity of the wave should limit to 0 as
x approaches infinity, as shown in equations (5) and (6).

t′ = 0, η′(x′, 0) = f ′(x′) (3)

t′ = 0, u′(x′, 0) = 0 (4)

lim
x′→∞

η′(x′, t′) = 0 (5)

lim
x′→∞

u′(x′, t′) = 0 (6)

Finally, we can find the moving shoreline xs implicitly by finding the point
at which η = ϕ (since ϕ represents the beach for all x). Note that xs is thus
dependent on t and represents the moving boundary of our model.

x′ = −x′s(t′), η′(−x′s(t′), t′) = −ϕ′(−x′s(t′)) (7)

2 Solution

2.1 Non-Dimensional Model

We begin by nondimensionalizing the variables of our problem, thereby
eliminating the need to note the units of an equation. To do so, we divide each
dimensional variable by its corresponding characteristic value (denoted by the
subscript 0), as shown in the following substitutions. The magnitudes of η0 and
h0 are known from the initial assumptions of the problem.

t =
t′

t0
, u =

u′

u0
, x =

x′

x0
, η =

η′

η0
, ϕ =

ϕ′

h0
.

We further simplify our non-dimensional model by using scale analysis on
equations (1) and (2) [5], [8].

t0 =
`0
c0
, c0 =

√
gh0, u0 = η0

√
g

h0
.

Applying the above substitutions to equations (1) and (2) yields the following
non-dimensional equations, where ε = η0/h0:

∂u

∂t
+ εu

∂u

∂x
+
∂η

∂x
= 0, (8)

∂η

∂t
+

∂

∂x
[u(ϕ(x) + εη)] = 0. (9)

Finally, applying the same substitutions to our initial and boundary con-
ditions yields these corresponding non-dimensional initial and boundary condi-
tions:
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t = 0, η(x, 0) = f(x); (10)

t = 0, u(x, 0) = 0; (11)

lim
x→∞

η(x, t) = 0; (12)

lim
x→∞

u(x, t) = 0; (13)

x = −xs(t), εη(−xs, t) = −ϕ(−xs). (14)

2.2 Eliminating the Moving Boundary

Now that we have non-dimensionalized our model, we look to eliminate the
primary difficulty of our system of equations: the moving boundary xs. As the
wave approaches and recedes from the shore, xs is continuously changing, which
complicates the solution to our system since the boundary for the independent
variable x is given by x ≥ xs. Instead of attempting to solve our problem in
terms of that moving boundary, we make the following substitutions:

xm = xs/ε, x = y − εxm.

The new variable xm is simply a rescaling of the variable xs (necessary to
give the unknown variables the same order with respect to ε), and replacing the
spatial variable x with the new variable y changes the computational domain
from the moving boundary x ≥ xs to the fixed y ≥ 0. Substituting these into
equations (8)-(14) yields the following modified system of differential equations:

∂u

∂t
+
∂η

∂y
+ ε

∂u

∂y
(u− ẋm) = 0; (15)

∂η

∂t
+

∂

∂y
(uϕ(y − εxm)) + ε

∂

∂y
[η(u− ẋm)] = 0; (16)

t = 0, η(y, 0) = f(y); (17)

t = 0, u(y, 0) = 0; (18)

lim
y→∞

η(y, t) = 0; (19)

lim
y→∞

u(y, t) = 0; (20)

y = 0, εη(−εxm, t) = −ϕ(−εxm). (21)

Note that a dot over a variable, such as ϕ̇, denotes the first derivative of 
that variable, and multiple dots denote the corresponding-order derivative. This 
notation is used only for functions of a single independent variable.

We can simplify the term ϕ(y − εxm) by applying the Taylor series approxi-
mation about y. The general approximation for some arbitrary variable z about 
the point y is
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ϕ(z) = ϕ(y) + ϕ̇(y)(z − y) +˙̇ϕ(y)(z − y)2/2 + . . . (22)

Translating this into an approximation for y − εxm about y gives

ϕ(y − εxm) = ϕ(y) + ϕ̇(y)(−εxm) +O(ε2). (23)

Recall that the parameter ε represents the ratio of characteristic wave height
to characteristic ocean depth, and it is thus extremely small. In fact, a real-world
tsunami typically has an amplitude around just 30cm, whereas the characteristic
depth of the ocean is approximately 3.7km (and hence ε ≈ 0.00000008). Given
this extremely small scale, we simplify the system by dropping any terms with
order of ε2 or higher [9] [11].
Substituting the Taylor series approximation into (16) gives us

∂η

∂t
+

∂

∂y
[u(ϕ(y)− εϕ̇(y)xm)] + ε

∂

∂y
[η(u− ẋm)] = 0. (24)

We regroup this equation so that the ε terms are shown together:

∂η

∂t
+

∂

∂y
[uϕ(y)] + ε

∂

∂y
[η(u− ẋm)− uϕ̇(y)xm] = 0. (25)

In a similar manner, we can rewrite our final boundary condition (21) using
Maclaurin expansions for η and ϕ about y = 0.

ε

(
η(0, t)− ε ∂η

∂y

∣∣∣∣
y=0

xm +O(ε2)

)
= −

(
ϕ(0)− εϕ̇(0)xm +

˙̇ϕ(0)ε2x2m
2

+O(ε3)

)
,

η(0, t)− ε ∂η
∂y

∣∣∣∣
y=0

xm = ϕ̇(0)xm − ε
˙̇ϕ(0)x2m

2
. (26)

Since we know that

ϕ̇(0) = −α, ˙̇ϕ(0) = 0,

this simplifies to

η(0, t)− ε ∂η
∂y

∣∣∣∣
y=0

xm = −αxm. (27)
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2.3 Method of Perturbations

While we have simplified our problem somewhat by non-dimensionalizing
and eliminating the moving boundary, we here perform our most significant
simplification by applying the method of perturbations to the unknown functions
η, u, and xm, utilizing the small parameter ε (≈ 0.00000008). This allows us
to diverge from previous findings by seeking an approximate analytic solution
rather than an exact solution. This approximate solution will still be obtained
in such a way as to remain effectively accurate, but as we shall see the results are
significantly simpler computationally. Note that we are now using the subscript

0 to denote the first term in our approximations rather than a characteristic
value. We expand our variables as

η = η0 + εη1 +O(ε2), u = u0 + εu1 +O(ε2), xm = x0 + εx1 +O(ε2).

Substituting into equations (15)-(20),(27) yields:

∂u0
∂t

+ ε
∂u1
∂t

+
∂η0
∂y

+ ε
∂η1
∂y
− ε∂u0

∂y
ẋ0 + εu0

∂u0
∂y

= 0; (28)

∂η0
∂t

+ ε
∂η1
∂t

+
∂(u0ϕ(y))

∂y
+ ε

∂

∂y
[u1ϕ(y)− u0ϕ̇(y)x0 + η0(u0 − ẋ0)] = 0; (29)

t = 0, η0(y, 0) + εη1(y, 0) = f(y); (30)

t = 0, u0(y, 0) + εu1(y, 0) = 0; (31)

lim
y→∞

η0(y, t) + εη1(y, t) = 0; (32)

lim
y→∞

limu0(y, t) + εu1(y, t) = 0; (33)

η0(0, t) + εη1(0, t)− ε ∂η0
∂y

∣∣∣∣
y=0

x0 = −αx0 − εαx1. (34)

Since ε is arbitrary, we can separate equations (28), (29), and (34) by the
terms with or without ε.

∂u0
∂t

+
∂η0
∂y

= 0, (35)

∂η0
∂t

+
∂

∂y
(u0ϕ(y)) = 0, (36)

η0(0, t) + αx0 = 0; (37)

∂u1
∂t

+
∂η1
∂y

+ (u0 − ẋ0)
∂u0
∂y

= 0, (38)

∂η1
∂t

+
∂

∂y
[u1ϕ(y)− u0ϕ̇(y)x0 + η0(u0 − ẋ0)] = 0, (39)

η1(0, t)− ∂η0
∂y

∣∣∣∣
y=0

x0 + αx1 = 0. (40)
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Equations (35)-(37) are drawn from terms with no ε, and contain the func-
tions η0, u0, and x0, whereas (38)-(40) are drawn from terms multiplied by an
ε term, and contain the functions η1, u1, and x1. Our focus in this paper is
on solving for the former three functions. We start by similarly separating the
initial and boundary conditions by ε.

t = 0, η0(y, 0) = f(y); (41)

lim
y→∞

η0(y, t) = 0; (42)

t = 0, u0(y, 0) = 0; (43)

lim
y→∞

u0(y, t) = 0; (44)

t = 0, η1(y, 0) = f(y); (45)

lim
y→∞

η1(y, t) = 0; (46)

t = 0, u1(y, 0) = 0; (47)

lim
y→∞

u1(y, t) = 0. (48)

We use an algebraic elimination to find a differential equation for η0. From
(35), we know that:

∂u0
∂t

= −∂η0
∂y

. (49)

Taking the derivative of (36) with respect to t and substituting yields:

∂2η0
∂t2

+
∂

∂t

∂

∂y
(u0ϕ(y)) = 0 (50)

∂2η0
∂t2

+
∂

∂y

(
∂u0
∂t

ϕ(y)

)
= 0

∂2η0
∂t2

− ∂

∂y

(
∂η0
∂y

ϕ(y)

)
= 0. (51)

We now have found a second-order differential equation for η0. Using (50)
allows us to derive an additional initial condition. Since

∂η0
∂t

= − ∂

∂y
(u0ϕ(y)),

∂η0
∂t

= −∂u0
∂y

ϕ(y)− u0ϕ̇(y),

using initial condition (43) on u0 and (49), we can conclude that

∂η0
∂t

∣∣∣∣
t=0

= 0. (52)
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2.4 Integral Transform

We will now solve equations (41),(42),(51),(52) for η0 using an integral
transformation. For our chosen transformation we approximate the infinite
boundary with the constant L. We define η̂0 as follows, where the kernel K(y, λ)
is an unspecified function:

η̂0(λ, t) =

∫ L

0

η0(λ, t)K(y, λ)dy. (53)

We impose the following restrictions on K:

K(L) = 0

d

dy

(
ϕ(y)

dK

dy

)
= −λ2K. (54)

Multiplying the equation for n0, (51), by K and integrating with respect to
y yields that: ∫ L

0

∂2η0
∂t2

K(y, λ)dy =

∫ L

0

∂

∂y

(
∂η0
∂y

ϕ(y)

)
K(y, λ)dy

∂2η̂0
∂t2

=

∫ L

0

∂

∂y

(
∂η0
∂y

ϕ(y)

)
K(y, λ)dy.

From here, we may use integration by parts to see that

∂2η̂0
∂t2

=

(
∂η0
∂y

ϕ(y)K(y, λ)

)∣∣∣∣L
0

−
∫ L

0

∂η0
∂y

ϕ(y)
dK

dy
dy

∂2η̂0
∂t2

=

∫ L

0

η0
d

dy

(
ϕ(y)

dK

dy

)
dy,

and making some final substituions using (54) and (53) yields

∂2η̂0
∂t2

= −λ2η̂0. (55)

We now have a second-order differential equation for η̂0. Similarly trans-
forming our initial conditions (41) and (52) on η0 yields

η̂0(λ, 0) = f̂(λ) :=

∫ L

0

f(y)K(y, λ)dy, (56)

∂η̂0
∂t

∣∣∣∣
t=0

= 0. (57)

Equation (55) is of course well-known to even elementary students of differ-
ential equations, with the resulting general solution for η̂ being
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η̂0(λ, t) = A cos(λt) +B sin(λt).

Using our initial conditions for η̂0, we must have that

η̂0(λ, t) = f̂(λ) cos(λt). (58)

Now that we have found η̂0, we turn our attention to finding K. We know
that ϕ(y) = −αy, so we can substitute into (54):

d

dy

(
−αydK

dy

)
= −λ2K. (59)

We now let z =
√
y, and substitute into (59):

−α 1

2z

d

dz

(
z2

1

2z

dK

dz

)
= −λ2K

d

dz

(
z
dK

dz

)
=

4λ2

α
zK. (60)

This equation has a known solution (see [12]). If Ji denotes the Bessel
Function or order i, our solution is

K(y, λk) =

√
2√
L

J0

(√
4λ2

k

α z

)
∣∣∣∣J1(√ 4λ2

kL

α

)∣∣∣∣ . (61)

This solution is valid only for a countably infinite set of values of λ, indexed
by λk. These are defined by [2] :

J0

(√
4λ2kL

α

)
= 0. (62)

Having obtained solutions for η̂0 (58) and K (61), Sturm-Liouville theory
uses the orthonormality and the countable cardinality of our eigenfunctions
K(y, λk) to obtain the inversion formula [12]:

η0(y, t) =
∞∑
k=1

η̂0(λk, t)K(y, λk)

η0(y, t) =
∞∑
k=1

f̂(λk) cos(λkt)

√
2√
L

J0

(√
4λ2

ky

α

)
∣∣∣∣J1(√ 4λ2

kL

α

)∣∣∣∣
 . (63)
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This equation presents η0 as function of x and t in closed and relatively simple
form, as we had hoped. This is the function we use to model the behavior of a
tsunami wave approaching an infinitely long constant-sloped beach. Using this
solution with (35) gives an equation for u0:

∂u0
∂t

= −
∞∑
k=1

f̂(λk) cos(λkt)

√
2λ2k
αLy

−J1
(√

4λ2
ky

α

)
∣∣∣∣J1(√ 4λ2

kL

α

)∣∣∣∣


u0(y, t) =
∞∑
k=1

f̂(λk) sin(λkt)

√
2

αLy

J1

(√
4λ2

ky

α

)
∣∣∣∣J1(√ 4λ2

kL

α

)∣∣∣∣
+ ψ(y) (64)

where ψ(y) is some arbitrary function. However, we recall our initial condi-
tion (43), that u0(y, 0) = 0. Therefore ψ(y) = 0, and we can simplify (64):

u0(y, t) =

∞∑
k=1

f̂(λk) sin(λkt)

√
2

αLy

J1

(√
4λ2

ky

α

)
∣∣∣∣J1(√ 4λ2

kL

α

)∣∣∣∣
 (65)

We have now found equations for both η0 and u0, and using (37) (which
states that η0(0, t) + αx0 = 0) and the fact that J0(0) = 1 [2], we can solve for
x0:

x0(t) =
∞∑
k=1

 f̂(λk)
√

2 cos(λkt)

−α
√
L

∣∣∣∣J1(√ 4λ2
kL

α

)∣∣∣∣
 (66)

We have now obtained final solutions for η0, x0, and u0 as we desired.

3 Analysis

3.1 Results

Now that we have solved our system to obtain explicit functions for η0, u0, 
and x0, we begin verifying the accuracy of our function by plotting it (thereby 
ensuring that it passes the ’eye test’). To plot our function η0 we used Wolfram 
Mathematica, a well-known mathematical and computational program. Note 
that, since our solution is in the form of an infinite series, we obtained graphs by 
truncating the series. The graphs obtained by truncating the series at anywhere 
from 100 to 5000 are visually identical, differing by approximately 0.001, which 
suggests that the series converges extremely quickly and that our truncated 
plots reflect almost exactly the behavior of the full solution.

Firstly, in figure 2 we plot our solution for the wave amplitude η0 at several 
different points in time.
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t = 0 t = 1

t = 2 t = 3

t = 4 t = 5.5

t = 9 t = 12

Figure 2: The wave-form (our solution) at different points in time.

To continue testing the validity of our analytical solution for η0, we compare 
our plot to a numerical approximation obtained through Mathematica. We 
use our second-order differential equation for η0 (51) and the relevant initial 
conditions (41),(52) as our Mathematica input to be solved for and plotted. 
Although the numerical approximation is not an exact solution, it has a high 
degree of accuracy and thus acts as a useful comparison. While it would perhaps 
be even more informative to compare our results to a numerical solution to the 
original equations (1) and (2), obtaining numerical solutions to these equations
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is a more challenging problem which proved beyond the scope of our research.
In figure 3, we plot the difference between our solution and the numeric solution
at various points in time.

t = 0 t = 1

t = 2 t = 3

t = 4 t = 5.5

t = 9 t = 12

Figure 3: The difference between the our solution and the numeric solution at
various points in time (note the change in scale from the previous figure).
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Figure 4: Comparison of the two solutions at t = 5.5 and t = 9.

As figure 3 suggests, the two solutions agree very closely at most points in
time, but some disparity occurs during wave draw-down, as seen for t = 5.5 and
t = 9. Figure 4 shows the wave-form according to both solutions at those points
in time. Comparing these plots, we can see that the disparity which occurs is
a result of the numerical wave drawing down from the beach slightly ahead of
our wave.

Figure 5: The movement of the shoreline point according to the two solutions.

To help understand this disparity, we plot in figure 5 the movement of the 
shoreline (xs) over time according to the two solutions. We can see from this
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that the numerical wave drawing-down slightly earlier is a consequence of the
numerical solution estimating slightly less movement of the shoreline, effectively
predicting the wave to peak slightly earlier. It’s likely that this variation be-
tween solutions can be attributed to the well-known tendency of numerical ap-
proximations such as that used by Mathematica to smoothen the most extreme
behaviors of the solutions. As we can see from figure 3, the slight lag of the
draw-down wave is the only perceptible disparity between the solutions (for ex-
ample, the average error at t = 3 is 0.000117). The fact that these solutions
are so similar is a good indicator that our explicit analytical solution for η0 is
accurate.

In addition to two-dimensional plots, we can also visualize our solution in
three dimensions. Using Mathematica, we graph our explicit analytical solution
for the tsunami wave in three-dimensions (Figure 6), representing time as a
second variable axis.

Figure 6: Three-dimensional graph of our solution.

The three-dimensional graphs shows how the wave behaves for 0 ≤ t ≤ 10 
simultaneously. The vertical axis measures the wave amplitude, with the hori-
zontal axis being the spatial variable and the depth axis time. At t = 0 we can 
see the initial wave profile (most clearly visible in the leftmost graph), which 
splits as always into a seaward wave and a shorebound wave. From the three-
dimensional graph, we clearly see that as the wave approaches the shore, the 
rise in amplitude is accompanied by a decrease in velocity, as evidenced by the 
curved shape of the waveform visible in the second graph. After the breaking 
point occurs, we can see the draw-down wave undergo the reverse phenomenon, 
as a gradual decline in amplitude is accompanied by acceleration as the wave 
moves back out to sea. The rightmost graph more clearly depicts the decreas-
ing amplitude of the draw-down wave as well as allowing a look into the wave 
trough.

To further test the validity of our analytical solution, in Figure 7 we compare 
our three-dimensional graph to the three-dimensional graph of the same numer-
ical approximation used earlier. From this graph we can see as in Figure 3 that 
the two solutions effectively coincide, with the exception of the numerical wave 
drawing-down slightly ahead of our wave. Once again, we see that a comparison 
with the numerical solution suggests our explicit solution is indeed accurate.
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Figure 7: Three-dimensional comparison of the two solutions.

3.2 Conclusions

We set out to find a model for wave run-up and draw-down that was simpler 
than those of previous research. After the first steps of non-dimensionalization 
and eliminating the moving boundary, our usage of the method of perturbations 
allowed us to do so, yielding a relatively simple system which proved solvable 
using a single integral transformation.

Mathematica verified that our solutions were computationally simple; we 
were able to plot them within seconds using only standard computational pack-
ages. The program also enabled us to verify the accuracy of our solution, com-
paring the resulting plots to a numerical solution. Since the only (minor) varia-
tion appears to be a natural result of the smoothening tendencies of the numeric 
approximation, we conclude that our results are also effectively accurate.

Our ability to express tsunami wave behavior in a computationally accessible 
form could aid future civil engineering projects in protecting coastline regions 
from the destruction of tsunamis. Further aiding future projects is the poten-
tial to adapt our solution to different seafloor configurations. In addition, our 
efficient process and explicit expression of the solution will help make moving 
boundary problems more accessible for civil projects and further research.

From a mathematical perspective, there are many opportunities for future 
researchers to build upon this work. Two such opportunities appear particu-
larly promising. First, when applying the method of perturbations we obtained 
two systems of equations, corresponding to terms with or without ε We used 
the latter to obtain solutions for η0, u0,and x0, which are the first terms in 
our approximations of η, u, and xm. Using these first-term solutions in con-
junction with the second system of equations (corresponding to ε), it should 
be possible to obtain solutions for η1, u1, and x1, thereby allowing for a closer 
approximation of the original variables. While the resulting solution will likely 
be substantially more complicated, it promises even better accuracy. Secondly, 
as discussed earlier, the existing body of theoretical work on tsunamis to this 
point focuses rather exclusively on the constant-sloped beach, for which reason 
we chose to plot our results for that configuration. But while this particular 
beach configuration represents the most natural starting point for such inquiries, 
it should be relatively simple to generalize our results to a piecewise-linear beach 
at the very least. Such results would prove even more helpful in providing engi-
neers with effective predictions regarding the behavior of real-world tsunamis, 
and how to stop them.
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