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Abstract. Ranking methods are used in all aspects of life, from Google searches to sports tournaments. Because
all ranking methods necessarily have advantages and disadvantages, USA Climbing, the organizer of national climbing
competitions in the United States, changed their ranking method three times between 2009 and 2016. The combined rank
method employed in 2015 marked a drastic step away from the previous two in that it failed to meet the independence
of irrelevant alternatives (IIA) criterion and was almost impossible for spectators to use to calculate ranks on their own.
We compare this more recent rank aggregation method with older USA Climbing score aggregation methods as well as
other methods from the literature. Three particularly important methods we consider are (i) the combined rank method,
(ii) a combination of the previous two USA Climbing score aggregation methods (the merged method), and (iii) a linear
programming (LP)-based rank aggregation method from the literature. Using data from the 2016 Bouldering Youth
National Championships, we perform leave-one-out cross validation and the Friedman hypothesis test to conclude that at
the 99% confidence level, the LP-based rank aggregation method has significantly more predictive power than the other two
methods, while there was insufficient evidence to distinguish between the predictive power of the combined rank method
and the merged method. However, due to the desirable properties, such as the IIA criterion, satisfied by the merged
method, we recommend this method for use in competitive climbing.

1. Introduction. Ranking methods are used in all aspects of life, from Google searches to sports
tournaments. One particular class of ranking methods is those used to combine multiple sets of informa-
tion about the same alternatives into one overall rank. Both rank and score aggregation methods fall into
this class: rank aggregation combines several ranks of alternatives, while score aggregation is used when
the alternatives each have multiple scores associated with them. Score aggregation can take into account
the magnitude of difference in the preference of one alternative over another, whereas rank aggregation
cannot. In this paper, we will consider rank and score aggregation in the context of competitive climbing.

USA Climbing (USAC) is a non-profit organization for competitive climbing in the United States.
Although USAC holds a variety of competitions for different groups of people and areas of climbing,
we will focus solely on their youth onsight bouldering competitions. In each competition, climbers are
divided into 10 categories based on age and gender: female junior, female youth A, female youth B,
female youth C, female youth D, and their male counterparts. Each category is given between three
and six never-before-seen boulder problems to climb with four to five minutes per boulder problem per
person. Climbers score points (called hold points for the remainder of the paper) for each hold grabbed
on each of their three to six boulders. If the climber finishes the problem, it is called a top, and he
or she scores the maximum number of hold points for the climb. Otherwise, the highest hold reached
is recorded. The number of attempts a climber takes to reach his or her high hold (or the top) is also
recorded. If a climber finishes the problem on his or her first attempt, it is called a flash. Figure 1
illustrates some of this terminology.

Climbers are ranked on each problem based on their highest hold reached with number of attempts
as a tie breaker. The problem we face is how to best combine these scores or rankings on each problem
into an overall rank of climbers in the competition. For more information on USAC and competitive
climbing, see [3].

Rank aggregation methods have been studied extensively in the context of social choice theory, with
Arrow playing a large role in the 1950’s. His “Impossibility Theorem,” detailed in [4], states that no
non-dictatorship rank aggregation method with unrestricted domain can satisfy both independence of
irrelevant alternatives (IIA) and Pareto efficiency, which suggests that no method is ideal (see section 3 for
an explanation of these properties). Different methods, therefore, are better suited to different situations.

Score aggregation appears to be a better way of ranking climbers, assuming there is a method
of associating scores with them. In [5], Balinski and Laraki discuss the advantages of what they call
“grading.” They define a common language to be a set of strictly ordered grades, and a method of grading
to be a function that assigns to any input profile (matrix of grades) one final grade in the same common
language to each candidate and also satisfies some basic properties, one of which is independence of
irrelevant alternatives (a desirable property for methods that rank climbers). Using a common language,
then, allows a function to satisfy non-dictatorship, Pareto efficiency, IIA, and unrestricted domain,
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Fig. 1: Female youth A boulder problem from the 2015 Bouldering Youth National Championships illustrating the climbing
terms discussed above. c©Kira Parker.
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meaning that Arrow’s Impossibility Theorem does not apply. As we will see, competitive climbing lends
itself to score aggregation methods, as climbers have already been given various “grades” on each problem
they climb (problems corresponding to the judges in the aforementioned paper).

The rise of American competition climbing in the 1990’s brought with it a variety of different rank and
score aggregation methods. USAC changed their ranking method for onsight bouldering competitions
three times between 2009 and 2016. The first two methods, further explained in subsection 2.4.2 and
subsection 2.4.1, respectively, were score aggregation methods. They revolved around how many holds
a competitor reached on their climb, where his or her score was the sum of those hold points. In the
first method, climbers received a twenty point bonus for finishing a climb on their first try, while in the
second method climbers were ranked first by the number of climbs completed and then by their total
hold points.

USAC’s third method was a rank aggregation method, and will be described in subsection 2.3.1.
Drastically different from the first two, its introduction caused an uproar in the competition climbing
community. Whereas before climbers and spectators could predict the overall placement of themselves
or their favorite climber fairly easily, nothing was certain under the new method. Some obscure formula,
with geometric means and “Ranking Points,” was going on behind the scenes, and everyone was forced
to sit anxiously waiting for the final results to be posted. Even those who understood the formula had
trouble predicting climbers’ overall placements, and no one was happy. Our primary motivation for this
work was the quantity of complaints surrounding this third USAC method, called the combined rank
method, and the results it produced. A large portion of these upsetting results were due to lower-ranked
climbers finishing and changing the placements of climbers ranked above them, a violation of the IIA
criterion. Additionally, competitors would change their score on a problem after the competition, as
scoring errors occurred frequently, and the relative ranks of other climbers would be disrupted. Thus
methods that satisfy the IIA criterion should be preferred for use in ranking climbers.

In this paper, we examine USAC’s combined rank method in comparison with their older score
aggregation methods as well as with some other rank aggregation methods found in the literature. We
begin with an examination of the datasets produced from climbing competitions and define the methods
we use to rank these climbers. We then compare the properties of the various methods, looking specifically
at monotonicity, Pareto efficiency (unanimity), and independence. We find that the older USAC methods
satisfy the desirable independence of irrelevant alternatives property which all of the rank aggregation
methods fail to satisfy. In our analysis of the predictive power of these methods when they are used to
rank climbers, we follow the steps laid out in [6]. First, we perform leave-one-out cross validation on the
methods. To determine if some methods have consistently lower cross validation scores (and thus have
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Fig. 2: Sample dataset of results from the female youth A final round of the 2016 Bouldering Youth National Championships
([3]). It contains information about high point, number of attempts, rank, and ranking points for each climber on each
problem: F1, F2, and F3.
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higher predictive power), we use the nonparametric Friedman statistical test. Our results from this test
were highly significant, with a p-value of 1.26 × 10−4, and we were able to use the post-hoc Nemenyi
test to find the best-performing methods. Unsurprisingly, the combined rank method outpredicted the
two previously used methods, although not by a large margin. A linear program introduced in [8] had
the best predictive accuracy (see subsection 2.3.4 for a description of the linear program). However, a
combination of the two old score aggregation methods, a method we call the merged method, was the
best-predicting independent method, leading us to recommend the use of this method to USA Climbing.

This paper is organized as follows: Section 2 explains the data and methods used to rank climbers.
The properties of the methods are analyzed in section 3. Section 4 comprises the evaluation of the
predictive power of the methods, and section 5 discusses the results and concludes the paper.

2. Data and Methods.

2.1. Data. As illustrated in Figure 2, the datasets analyzed contain information for each of M
climbers on N problems. This information includes high hold, or the number of hold points obtained, on
the problem (an integer between 0 and the total number of holds on the problem), number of attempts
the climber required to reach that high hold, the climber’s rank on the problem, and the ranking points
he or she earned for that problem. The climbers are ranked based on their hold points, where a higher
point value is better, and then by number of attempts if two climbers have the same hold points for
a problem, where fewer attempts is preferable. Ranking points are calculated from the rank, where a
climber’s points are equal to either his or her rank for the problem or, if multiple climbers have the same
rank, the average ranking of the tied climbers. From each dataset, we calculate the following:

1. A matrix of hold points, H ∈ R
M×N , where Hij is the number of hold points the ith climber

earned on the jth problem.

2. A vector of total hold points, h ∈ R
M , where hi =

N∑
j=1

Hij .

3. A matrix of attempts, A ∈ R
M×N , where Aij is the number of attempts the ith climber had on

the jth problem to reach his or her high hold.

4. A vector of total attempts, a ∈ R
M , where ai =

N∑
j=1

Aij .

5. A matrix of ranks, R ∈ R
M×N , where Rij is the rank of the ith climber on the jth problem.

6. A matrix of ranking points, P ∈ R
M×N , where Pij is the number of ranking points the ith

climber received on the jth problem.
7. A vector of tops, t ∈ R

M , where the ith component is the total number of tops for climber i.
The data used in our analysis comes from the 2016 Bouldering Youth National Championships, and

was downloaded from the USAC webpage immediately following the competition ([3]). This data and

37



the code implementing the methods used to analyze it is available at [9].

Example from the 2016 Bouldering Youth National Championships. For example, using
the final results from the female youth A category of the 2016 Bouldering Youth National Championships
(see dataset in Figure 2), we get the following data:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 14 14
14 9 14
14 9 14
14 7 14
14 8 14
14 7 14
14 7 14
14 8 13
14 7 11
14 7 11
11 6 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

42
37
37
35
36
35
35
35
32
32
25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 1
1 2 3
1 1 2
1 4 3
1 2 3
2 3 2
1 1 5
1 1 1
1 1 3
4 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
3
6
4
8
6
7
7
3
5
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 2 1
1 3 5
1 6 3
1 5 5
1 9 5
10 10 3
1 4 8
1 6 9
1 6 10
11 11 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 1 1.5
5 2 1.5
5 3 6
5 7 3.5
5 5 6
5 9 6
10 10 3.5
5 4 8
5 7 9
5 7 10
11 11 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
2
2
2
2
2
2
1
1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2.2. Data Cleaning. USAC only posts information in their datasets that is relevant to their
current ranking method. Consequently, we lacked the information about which climbers finished which
problems that we use for the top score method, ABS10 method, and merged method (see subsection 2.4.1,
subsection 2.4.2, and subsection 2.4.3). In order to obtain this information, we wrote a program that
considered the total number of tops for each climber, as well as the maximum number of holds points
scored on each problem, and tested different sets of top hold points for each climb to see if it resulted
in climbers having the correct number of tops. If only one set of top hold points worked, we could then
uniquely determine which climbers finished each problem and which did not. For a few datasets, multiple
lists of top hold points worked, and we could not determine this information. We were forced to leave
these datasets out of our analysis.

For example, consider the following dataset:

Hold Points P1 Hold Points P2 Hold Points P3 Tops
Climber 1 15 20 10 2
Climber 2 12 20 17 2
Climber 3 11 20 5 1

The maximum number of hold points scored on problems one, two, and three (P1, P2, and P3) are
15, 20, and 17, respectively. If we assume these are also the top hold points for each problem, we find that
each climber has the expected number of tops. However, is this solution unique? If the top hold points
for problem one were greater than 15, Climber 1 would only have one top, so this set of top hold points
does not work. Similar issues rule out increasing the top hold points for problems two and three. Since
we cannot decrease the top hold points for any problem (a climber cannot score more points than the
problem is worth), we know that the only possible top hold points are 15, 20, and 17 for problems one,
two, and three, respectively. Thus we can see that Climber 1 finished problems one and two, Climber 2
finished problems two and three, and Climber 3 finished only problem two.

2.3. Rank Aggregation Methods. The following methods are the rank aggregation methods we
implemented and analyzed. They use the ranked lists of M climbers on each of N problems to produce
a final ordering of the climbers. As is standard in competitive climbing, climbers are ranked first by
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number of tops and then by their placement in the ordered list that the given method produces. To
see if this tradition of ranking climbers first by number of tops is justifiable, we also use these methods
without taking number of tops into account, where a climber’s final rank is just that produced by the
method.

2.3.1. Combined Rank Method. The combined rank method used by USA Climbing, as detailed
in [2], takes the ranking points matrix P and calculates the climbers’ geometric mean vector m, where

mi =

⎛
⎝ N∏

j=1

Pij

⎞
⎠

1/N

= argmin
mi∈R

N∑
j=1

(logPij − logmi)
2.

The equivalence follows from setting ∂mi

N∑
j=1

(logPij − logmi)
2 = 0 to get

0 = ∂mi

N∑
j=1

(logPij − logmi)
2 = 2

N∑
j=1

(logPij − logmi)(− 1

mi
),

which then implies N logmi =
N∑
j=1

logPij and thus mi =

(
N∏
j=1

Pij

) 1
N

. Climbers are ranked by their

geometric mean, where a lower value is better.

2.3.2. Geometric Mean Method. The geometric mean method is identical to the combined rank
method except that it uses the ranks matrix R to calculate the rating vector instead of the ranking points
matrix P . This means that the final rank from a competition where no climbers tied would be the same
under either method, but would potentially differ if there were ties. Here

mi =

⎛
⎝ N∏

j=1

Rij

⎞
⎠

1/N

= argmin
mi∈R

N∑
j=1

(logRij − logmi)
2.

2.3.3. Borda Method. The Borda method, described in [10], is a standard method used in social

choice theory that assigns climber i = 1, ...,M Borda points equivalent to
N∑
j=1

(M − Pij). However, we

were interested in a ranking method where climbers with the same ranking on a problem are given Borda
points equal to the position of the highest ranked climber, as given in Rij , instead of the average of the
positions that Pij gives. Thus we assign Borda points for climber i with

bi =

N∑
j=1

(M −Rij) = argmin
bi∈R

N∑
j=1

(
M −Rij − bi

N

)2

.

Climbers are ranked by these Borda points, where higher point values are better.

2.3.4. Linear Programming Method. A linear programming approach to aggregating ranks of
sports teams was developed in [8]. This method can be applied to the problem of ranking M climbers
on N problems as follows. First the matrix C is calculated, where C is a skew-symmetric M ×M matrix
with Cij = {# of problems with climber i above climber j} - {# of problems with i below j}. We then
calculate the M ×M matrix X, which corresponds to the aggregated rank with Xij = 1 if climber i beat
climber j and 0 otherwise. The matrix X is the solution to the following linear program, which we solve
using the scipy.optimize.linprog function in Python:

max
M∑
i=1

M∑
j=1

CijXij

Xij ≥ 0

Xij +Xji = 1 for all distinct pairs (i, j)

Xij +Xjk +Xki ≤ 2 for all distinct triples (i, j, k).
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The first and second constraints together restrict the possible entries in X to numbers between 0
and 1. This is a relaxation of the integer constraint that each Xij ∈ {0, 1}. The second constraint alone
ensures that two climbers cannot both beat each other. The third constraint maintains transitivity in
the overall ranking: if climber i is ranked above climber j and climber j is ranked above climber k, then
climber i must be ranked above climber k.

In our problem, we divided the climbers into disjoint sets based on number of tops, where climbers
with the same number of tops were in the same set. We then solved the linear program for each set of
climbers and combined the ranks at the end, so climbers with higher numbers of tops were ranked above
climbers with lower numbers of tops. This was the only rank aggregation method lacking a “no-tops”
version.

2.3.5. Geometric Median Methods. The geometric median methods use Weiszfeld’s algorithm
to approximate the geometric median of the ranks in R

M , where each point corresponds to the ranks of
all M climbers on a given problem. The geometric median is defined to be

argmin
y∈RM

f(y) :=

N∑
j=1

‖R:j − y‖2,

and cannot be determined with an explicit formula. Weiszfeld’s algorithm is a form of iteratively re-
weighted least squares that starts with the centroid of the points (its coordinates are the averages of the
coordinates of the points) and creates new, improved estimates of the geometric median of the points.
For an estimate yi, the next estimate is

yi+1 =

⎛
⎝ N∑

j=1

R:j

‖R:j − yi‖

⎞
⎠/

⎛
⎝ N∑

j=1

1

‖R:j − yi‖

⎞
⎠ ,

where R:j indicates the jth column of R. We iteratively estimate yi+1 until ‖yi+1 − yi‖ ≤ 10−6. For
more information about Weiszfeld’s algorithm and its convergence, see [11].

The integer geometric median method calculates a final rank by using the output vector y from
Weiszfeld’s algorithm as a rating and ranking climbers based first on number of tops and then on their
rating yi, where smaller values are better.

The no-tops geometric median method uses almost the same final rank as the integer geometric
median method except that climbers are ranked solely by their rating.

The optimal integer geometric median method uses the integer geometric median method to calculate
the final rank for tie thresholds t from 0 to .5 (incrementing by .1). If two climbers p and q have the
same number of tops and |yp − yq| ≤ t then they tie in the final rank. The integer geometric median
rank for the tie threshold that produces the minimum value of the objective function f(y) is then the
rank given by the optimal integer geometric median method.

2.4. Score Aggregation Methods. The following methods are the score aggregation methods
we implemented and analyzed. Given that climbers have scores associated with high points, tops, and
attempts on each problem, it is not immediately obvious which scores should be used in such a method.
Thus these three methods below each use different aspects of the climbers’ performance on each climb
to rank the climbers overall.

2.4.1. Top Score Method. The top score method was used by USA Climbing before they imple-
mented their combined rank method [7] . First we extract the information about which climbers finished
which problems, a process described in subsection 2.2, and store it in a matrix T , where Tij equals 1 if
climber i finished problem j and 0 otherwise. Next, we find the score vectors sf , st, sh ∈ R

M , which are
defined as follows:

sfi is the total number of flashes climber i had (problems finished in one attempt), where more
flashes is better.

sti =
N∑
j=1

TijAij is climber i’s total number of attempts to finish the problems that he or she finished,

where fewer attempts is better.

shi =
N∑
j=1

(1 − Tij)Aij is climber i’s total number of attempts to reach his or her high points on

problems he or she didn’t finish, where fewer attempts is better.
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Climbers are then ranked first by number of tops, second by the sum of their hold points hi, third
by their number of flashes sfi , and forth and fifth by their attempt scores sti and shi

.

2.4.2. ABS10 Method. The ABS10 method is essentially the method used by USA Climbing in
2009, as detailed in [1], before the top score and combined rank methods. As in the top score method,
we first find the tops matrix T . The maximum number of holds on each problem is then calculated
and stored in a vector m ∈ R

N , where if no climber finished problem j, mj is equal to the average
number of holds on national-level problems for the given category (this is where the discrepancy with
the actual method lies - USAC knew the number of holds on each climb but the datasets do not provide

that information). Next, we find the score vector v, where vi =
N∑
j=1

uij and uij is equal to Hij
1000
mj

+ 20

if climber i finished the problem on his or her first attempt, or Hij
1000
mj

− 5(Aij − 1) otherwise. Climbers

are then ranked exclusively by their score (with no regard to tops, unlike in the other methods), where
a larger vi is better.

2.4.3. Merged Method. The merged method is a combination of the ABS10 method and the top
score method. Again, we find the tops matrix T , and then calculate the maximum number of holds on
each problem and store it in a vector m ∈ R

N , where mj is equal to the average number of holds on
national-level problems for the given category if no climber finished problem j. Next, we find three score
vectors sp, st, and sh as follows:

spi
=

N∑
j=1

Hij
1000
mj

is the sum of climber i’s normalized hold points, where more points is better.

sti =
N∑
j=1

TijAij is climber i’s total number of attempts to finish the problems that he or she finished,

where fewer attempts is better.

shi
=

N∑
j=1

−(Tij − 1)Aij is climber i’s total number of attempts to reach his or her highpoints on

problems he or she didn’t finish, where fewer attempts is better.
Climbers are then ranked first by number of tops, second by their normalized overall hold points spi

,
and third and fourth by their attempt scores sti and shi .

3. Properties of Ranking Methods. In this section we determine properties of the methods
described in subsection 2.3 and subsection 2.4, specifically looking at the independence of irrelevant
alternatives (IIA) criterion and Pareto efficiency. For both rank and score aggregation, the IIA criterion
can be stated, as in [10], as follows:

The relative position of two climbers A and B in the final rank is solely determined by the performance
of A and B on the problems and is not affected by the performance of other climbers.

A Pareto efficient method is also defined in [10] as a method that satisfies the following:

If climber A performs better than climber B on all problems in the competition (either has more tops,
achieves a higher high point on at least one problem, or has fewer attempts on at least one problem),
then B cannot be ranked above A in the final rank.

We consider it beneficial to use a ranking method that satisfies the IIA criterion, even if it has
slightly worse predictive power than another non-independent method. This is because competitors’
scores are often either entered into the computer incorrectly or scored incorrectly by the volunteer
judges. When using an independent method, a climber’s score can be changed without impacting the
relative placements of other climbers. In addition, a climber’s overall placement should not be affected
by how another, lower-ranked climber climbed, which had occurred repeatedly under the combined rank
method.

Using a method that is Pareto efficient is also a priority. It makes no sense for a climber who
performed worse than another climber on every single problem to be ranked ahead in the competition,
because clearly the second climber performed better.

We also verify that all the methods are monotone, which is defined in [10] as follows:

If the performance of some climber A is improved on a problem, his or her overall rank cannot become
worse.

This encourages climbers to try as hard as they can to finish all their problems in a competition and
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ensures that improving their score after the competition will not harm their overall placement.
Finally, the Condorcet property is often looked at when analyzing social choice methods and consists

of the following ([10]):

Whenever a profile (set of results) has a Condorcet candidate, the method must choose this climber
to be the unique winner of the competition. A Condorect candidate is the climber who can beat every
other climber in a head-to-head runoff.

However, this property is irrelevant when considering score aggregation methods because in order
to calculate the Condorcet candidate, scores must be disregarded (only relative ranks are used). Thus
we do not include this property in our analysis and instead look only at independence, Pareto efficiency,
and monotonicity.

3.1. Borda Method. The Borda method is not independent. Consider the following example from
[10]:

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Tops Borda Points
Climber 1 1 3 3 3 3 0 2
Climber 2 2 1 1 2 2 0 7
Climber 3 3 2 2 1 1 0 6

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Tops Borda Points
Climber 1 1 3 3 2 2 0 4
Climber 2 2 1 1 3 3 0 5
Climber 3 3 2 2 1 1 0 6

The performances of Climber 2 and Climber 3 do not change between the two sets of results. In the
second table, however, Climber 1 improves his or her performance on problems 4 and 5, meaning he or
she goes from being ranked last to being ranked between Climber 2 and Climber 3. When we calculate
the Borda points for each climber in the first set of results, we get b = (2, 7, 6) so Climber 2 wins. In the
second set of results, however, b = (4, 5, 6) so Climber 3 wins despite the performances of Climber 2 and
Climber 3 on each problem remaining exactly the same.

Since all three climbers in this example had the same number of tops, the no-top version of the
Borda method also fails to satisfy the IIA criterion.

The Borda method is, however, Pareto efficient. If Climber 1 outperforms Climber 2 on every climb,
Climber 1 will be ranked higher on each climb and thus receive more Borda points than Climber 2. As
more Borda points are better, Climber 1 must be ranked ahead of Climber 2.

Monotonicity is also satisfied. Moving a climber up in a ranking for a problem can never decrease
his or her points, nor can it increase any other climber’s points. For more explanation, see [10].

3.2. Combined Rank Method and Geometric Mean Method. The combined rank method
and the geometric mean method also fail to satisfy the IIA criterion, as demonstrated by the following
sets of results:

Rank 1 Rank 2 Rank 3 Tops Geometric Mean
Climber 1 2 1 2 0 1.59
Climber 2 1 2 1 0 1.26
Climber 3 3 3 3 0 3

Rank 1 Rank 2 Rank 3 Tops Geometric Mean
Climber 1 3 1 3 0 2.08
Climber 2 2 3 2 0 2.29
Climber 3 1 2 1 0 1.26

Both the combined rank method and the geometric mean method will produce the same result
because no climbers tie in the rank for a given problem. In the first set of results, Climber 1 receives a
score of 1.59 while Climber 2 receives a score of 1.26, so Climber 2 wins. In the second set of results,
however, the performance of only the third climber is altered, but Climber 1 earns 2.08 points and
Climber 2 earns 2.29 points, so Climber 1 wins. As none of the climbers finished any problems, this
example also illustrates the failure of the no-top versions of the two methods to meet the IIA criterion.

Both methods are, however, Pareto efficient. If Climber 1 performs better than Climber 2 on all
problems, he or she will have a strictly better rank on each problem and thus a lower geometric mean
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of his or her ranking points or ranks (depending on the method used). Therefore, Climber 1 must beat
Climber 2.

These methods are both monotone. Improving the rank of a climber on a given problem will decrease
his or her rank and ranking points, and thus also decrease his or her geometric mean. In addition, the
ranks of the other climbers could only have dropped, so the climber could only increase their rank,
ranking points, and geometric mean.

3.3. Geometric Median Methods. The three geometric median methods are not independent.
Consider the following result sets:

Rank 1 Rank 2 Rank 3 Rank 4 Tops Output Coordinate
Climber 1 4 2 4 1 0 2.71
Climber 2 2 2 3 5 0 2.95
Climber 3 3 4 1 3 0 2.79
Climber 4 4 1 1 3 0 2.13
Climber 5 1 4 4 2 0 2.87

Rank 1 Rank 2 Rank 3 Rank 4 Tops Output Coordinate
Climber 1 4 2 3 2 0 2.63
Climber 2 1 2 2 4 0 2.25
Climber 3 1 1 5 4 0 2.70
Climber 4 5 2 3 1 0 2.60
Climber 5 1 2 1 3 0 1.77

Between the two result sets, the relative ranks of Climber 1 and Climber 2 are unaltered. However, in
the first result set, the integer geometric median method produces the point (2.71, 2.95, 2.79, 2.13, 2.87) so
Climber 1 beats Climber 2. However, in the second result set, (2.63, 2.25, 2.70, 2.60, 1.77) is the produced
point, and Climber 2 beats Climber 1, despite Climber 1’s performance on each problem remaining
exactly the same.

Since none of the climbers finished any problems, this also signifies that the no-tops geometric median
method is not independent.

In addition, this example reveals that the optimal integer geometric median method is not indepen-
dent. For the first set of results, the optimal rank is (2, 2, 2, 1, 2), so Climber 1 and Climber 2 tie. The
second set of results, however, produces an optimal rank of (3, 2, 3, 3, 1), and Climber 2 beats Climber 1.

The three methods are, however, Pareto efficient, as the following theorem and discussion shows.

Theorem 3.1. The no-tops geometric median method is Pareto efficient.

Proof. We first claim that if a set of points is contained inside a convex polyhedron, so is the
geometric median of those points. This is a routine calculation, as the geometric median is the point
that minimizes the sums of the Euclidean distances between that point and every point in the set. For a
point y outside the polyhedron containing the set, the closest point on the polyhedron, y′, has a smaller
sum of Euclidean distances than does y. To show this, we do the following construction:

Let l be the line through y and y′ and p be a point inside the convex polyhedron. Then let h1 be
the hyperplane through y′ perpendicular to the line l and h2 be the hyperplane through p perpendicular
to the line l. Let q be the point where l intersects h2 and d(x, y) denote the Euclidean distance between
any two points x and y. Then

d2(y, p) = d2(p, q) + (d(q, y′) + d(y′, y))2 > d2(p, q) + d2(q, y′) = d2(y′, p).(1)

Thus the distance from y′ to any point p is always less than the distance from y to p, so the geometric
median of the points contained in the convex polyhedron must also be either inside or on the boundary
of the polyhedron.

Now, consider a set of results with M climbers where some climber k is ranked above another climber
j on all of N problems. Let V = {v1, ..., vN} be the set of the points in R

M corresponding to each rank
of the climbers on a problem. Then (vi)k < (vi)j for every point vi, so the set of points V lies on one side

of the hyperplane H = {x ∈ R
M : xk = xj}. Since there are finitely many points, they can be contained

inside a hypercube with one face on H. Thus the geometric median g is on or above this hyperplane, so
gik ≤ gij and thus climber j cannot beat climber k.

Since taking the number of tops into account when ranking climbers does not affect the Pareto
efficiency of the method (the climber who consistently performed worse could not have more tops than
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the better-performing climber), this theorem implies that the integer geometric median method is also
Pareto efficient. Additionally, since the optimal integer geometric median method only differs from the
integer geometric median method in that it introduces more ties, it must be Pareto efficient as well, since
our only criterion is that the worse-performing climber does not beat the better-performing climber (they
could tie).

Finally, none of the geometric median methods are monotone. Consider the following two sets of
results:

Rank 1 Rank 2 Rank 3 Rank 4 Tops Output Coordinate
Climber 1 2 5 3 5 0 3.23
Climber 2 1 1 1 3 0 1.29
Climber 3 5 1 4 4 0 3.96
Climber 4 3 4 1 1 0 1.57
Climber 5 4 1 4 1 0 3.26

Rank 1 Rank 2 Rank 3 Rank 4 Tops Output Coordinates
Climber 1 1 5 3 5 0 3.27
Climber 2 1 1 1 3 0 1.40
Climber 3 5 1 4 4 0 3.77
Climber 4 3 4 1 1 0 1.86
Climber 5 4 1 4 1 0 2.96

The only difference between the two tables is that Climber 1’s first rank improves. However, using
the integer geometric median method, the first table produces a final rank where Climber 1 is third,
and the second table produces a final rank where Climber 1 is fourth. Since every climber in these
two tables has zero tops, this also shows that the no-tops geometric median method also fails to satisfy
monotonicity.

Although it produces a monotone result for the above set of results, the optimal integer geometric
median method is not monotone either. Using the following set of results, Climber 1 is ranked fourth
from the first set, but fifth from the second set, despite his or her performance on the first problem
improving.

Rank 1 Rank 2 Rank 3 Rank 4 Tops Output Coordinate Final Rank
Climber 1 2 4 4 5 0 4.03 4
Climber 2 1 2 3 1 0 1.88 1
Climber 3 5 1 4 4 0 3.79 4
Climber 4 4 2 1 1 0 1.59 1
Climber 5 2 5 1 1 0 1.65 1

Rank 1 Rank 2 Rank 3 Rank 4 Tops Output Coordinate Final Rank
Climber 1 1 4 4 5 0 3.93 5
Climber 2 1 2 3 1 0 1.92 2
Climber 3 5 1 4 4 0 3.72 4
Climber 4 4 2 1 1 0 1.55 1
Climber 5 3 5 1 1 0 1.83 2

3.4. Merged Method, ABS10 Method, Top Score Method. The merged method, ABS10
method, and top score methods do satisfy the IIA criterion, making them methods of grading as defined
in [5]. This is because none of the information used to rank the climbers is changed by the addition of
a third climber. If Climber 1 has more tops than Climber 2, he or she will still have more tops than
Climber 2 regardless of how many tops Climber 3 has. This is the same for the high hold reached on the
climb, the number of flashes a climber has, and the number of attempts a climber has, which determine
the various score vectors.

These methods are also monotone. Giving a climber more tops, increasing his or her high hold on a
problem, or decreasing his or her number of attempts on a problem cannot harm them overall.

Finally, all three methods are Pareto efficient. If Climber 1 performs better than Climber 2 on every
problem, Climber 1 will either have more tops, more hold points, or fewer attempts, all of which imply
that Climber 2 cannot be the winner because Climber 1 will be ranked ahead of Climber 2.
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3.5. Linear Programming Method. The linear program does not satisfy the independence of
irrelevant alternatives criterion, as shown by the following example result sets:

Rank 1 Rank 2 Rank 3 Rank 4 Tops Overall Rank
Climber 1 3 2 2 3 0 2
Climber 2 2 4 4 4 0 4
Climber 3 1 2 1 2 0 1
Climber 4 4 1 3 1 0 3
Climber 5 5 5 5 5 0 5

Rank 1 Rank 2 Rank 3 Rank 4 Tops Overall Rank
Climber 1 1 2 5 1 0 2
Climber 2 3 4 3 4 0 4
Climber 3 2 3 1 3 0 3
Climber 4 4 1 2 1 0 1
Climber 5 5 5 4 5 0 5

The relative ranks of Climber 3 and Climber 4 do not change; only Climber 1’s performance on
each problem is altered. However, the first set of ranks produces a final rank where Climber 3 wins and
Climber 4 is third, yet with the second set of ranks Climber 4 wins and Climber 3 is third. Although
occasionally there are multiple optimal ranks and the linear program only returns one, in this case the
overall rank for the first result set is not optimal for the second result set, and vice versa.

We are not aware of a result proving whether or not the linear programming method is Pareto
efficient. The following theorem, however, shows that if a certain climber performs better than average in
a competition (meaning that the climber has, averaged across all the problems, beaten more competitors
than he or she has lost to), he or she must beat at least one climber in the final rank.

Theorem 3.2. Let X� denote the LP ranking. If
∑

j CAj > 0 for some climber A, then there exists
a climber k such that X�

Ak = 1 and, equivalently, X�
kA = 0.

Proof. Assume X� is an optimal solution and consider a perturbation of the form X = X� + εY
where Yij = φi − φj for some φ ∈ R

N that we’ll specify later. Since Y is skew-symmetric, the constraint
Xij +Xji = 1 is satisfied. Additionally we have that

Yij + Yjk + Yki = φi − φj + φj − φk + φk − φi = 0,

so that the constraint Xij +Xjk +Xki ≤ 2 is satisfied.
Let

φi =

{
1 i = A

0 otherwise
.

We compute

∑
ij

CijXij −
∑
ij

CijX
�
ij = ε

∑
ij

Cij(φi − φj) = ε

⎛
⎝∑

j

CAj −
∑
i

CiA

⎞
⎠ = 2ε

∑
j

CAj > 0

where we used the skew-symmetry of C. Since X� is assumed be optimal, this implies that X must
violate the final constraint that Xij ≥ 0. (Otherwise X would be a feasible solution with a higher
objective value, contradicting the optimality of X�.) This final constraint reads

0 ≤ X�
ij + εYij =

⎧⎪⎨
⎪⎩
X�

ij + ε i = A, j �= A

X�
ij − ε j = A, i �= A

X�
ij otherwise

.

We conclude that there exists a climber k such that X�
Ak = 1, and thus climber A is ranked ahead of

climber k in the final rank.

The implementation of the LP algorithm we used is not monotone. In particular, when there are
multiple optimal solutions, the solution chosen occasionally produces a non-monotone result, as seen
with these result sets:
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Rank 1 Rank 2 Rank 3 Rank 4 Tops Overall Rank
Climber 1 2 3 4 3 0 3
Climber 2 1 2 5 4 0 5
Climber 3 4 1 1 4 0 4
Climber 4 4 3 1 1 0 2
Climber 5 2 3 1 1 0 1

Rank 1 Rank 2 Rank 3 Rank 4 Tops Overall Rank
Climber 1 1 3 4 3 0 4
Climber 2 1 2 5 4 0 5
Climber 3 4 1 1 4 0 2
Climber 4 4 3 1 1 0 3
Climber 5 3 3 1 1 0 1

Climber 1’s performance on the first problem is improved, yet he or she drops from third to fourth
in the overall rank. However, the overall rank for the second set of results is an optimal rank for the first
set of results, and vice versa.

4. Analysis of Ranking Methods. To compare the predictive power of the methods in section 2,
we take a similar approach to that of D. Barrow et al. in their analysis of sports ranking methods [6].
First, we perform cross validation on each method for all competition categories. The non-parametric
Friedman statistical test is then performed on these cross validation scores to determine if one of the
methods performs significantly better or worse than the others, and we finish up with the post hoc
Nemenyi statistical test to discern which ranking methods perform significantly better than others.

4.1. Cross Validation. Cross validation determines how effectively an aggregated rank of climbers
produced by a given method on some training set of climbs predicts the ranking of the climbers on another
climb, the test set. We used data combined from semifinals and qualifiers of each of eight categories of the
2016 Bouldering Youth National Championships, where only the qualifying information from the climbers
who climbed in semifinals was considered. Essentially, we had eight datasets containing information on
seven boulder problems for twenty or twenty one climbers.

We then used leave-one-out cross validation, splitting the data into training sets and test sets where
the training set contained six problems and the test set contained one problem. We applied a ranking
method φ to the training set and then calculated the prediction error, E(t), for the test set t, which
Barrow et al. [6] defines to be

E(t) = #{ti > tj , φi < φj}+#{ti = tj , φi �= φj},

where ti > tj indicates that climber i is ranked above climber j in the test set and φi < φj indicates that
climber i is ranked below climber j in the rank produced by the given method. The lower the predictive
error for a ranking method φ, the better the method.

The final cross validation score cφg for a given method φ on a category g was calculated by summing
all of the predictive errors and dividing by the number of different test sets (seven). In other words,

cφg =
1

7

7∑
t=1

E(t).

By repeating the cross validation testing across each category, we ended up with eight evaluations of
each method to be used for the Friedman test.

4.2. Friedman and Nemenyi Tests. We performed a Friedman test on the cross validation scores
using friedman in R, which also gave us the results from a Nemenyi test if the Friedman test result
proved to be significant.

We first ran a Friedman test on the cross validation scores from all the methods and, with a p-
value of 2.75 × 10−8, were able to reject the null hypothesis that all the methods have equal predictive
power. As can be seen in Figure 3, the post hoc Nemenyi test revealed that the no-tops version of each
method performed significantly worse than the tops version, justifying the use of taking number of tops
into account when ranking climbers. Clearly, the linear program is the best-predicting method in this
case, with significantly better predictive power than every method except the optimal integer geometric
median method.
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Fig. 3: Nemenyi test results for all methods. Green spaces (positive numbers) indicate that the method in the column
performed significantly better than the method in the row, and yellow spaces (negative numbers) indicate the opposite. A
3 designates a p-value of less than .001, a 2 designates a p-value of less than .01 and a 1 designates p-value of less than .05.
Blank squares indicate that the methods were not significantly different in their cross validation scores. NT means that
the method is the no-tops version, GM stands for geometric median, and CR stands for combined rank.

We then ran a Friedman test considering only methods that did take number of tops into account,
since these were the more predictive methods. Again, the p-value of 1.26× 10−4 allowed us to reject the
null hypothesis and perform the Nemenyi test. Figure 4 illustrates the results of the Nemenyi test, which
were quite similar to the above results. Unsurprisingly, the linear program remained the method with the
best performance, with the geometric median methods a close second. The combined rank method also
had good predictive strength, as it was only significantly worse than the linear program. Of the score
aggregation methods, the merged method performed the best, since it was only significantly worse than
the linear program and the optimal integer geometric median method. However, all three of the ABS10,
top score, and merged methods had similar predictive power, as none were significantly better than the
others. Interestingly, the Borda method, a common method in social choice theory, had relatively poor
predictions, worse than that of the obscure geometric mean and combined rank methods.

Fig. 4: Nemenyi test results for the methods that take number of tops into account. Green spaces (positive numbers)
indicate that the method in the column performed significantly better than the method in the row, and yellow spaces
(negative numbers) indicate the opposite. A 3 designates a p-value of less than .001, a 2 designates a p-value of less than
.01 and a 1 designates p-value of less than .05. Blank squares indicate that the methods were not significantly different in
their cross validation scores, and GM stands for geometric median.

5. Conclusion. In this paper, we analyzed the properties and predictive power of nine different rank
and score aggregation methods, three of which have been used by USA Climbing. While all methods
were found to be Pareto efficient, and all but the linear program and geometric median methods are
monotone, only the three score aggregation methods (ABS10, top score, and merged methods) satisfy
the independence of irrelevant alternatives criterion. The IIA criterion is arguably quite important for
our recommended method to satisfy. A large portion of the upsetting results under the combined rank
method were due to lower-ranked climbers finishing and changing the ranks of climbers ranked above
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them, a violation of the IIA criterion. Additionally, competitors would change their score on a problem
after the competition, as scoring errors occurred frequently, and the relative ranks of other climbers would
be disrupted. Thus the necessity of an independent method for competitive climbing becomes clear, and
as climbing naturally lends itself to score aggregation, such a method can satisfy monotonicity, Pareto
efficiency, and independence while still having an unrestricted domain and being non-dictatorship.

A method used to rank climbers should also be easy for the spectators to calculate so they can
accurately predict the performance of their favorite climbers. Examples of such methods are the three
score aggregation methods. All of the other methods make use of the ranks of the climbers on each
problem, and calculating this rank for a climber is difficult because it will change as more competitors
climb. In particular, the combined rank method requires spectators to calculate geometric means of
ranking points, the geometric median methods require some iterative process to calculate the geometric
median, and the linear programming method is a non-trivial optimization problem.

To study the predictive power of the different methods, we used leave-one-out cross validation to
produce eight different evaluations of each method, and used the non-parametric Friedman statistical
test to determine if the methods had significantly different predictive powers. With a p-value of less
than .001, we rejected the null hypothesis that all methods are equivalent and performed the post hoc
Nemenyi test to reveal the best-predicting methods.

We found that the methods with the best predictive power were the linear program and the two geo-
metric median methods that take number of tops into account. The combined rank method’s predictive
power was about average for this group of methods, indicating that it is an effective ranking method.
The merged method had the best performance of the score aggregation methods, and was only slightly
worse than the combined rank method.

Although the linear program made the best predictions, it does not satisfy the IIA criterion nor does
it allow spectators to calculate the rank of their favorite climbers. In addition, there are often multiple
solutions to the linear program, and our algorithm for solving the linear program only returns one of
these solutions. This means that, depending on the algorithm used to solve the linear program, different
solutions could be given and there is no good way to choose between them.

A similar issue arises with the integer geometric median method. Despite its strong predictive power,
the method is not independent and not easy for spectators to use. The optimal integer geometric median
performed better than the integer version, but the only difference between the two is the creation of
more ties, which are generally considered to be undesirable in climbing competitions.

The combined rank method suffers from the same issues as the integer geometric median method,
and climbers have made it clear that they did not appreciate the use of this method. Since the merged
method performed only slightly worse than the combined rank method and alleviates these issues, we
suggest its use over that of the combined rank method

Thus we recommend the merged method as a ranking method for climbing competitions. It has good
predictive power, satisfies all desired criterion, and is easy for spectators to calculate as they watch the
competition.
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