
Investigating the Gerchberg-Saxton Phase
Retrieval Algorithm
Theresa Thimons1 and Lily Wittle2

Sponsor: Dr. Comlan de Souza3

1Saint Vincent College (Latrobe, PA)
2University of Miami (Coral Gables, FL)
3California State University, Fresno (Fresno, CA)

Correspondence: theresa.thimons@gmail.com; lily.wittle@gmail.com; csouza@mail.fresnostate.edu

April 30, 2018

1 Introduction

The phase retrieval problem originates in applied
physics. In optics, light wave intensities can be mea-
sured with light detectors. In electron microscopy,
the intensities of electron microscope photographs
can be measured [1]. However, phase information
cannot be physically measured and must be esti-
mated to recover the complete wave function. This
is known as the phase retrieval problem [2].
The Gerchberg-Saxton algorithm [3] was the first

efficient solution to this problem. There are two in-
puts to the algorithm: the amplitudes of the image
and the amplitudes of the diffraction planes (the
Fourier transform of the image). In other words,
given the amplitude of a signal and its Fourier trans-
form, the algorithm attempts to recover the phase
information for the Fourier transform, and thereby
reconstruct the signal. The algorithm alternates be-
tween Fourier and inverse Fourier transforms, using
the input amplitudes at each iteration to improve
the phase estimates.
As the phase estimates are indeed estimates,

there is always a level of error involved. This er-
ror is defined as the difference between the known
magnitudes and the estimated magnitudes, and is
computed each iteration to track the algorithm’s

progress. We say that the algorithm is successful
when the error converges to a value within a small
tolerance of zero. We present a proof that this er-
ror must decrease or remain the same with each
iteration.

Gerchberg and Saxton’s algorithm is not flawless.
One notable problem is that the error can often de-
crease quickly, then stagnate for several iterations
before converging to zero. Another is that the al-
gorithm is initialized with a random set of phases,
which cause inconsistency in the algorithm’s output.
We investigated these issues in hopes of improving
the phase retrieval process.

Although Gerchberg and Saxton originally wrote
their algorithm in the 1980s, phase retrieval is still
a relevant and active field, as evidenced by recent
research such as Osherovich’s description of an ef-
ficient numerical phase reconstruction method [4].
Technological advances make accurate phase re-
trieval even more attainable, as computations be-
come less of a limiting factor. Therefore improve-
ment of Gerchberg and Saxton’s algorithm would be
beneficial to current phase retrieval problems and
related research areas.

We wrote a numerical implementation of the al-
gorithm in MATLAB to experiment with and observe
the algorithm’s performance. In our experiments,

 Copyright © SIAM
 Unauthorized reproduction of this article is prohibited

189

Investigating the Gerchberg-Saxton Phase Retrieval Algorithm

we found that functions of the form fˆg, where g is
a Gaussian function, have better success than those
of the corresponding f . We also found that a con-
stant initial phase estimate often produces more con-
sistent and efficient results for non-centrosymmetric
input than a random initial phase estimate.

2 Definitions

The Fourier Transform is not uniformly defined in
relevant literature. Hence we clarify that we define
the Discrete Fourier Transform (DFT) of f as F ,
where

F rms0ďmďN´1 “
1

N

N´1
ÿ

n“0

f rns exp

ˆ

´2πinm

N

˙

.

(1)
Consequently, we define the Inverse Discrete Fourier
Transform (IDFT) of F as f , where

f rns0ďnďN´1 “
N´1
ÿ

m“0

F rms exp

ˆ

2πinm

N

˙

. (2)

With these definitions, Parseval’s Identity [5] is

N´1
ÿ

n“0

|f rns|2 “ N
N´1
ÿ

m“0

|F rms|2. (3)

In general, we use lowercase to denote the object do-
main, representative of the image plane, and upper-
case to denote the Fourier domain, representative
of the diffraction plane.
Note that MATLAB’s fft function returns only the

summation in Equation 1 and 1
N must be appended.

Similarly, MATLAB’s ifft function includes the 1
N

factor, so we multiplied all IDFT calculations by N
to match our definitions in Equations 1 and 2.

3 The Gerchberg-Saxon Algo-
rithm and its Numerical Imple-
mentation

We implemented the Gerchberg-Saxton algorithm
in MATLAB, using function-generated points to test
the algorithm’s performance. We generated an array
of domain points t, sampled a complex function at
these domain points in an array f (representing the

image plane), and took the DFT of f to obtain an
array F (representing the diffraction plane). We
discarded phase information to obtain |f | and |F |,
simulating the only known information in a practi-
cal application of the algorithm. A sample of this
process is shown in Listing 1.
The initial estimate is computed using the mag-

nitude of the image points |f | and randomly gener-
ated phases in p´π, πq. The algorithm then enters
an iterative loop that terminates once the error is
sufficiently small or the maximum number of iter-
ations is reached. Cooley and Tukey’s Fast Fourier
Transform [6] is used for computational efficiency.
In each iteration k, the phases from the previ-

ous iteration’s estimate are normalized with the
known image magnitudes |f | to yield xk (Equation
4). The DFT of xk is computed to be Xk, an esti-
mate for the diffraction plane values (Equation 5).
The phases from Xk are then normalized with the
known diffraction magnitudes |F | to yield Yk (Equa-
tion 6). The IDFT of Yk is computed to be yk, an
estimate for the image plane values (Equation 7).
This process can be represented as follows:

xk “ |f | exp piφk´1q (4)

Xk “ DFT pxkq “ |Xk| exp piψkq (5)

Yk “ |F | exp piψkq (6)

yk “ IDFT pYkq “ |yk| exp piφkq (7)

Error is computed twice each iteration, once for
each DFT- or IDFT-generated estimate. Error is cal-
culated as the 2-norm of the difference between the
estimated magnitudes and the known magnitudes.
The diffraction plane error Ek is multiplied by

?
N

to be comparable with the image plane error ek.

Ek “

˜

N
N´1
ÿ

n“0

p|Xkrns|´ |F rns|q2
¸1{2

(8)

ek “

˜

N´1
ÿ

n“0

p|ykrns|´ |f rns|q2
¸1{2

(9)

Our algorithm function is seen in Listing 2.

190

Investigating the Gerchberg-Saxton Phase Retrieval Algorithm

4 Error Convergence

Gerchberg and Saxton’s algorithm has previously
been generalized for other Fourier applications, in-
cluding x-ray crystallography and filter design. It is
known as the error-reduction algorithm [7], as the
error of each estimate is no greater than that of the
previous estimate. In the worst case, it equals that
of the previous estimate, meaning that the error
will eventually converge. Error convergence within
a small tolerance δ of zero indicates success; conver-
gence to a value greater than the tolerance indicates
failure. δ can be chosen as the user likes, but we
used δ “ 10´10 in our MATLAB code. We found that
this value was small enough relative to the phase
differences in the functions we used that it was clear
that the estimated phases were a successful estimate
for the actual phases. We used Fienup’s proof [8] as
a foundation for our proof of the error-decreasing
nature of the algorithm. He proved the same con-
clusion that we did, but made the general argument
that for any point, the estimate xk`1 provides the
nearest value to the value given by yk while satisfy-
ing the magnitude constraints in the image domain.
We considered this concept, depicting it visually by
representing estimates as vectors in Figure 1. Our
result is, in our opinion, a clearer algebraic proof
that is shown below.

Theorem 1. Let Ek be the diffraction plane error (as
in Equation 8) computed in iteration k, for any in-
teger k ě 0, of the Gerchberg-Saxton phase retrieval
algorithm. Similarly, let ek (Equation 9) be the image
plane error computed later in iteration k and Ek`1 be
the diffraction plane error computed in the subsequent
iteration, iteration k ` 1. Then Ek`1 ď ek ď Ek,
i.e. the error must not increase as the algorithm pro-
gresses.

Proof. We first prove that ek ď Ek. Consider

˜

N
N´1
ÿ

n“0

|Xkrns ´ Ykrns|2
¸1{2

which can be rewritten as

˜

N
N´1
ÿ

n“0

∣∣exppiψkq ˆ p|Xkrns|´ |Ykrns|q
∣∣2¸1{2

.

By multiplicativity, this equals
˜

N
N´1
ÿ

n“0

`

|exppiψkq|ˆ
∣∣|Xkrns|´ |Ykrns|

∣∣˘2¸1{2

which can be simplified to
˜

N
N´1
ÿ

n“0

p|Xkrns|´ |Ykrns|q2
¸1{2

.

As |Ykrns| “ |F rns|, this is equal to Ek (Equation
8). Xk is the DFT of xk and Yk is the DFT of yk.
Since DFT is a linear operator, Xk ´ Yk is the DFT
of xk ´ yk. By Parseval’s Identity (Equation 3),

Ek “

˜

N
N´1
ÿ

n“0

|Xkrns ´ Ykrns|2
¸1{2

“

˜

N´1
ÿ

n“0

|xkrns ´ ykrns|2
¸1{2

.

Using Equations 4 and 7, this is equal to
˜

N´1
ÿ

n“0

∣∣|f rns| exp piφk´1q ´ |ykrns| exp piφkq
∣∣2¸1{2

.

By definition of complex exponentials, this equals
˜

N´1
ÿ

n“0

∣∣|f rns| cos pφk´1q ` i|f rns| sin pφk´1q
´ |ykrns| cos pφkq ´ i|ykrns| sin pφkq

∣∣2¸1{2

.

By definition of complex magnitude, this equals
˜

N´1
ÿ

n“0

´

p|f rns| cos pφk´1q ´ |ykrns| cos pφkqq2

` p|f rns| sin pφk´1q ´ |ykrns| sin pφkqq2
¯

¸1{2

.

These squares can be expanded to obtain
˜

N´1
ÿ

n“0

`

|f rns|2 ` |ykrns|2

´2|f rns||ykrns| pcos pφk´1q cos pφkq

` sin pφk´1q sin pφkqqq

¸1{2

.

191

Investigating the Gerchberg-Saxton Phase Retrieval Algorithm

By the cosine difference identify, Ek equals
˜

N´1
ÿ

n“0

`

|f rns|2 ` |ykrns|2

´2|f rns||ykrns| cos pφk´1 ´ φkqq

¸1{2

.

We know that cos pθq ď 1,@ θ. Hence,

|f rns||ykrns| cos pφk´1 ´ φkq ď |f rns||ykrns|,

@ 0 ď n ď N ´ 1. It follows from this that

N´1
ÿ

n“0

´2|f rns||ykrns| cos pφk´1 ´ φkq ě

N´1
ÿ

n“0

´2|f rns||ykrns|

and therefore

Ek ě

˜

N´1
ÿ

n“0

`

|f rns|2 ` |ykrns|2 ´ 2|f rns||ykrns|
˘

¸1{2

.

Equation 9 for ek can be expanded to obtain the
right hand side of the above inequality, achieving
our desired result of ek ď Ek. It can be shown that

ek “

˜

N´1
ÿ

n“0

|ykrns ´ xk`1rns|2
¸1{2

.

By their definitions in Equations 4 and 7, yk and
xk`1 have the same phase of φk, so xk`1 cannot be
any closer to yk while retaining the same magnitude.
Since |xk| “ |xk`1| “ |f |,

N´1
ÿ

n“0

|ykrns ´ xk`1rns|2 ď
N´1
ÿ

n“0

|xkrns ´ ykrns|2,

equivalent to e2k ď E2
k . By their definitions in Equa-

tions 9 and 8, Ek ě 0 and ek ě 0 always, so this
implies ek ď Ek.
We next show that Ek`1 ď ek. In a similar man-

ner as above, with Parseval’s Identity (Equation 3),
we can show that

ek “

˜

N´1
ÿ

n“0

|ykrns ´ xk`1rns|2
¸1{2

“

˜

N
N´1
ÿ

n“0

|Ykrns ´Xk`1rns|2
¸1{2

.

This can be expanded similarly as for Ek to obtain

ek “

˜

N
N´1
ÿ

n“0

`

|F rns|2 ` |Xk`1rns|2

´2|F rns||Xk`1rns| cos pψk`1 ´ ψkqq

¸1{2

.

The same logic of cos pθq ď 1,@ θ can be applied for
θ “ ψk`1 ´ ψk, giving us

ek ě

˜

N
N´1
ÿ

n“0

`

|F rns|2 ` |Xk`1rns|2

´2|F rns||Xk`1rns|qq1{2 .

Equation 8 for Ek`1 can be expanded to obtain the
right hand side of the above inequality, achieving
the result Ek`1 ď ek.
We can combine these results to obtain our de-

sired result of Ek`1 ď ek ď Ek.

5 Implementation of the Low-
Frequency Filter

Gerchberg and Saxton discuss their efforts to sim-
ulate situations where some data is lost to test the
algorithm’s practicality. Sometimes small ampli-
tudes may not be detected, so they applied a low-
frequency filter where all points below a fractional
threshold ε are set to zero. With this filter, Gerch-
berg and Saxton showed that their algorithm can
still succeed in situations where small frequencies
are lost [3].
We implemented this low-frequency filter in MAT-

LAB with Listing 3, to be inserted after line 20 in
Listing 1, where F is defined. Figure 2 shows an
example of the effects of this filter on |F |.
To look at the effects of the low-frequency filter,

we first ran the algorithm with unfiltered magni-
tudes. We see the randomly-generated initial phases
used to start the algorithm in Figure 3. Figure 4 dis-
plays the estimated phases that were output by the
algorithm. Success is seen in this case, where we as-
sume no information is lost. Note that although the
estimated phases are not perfect, the shape of the
curve can be clearly seen. Additionally, the ending
error in this runwas sufficiently low to be considered

192

Investigating the Gerchberg-Saxton Phase Retrieval Algorithm

a success. However, if the algorithm had continued
iterating and the error decreased further, the phase
estimates would have gotten more accurate as well.
We then ran the program with the same set of ran-
dom initial phases and low-frequency filtered mag-
nitudes, in order to simulate a situation where data
is lost. The results can be seen in Figure 5. Although
its estimate is not quite as smooth, the algorithm
successfully retrieves phase data when some input
data are lost. The low-frequency filter emphasizes
the practicality of the Gerchberg-Saxton algorithm.
It nicely shows how the Gerchberg-Saxton algorithm
is robust to small noise and errors in the signal.

6 Gaussian Functions

We assert that functions of the form f ˆ g, where g
is a Gaussian function, have better performance us-
ing the Gerchberg-Saxton phase retrieval algorithm
than those of the corresponding f . We define our
Gaussian function as

g “ exp

ˆ

´x2

2σ2

˙

(10)

where σ determines the width of the Gaussian dis-
tribution. We define ‘better performance’ to be more
frequent success of the algorithm and error conver-
gence to zero in a small number of iterations. Func-
tions of the form fˆg exhibit both of these qualities
in comparison to their corresponding functions f .
We generated sample points of functions of the

form f ˆ g, shown in Listing 4. We used MATLAB’s
gaussmf function, which evaluates a Gaussian func-
tion at a domain of defined points. σ can be used to
specify the shape of the Gaussian. Its position can
also be set, though we only used Gaussians centered
at 0. We experimented with various σ values, and
found the best performance when the Gaussian’s
width corresponded to the width of the interval of
primary focus.
We specifically looked at the Gaussian function for

three reasons. The first is that it is real. This means
that phase data is not affected by the multiplication
of a function by a Gaussian. Therefore if a phase
retrieval algorithm recovers the phases of fˆg, these
phases are the same as the phases of f . Secondly,
it is a smoothing operation, so small magnitudes
that add noise to the phase retrieval process are

eliminated by multiplying by a Gaussian. Lastly, the
Fourier Transform of a Gaussian Function is another
Gaussian function. We consider the Convolution
Theorem:

F pf ˆ gq “ F pfq ˚ F pgq
F pf ˚ gq “ F pfq ˆ F pgq

(11)

(Note that F represents the Fourier Transform, and
˚ represents the convolution product.) Thus when
we take the Fourier Transform of f ˆ g, we obtain
F pfq˚F pgq, whereF pgq is also a Gaussian function.
Each Fourier Transform and Inverse Fourier Trans-
form involves a Gaussian function, which serves to
smooth the phase estimate.
The success of functions of the form fˆg inspired

us to investigate ways to alter input magnitudes to
take on this more successful form. Ideally, we would
be able to manipulate all input to be of the form
f ˆ g, and we believed this to be possible by the
Convolution Theorem (Equation 11).
However, the initial input of the algorithm is only

the magnitudes |f | and |F pfq|. When dealing with
magnitudes, the convolution theorem does not give
us a usable equality, but rather the inequality

|F pfq| ˚ |F pgq| ě |F pfq ˚ F pgq|,

which does not allow for greater success via mul-
tiplying input magnitudes by a Gaussian function.
Our attempt at using this strategy is in Listing 5.
Our experimentation with the Gaussian function

did not open any pathways to improving Gerchberg
and Saxton’s algorithm, but we concluded that func-
tions of the form f ˆ g yield outstanding success,
demonstrated by Figures 6 and 7. Although initial-
ized with the same random phases, Figure 6 used
input from a function f where Figure 7 used f ˆ g
and had much better results. A concrete mathemat-
ical proof of this observation is underway.

7 Constant Initial Phases

In Section 1, we mentioned that random initial
phases cause variability in output. This is best
demonstrated by Figure 8, which compares two
runs of the algorithm where the same input was
used, but was initialized with two different sets of
random phases. The algorithm succeeded in one

193

Investigating the Gerchberg-Saxton Phase Retrieval Algorithm

case and failed in the other, dependent only upon
the random phases used as an initial estimate.
The randomness of the initial phases is not en-

tirely necessary for the algorithm’s success. Gerch-
berg and Saxton use random phases because when
both sets of input magnitudes are centrosymmetric,
a constant initial phase estimate will cause the al-
gorithm to fail [3]. In this case, the DFTs and IDFTs
will not change the phase estimates, and the algo-
rithm’s error will never decrease. In all other cases,
however, using a constant initial phase is acceptable
and seemingly more efficient.
We experimented with the use of a constant ini-

tial phase estimate in MATLAB. We set φ “ C and
tried using constants C “ 0, C “ 1, and C “ π.
The retrieved phases are centered at C. That being
said, the value of C is irrelevant; the fact that a
constant is used produces better performance, pro-
vided that at least one set of input magnitudes is
non-centrosymmetric. Figure 9 shows that the con-
stant phase estimate produced error convergence
in far fewer iterations than the random estimate.
Figures 10 and 11 compare two estimates that ini-
tialized the same input with random phases and
a constant phase φ “ 0. As can be seen, the con-
stant phase gave a more accurate estimate. The
algorithm consistently resulted in this estimate with
φ “ C, whereas random phases resulted in varied
estimates.
The examples in the aforementioned figures

demonstrate that the algorithm performs better with
a constant initial phase estimate. We found this to
be true in all non-centrosymmetric experimental
cases in which Gerchberg and Saxton’s algorithm
can succeed. We conjecture that it is more efficient
to use a constant initial phase estimate, but have
not yet formally proved this.

Open Questions

• Prove that it is more practical to begin the
Gerchberg-Saxton algorithmwith an initial con-
stant phase estimate, provided that at least
one of the sets of input magnitudes is non-
centrosymmetric.

• Consider the use of constant initial phases with
a small random perturbation. These would not

cause the issues that constant initial phases
precipitate in centrosymmetric problems. Their
performance could be compared to that of the
random initial phases.

• Thoroughly investigate the multiplication by
a Gaussian using a wider variety of functions
f , and prove that functions of the form f ˆ g
are more consistently successful and succeed in
fewer iterations than those of the correspond-
ing f .

Funding Information

NSF Grant #DMS-1460151.

Acknowledgments

We would like to thank the California State Univer-
sity, Fresno Mathematics REU and our mentor, Dr.
Comlan de Souza, for his support.

References

[1] D. L. Misell, A Method for the Solution of the
Phase Problem in Electron Microscopy, J. Phys. D:
Applied Physics 6:1 (1973), pp. L6–L9.

[2] G. Taylor, The Phase Problem. Acta Crystallogr.
D59:11 (2003), pp. 1881–1890.

[3] R. W. Gerchberg and W. O. Saxton, A Practical
Algorithm for the Determination of Phase from
Image and Diffraction Plane Picture, Optik 35:2
(1982), pp. 237–246.

[4] E. Osherovich, Numerical Methods for Phase Re-
trieval (PhD thesis, 2011). Retrieved from Cor-
nell University Library. (arXiv: 1203.4756)

[5] M. Parseval des Chênes, Mémoire sur les Séries
et sur l’Intégration Complète d’une Équation aux
Différences Partielles Linéaire du Second Ordre,
à Coefficients Constants, Mémoires Présentés à
l’Institut des Sciences, Lettres et Arts, par Divers
Savants, et Lus dans ses Assemblées. Sciences,
Mathématiques et Physiques 1 (1806), pp. 638-
–648.

194

Investigating the Gerchberg-Saxton Phase Retrieval Algorithm

[6] J. W. Cooley and J. W. Tukey, An Algorithm
for the Machine Calculation of Complex Fourier
Series, Mathematics of Computation 19 (1965),
pp. 297–301.

[7] J. R. Fienup, Reconstruction and Synthesis Ap-
plications of an Iterative Algorithm, Transforma-
tions in Optical Signal Processing 373 (1981),
pp. 147–160.

[8] J. R. Fienup, Phase Retrieval Algorithms: A Com-
parison, Appl. Optics 21:15 (1982), pp. 2758–
2769.

MATLAB Code Excerpts

Listing 1: Initializing Function Points

1 % define sampling rate
2 delta = 1/256;
3 % max number of iterations
4 maxiter = 500;
5 % sample domain points in [-.5,

.5)
6 t = -.5:delta :.5-delta;
7 % number of points (used in FT

calculations)
8 N = length(t);
9

10 % define rect function to limit
domain

11 syms x;
12 r = piecewise(x<-.5, 0, x>=-.5 & x

<=.5, 1, x>.5, 0);
13 % sample object domain points
14 full_f = double(subs(r, 2*t)).*exp

(30i*pi*t.^2);
15 % calculate known phases for

comparison
16 phases = angle(full_f);
17 % |f|
18 f = abs(full_f);
19 % |F|
20 F = abs(fft(full_f)/N);
21
22 % random phases to start algorithm
23 phi = 2*pi*rand(1,N)-pi;

Listing 2: Gerchberg-Saxton Algorithm

1 function estimate = gs(f, F, phi ,
maxiter)

2 % param f : |sampled points|
3 % param F : |FT of sampled points|
4 % param phi : intial phase

estimate
5 % param maxiter : max number of

iterations
6 % return estimate : 3 row array
7 % (phase estimates , iterative

error , # of iterations to
success or max)

8
9 % number of points (used in FT and

error calculations)
10 N = length(f);
11 % define error tolerance for

success
12 error_tol = 1e-10;
13 % to keep track of error through

iterations
14 error = zeros(2, maxiter);
15 % 1st estimate with given phases
16 x = f.*exp(1i.*phi);
17
18 k=1;
19 % repeat algorithm until

convergence or max number of
iterations

20 while(k == 1 || (error(k-1)>
error_tol && k<maxiter +1))

21 % eq 5
22 X = fft(x)/N;
23 % Fourier domain error
24 error(1, k) = sqrt(N)*norm(abs

(X) - F);
25 % eq 6
26 Y = F.*exp(1i.*angle(X));
27
28 % eq 7
29 y = N*ifft(Y);
30 % object domain error
31 error(2, k) = norm(abs(y) - f)

;
32 % eq 4
33 x = f.*exp(1i.*angle(y));
34

195

Investigating the Gerchberg-Saxton Phase Retrieval Algorithm

35 % increment index
36 k = k+1;
37 end
38
39 % ending estimated phases
40 est_phases = angle(x);
41 estimate(1, 1: length(est_phases))

= est_phases;
42 % combine errors into single array
43 estimate (2 ,1:2*(k-1)) = reshape(

error (1:2 ,1:k-1), 1, 2*(k-1));
44 % number of iterations it took to

reach success/max
45 estimate (3,1) = k-1;
46 end

Listing 3: Low-Frequency Filter

1 % define threshold at which data
is lost

2 F_threshold = 1/30;
3 % find max value of |F|
4 F_max = max(F);
5 % find indices where data is lost
6 indices = find(abs(F)<F_threshold*

F_max);
7 % set to 0
8 F(indices) = 0;

Listing 4: Generating Functions of the Form f ˆ g

1 % sample a Gaussian at domain
points

2 % sigma = .07, center = 0,
3 g = gaussmf(t, [.07 0]);
4 % function is of the form g x

full_f
5 f_g = abs(full_f .*g);
6 % FT of g x full_f
7 F_g = abs(fft(full_f .*g)/N);

Listing 5: Attempt to Replicate f ˆ g with Convolution
Product

1 % sample a Gaussian at domain
points

2 % centered at 0, sigma = .07
3 g = gaussmf(t, [0 .07]);
4 % f and F defined as usual
5 f = abs(full_f);

6 F = abs(fft(full_f)/N);
7 % pointwise multiplication of

object domain points
8 f_g = f.*g;
9 % FT of Gaussian

10 G = fftshift(fft(g)/N);
11 % convolution product
12 C = conv(F, G);
13 % wrap convolution product to get

F_g of correct length
14 for k=1:N-1
15 F_g(k) = abs(C(k)+C(N+k));
16 end
17 F_g(N) = abs(C(N));

Figures

Figure 1: As estimates yk and xk`1 have the same phase
φk, they can be graphically depicted as vectors
pointing in the same direction. Any vector hav-
ing the same magnitude as x̂k`1 must lie on this
circle. None of these vectors x̂j for any j ‰ k`1
can be closer to ŷk than x̂k`1.

196

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Frequency

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
ag

ni
tu

de

Change of Magnitude with Low-Frequency Filter

Unfiltered F
Nonzero Low-Frequency Filtered F

Figure 2: Input magnitudes |F | in the diffraction
plane (Fourier Transform of fptq “

rectp2tq exp
`

15iπt2
˘

). When a low-
frequency filter (ε “ 1{30) was applied, only
red points (˚) were retained. All blue points
(¨) were set to zero.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Frequency

-

- /2

0

/2

P
rim

ar
y

P
ha

se

Random Initial Phases

Figure 3: The algorithm was initialized with a set of
initial phases in p´π, πq that are randomly
generated.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Frequency

-

- /2

0

/2

P
rim

ar
y

P
ha

se

Actual Phases vs. Unfiltered Estimated Phases

Actual Phases Unfiltered Estimated Phases

Figure 4: A successful unfiltered estimate for
input magnitudes corresponding
to points generated by the function
f ptq “ rect p2tq exp

`

15iπt2
˘

.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Frequency

-

- /2

0

/2

P
rim

ar
y

P
ha

se

Actual Phases vs. Low-Freq Filter Estimated Phases

Actual Phases Low-Freq Filter Estimated Phases

Figure 5: Phase estimate for magnitudes correspond-
ing to points generated by the function
f ptq “ rect p2tq exp

`

15iπt2
˘

, when magni-
tudes below threshold ε “ 1{30 were filtered
by our low-frequency filter.

Investigating the Gerchberg-Saxton Phase Retrieval Algorithm

197

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Frequency

-

- /2

0

/2

P
rim

ar
y

P
ha

se

Actual Phases vs. Estimated Phases (f)

Actual Phases Estimated Phases (f)

Figure 6: Phase retrieval estimate for an input func-
tion f ptq “ rect p2tq exp

`

30iπt2
˘

not mul-
tiplied by g.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Frequency

-

- /2

0

/2

P
rim

ar
y

P
ha

se

Actual Phases vs. Estimated Phases (f g)

Actual Phases Estimated Phases (f g)

Figure 7: Phase retrieval estimate for an input
function of the form f ˆ g, where
f ptq “ rect p2tq exp

`

30iπt2
˘

, and g “

exp
´

´x2

2p.07q2

¯

.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Frequency

-

- /2

0

/2

P
rim

ar
y

P
ha

se

Two Phase Estimates for f(t)=rect(2t)exp(i (30t2-1))

Actual Phases Estimate 1 Estimate 2

Figure 8: A comparison of the results of the algorithm
from two runs initialized with the same func-
tion input but two different sets of random
phases. The algorithm produced success in
one run and failure in another, based only
upon the initial phase estimates.

0 5 10 15 20 25 30

Number of Iterations

0

2

4

6

8

10

12

14

E
rr

or

Error Convergence Comparison (First 30 Iterations)

Random Estimate
Constant Estimate

Figure 9: A comparison of error convergence of the
same input (f ptq “ rect p2tq exp

`

20iπt3
˘

),
when one set used an initial random phase
estimate (blue ¨) and the other used an ini-
tial constant phase estimate (red ˚). Both
succeeded in this case, but the constant ini-
tial phase produced success in fewer itera-
tions.

Investigating the Gerchberg-Saxton Phase Retrieval Algorithm

198

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Frequency

-

- /2

0

/2

P
rim

ar
y

P
ha

se

Actual Phases vs. Estimated Phases (Random)

Actual Phases Estimated Phases (Random)

Figure 10: Phase estimate for magnitudes correspond-
ing to points generated by the function
f ptq “ rect p1.5tq exp

`

100iπt5
˘

, when
the algorithm used an initial random phase
estimate.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Frequency

-

- /2

0

/2

P
rim

ar
y

P
ha

se

Actual Phases vs. Estimated Phases (Constant)

Actual Phases Estimated Phases (Constant)

Figure 11: Phase estimate for magnitudes correspond-
ing to points generated by the function
f ptq “ rect p1.5tq exp

`

100iπt5
˘

, when
the algorithm used an initial constant
phase estimate.

Investigating the Gerchberg-Saxton Phase Retrieval Algorithm

199

