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Abstract

Large tidal currents exist in the Minas Passage, which connects the Minas Basin
to the Bay of Fundy off the north-western coast of Nova Scotia. The strong currents
through this deep, narrow channel make it a promising location for the generation
of electrical power using in-stream turbines. Using a finite-volume numerical model,
the high tidal amplitudes throughout the Bay of Fundy are simulated within a root
mean square difference of 8 cm in amplitude and 3.1◦ in phase. The bottom friction
in the Minas Passage is then increased to simulate the presence of turbines and
an estimate of the extractable power is made. The simulations suggest that up to
6.9 GW of power can be extracted; however, as a result, the system is pushed closer
to resonance which causes an increase in tidal amplitude of over 15% along the coast
of Maine and Massachusetts. The tides in the Minas Basin will also experience a
decrease of 30% in amplitude if the maximum power is extracted. Such large changes
can have harmful environmental impacts; however, the simulations also indicate that
up to 2.5 GW of power can be extracted with less than a 6% change in the tides
throughout the region. According to Nova Scotia Energy, 2.5 GW can power over
800,000 homes.

1 Introduction

The highest tides in the world occur in the Bay of Fundy, which is located between Nova
Scotia and New Brunswick (see Figure 1). In the open ocean, tides typically have ranges
of one to two metres [1]; however, the difference between high and low tide in the Minas
Basin can exceed 16 m [1]. As discussed in Section 2, the large tidal amplitudes in this
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region are driven by the near-resonance of the Bay of Fundy – Gulf of Maine system,
which has a natural period of approximately 13 hours [5, 9] close to the 12.42 hour period
of the forcing tides.

Figure 1: The Gulf of Maine - Bay of Fundy region over which the tides were numerically simulated. The
colours represent the bathymetry (m) of the region, but it should be noted that beyond the continental
shelf (the dark red region) the depth is typically in excess of 4000 m. The input tides are specified on the
open boundary of the domain which is illustrated by the thick gray line, whereas the black line passing
through the center of the Bay of Fundy approximates the path of the tidal wave. The rectangle encloses
the Minas Passage and Minas Basin region which is displayed in Figure 3.

The rise and fall of a large body of water suggests that the potential energy is high
in the Bay of Fundy. A large volume flux is required for these significant changes in
amplitude to occur, therefore fast currents arise in narrow channels which results in high
kinetic energy. Greenberg [9] calculates both potential and kinetic energies on the order
of 1014 J. Until recently, the methods of harvesting this tidal energy were limited to
capturing water in a dam at high tide and generating electricity by releasing the water
at low tide. Previous studies [9, 12] have investigated the possibility of building such a
dam near the Minas Passage. Both studies used numerical simulations to conclude that
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the tides would increase significantly along the coast of Maine and Massachusetts, as a
result of pushing the system closer to resonance. In particular, Greenberg [9] estimated a
15 cm increase in amplitude in Boston.

Now, with stronger demands for green energy and the development of new technology,
the prospect of tidal power has resurfaced. In-stream turbines have recently been devel-
oped and proposals have been made for their implementation into regions of high tidal
flow. Plans are currently underway for the installation of three turbines in the Minas
Passage [11]. Ideally, these turbines, which operate much like wind turbines, would pro-
duce a predictable, renewable source of power with less of an impact on the environment
than a dam. Although similar to wind turbines, the dynamics of large scale power extrac-
tion from a channel like the Minas Passage has important differences (see discussion in
[6, 7]). First, the restriction of the channel forces flow through the turbines and, second,
the placement of turbines in the channel will impact the tides in the Minas Basin and
throughout the Bay of Fundy.

Garrett and Cummins [6, 7] suggest a simple power estimate, based on only the kinetic
energy flux, is not accurate in this situation because the turbines cause the flow through
the channel to decrease. As a result, the time lag between high tide across the channel
increases, which causes the pressure gradient to increase. Since it is this pressure gradient
that drives the flow through the channel, the maximum extractable power is actually
greater than the kinetic energy flux. Karsten et al. [10] adapt the theory of Garrett and
Cummins [6, 7] to the Minas Passage and provide an assessment of the tidal current energy
in the region. Here, we attempt to put the conclusions of [10] into context by presenting
the results in a more accessible format. We also give a more detailed description of basic
tidal theory in an attempt to explain the dynamics of the Bay of Fundy system.

More specifically, we begin in Section 2, by presenting a simple description of the
resonance that generates the high tides in the Bay of Fundy. Section 3 then contains a
description of the numerical model that was used to simulate the tides and we illustrate
that our results are accurate by making comparisons to measured tidal data. The most
significant results of our research are summarized in Section 4, where an estimate of the
maximum extractable power is made both theoretically and numerically. We also examine
both the near-field and far-field effects of extracting such a large quantity of energy from
a resonant system. We then conclude the paper by attempting to estimate the amount of
power that can be extracted with an acceptable change in the tides.

2 Tidal Wave Resonance

Equilibrium tidal theory predicts that tides originate from the gravitational forces of the
Moon and the Sun acting on the world’s oceans. In particular, the Moon exerts a force on
the Earth causing it to accelerate towards the Moon; however, because the oceans on the
side facing the Moon are closer than the Earth, they experience a greater acceleration.
Similarly, on the distant side of the Earth, the Earth accelerates faster than the ocean,
creating a second aqueous bulge. It takes 24.84 hours for the Earth to complete a single
rotation relative to the Moon, hence, the semidiurnal lunar constituent of the tide, M2,
has a period of 12.42 hours.

Other tidal constituents, which depend on the gravitational force of the Sun, the tilt
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of the Earth’s rotation axis, and the elliptical orbits of the astronomical bodies, have
varying periods. In general, the proximity of the Moon to the Earth causes the M2 tidal
constituent to dominate the tidal forcing; however, the bathymetry in a region also plays
an important role in determining the amplitude and period of the tides.

It is indeed the bathymetry and geometry of the Bay of Fundy that cause the ampli-
fication of the M2 tide in this region. The presence of the continental shelf, the average
depth and the length of the combined Bay of Fundy and Gulf of Maine are all factors
causing the natural period of the Bay of Fundy to be slightly greater than 12.42 hours.

An estimate of this natural period can be determined by analyzing the solution to a
one-dimensional gravity wave equation in a finite-channel, which is given by the following
partial differential equation and boundary conditions as found in [8]:

∂2ζ

∂t2
= c2

∂2ζ

∂x2
, 0 < x < L, (1)

ζ(0, t) = ζ0 cos(ωt), (2)

∂ζ

∂x
(L, t) = 0, (3)

where L is the length of the channel, ζ = ζ(x, t) is the surface elevation, ω is the radian
frequency of the elevation and c is the speed of a gravity wave given by, c=

√
gH, where

g is the gravitational acceleration and H is the depth of the channel. The boundary
conditions given by Equations (2) and (3) respectively ensure that the elevation at the
opening of the channel follows the forcing tide and that there is no flux through the
closed end of the channel. The general solution to Equation (1) has the following form of
a traveling wave,

ζ(x, t) = A cos[k(x− L)− ωt] +B cos[k(x− L) + ωt], (4)

where k = ω/c is the wave number. The solution given by Equation (4) represents an
incident wave traveling in one direction and a reflected wave traveling in the opposite
direction. By applying the boundary conditions given by Equations (2) and (3), the
coefficients are found to be

A = B =
ζ0

cos(kL)
.

The resulting solution to the differential equation is

ζ(x, t) = ζ0
cos[k(x− L)] cos(ωt)

cos(kL)
.

Resonance occurs when the elevation of the tides at the closed end of the channel is
maximized with respect to the elevation at the channel opening. This ratio, given by

ζ(L, t)

ζ(0, t)
=

1

cos(kL)
, (5)
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will approach infinity if kL =
(
n+ 1

2

)
π, therefore the natural modes of the Bay of Fundy

correspond to the following frequencies,

ωn =

(
n+

1

2

)
π

√
gH

L
, where n = 0, 1, 2, ....

These frequencies are the eigenvalues of the boundary value problem given by Equations
(1) – (3).

If the length and depth of the Bay of Fundy are estimated as L = 400 km and
H = 110 m, then the natural modes corresponding to n = 0, 1, 2 and 3, have respective

periods
(
Tn = 2π

ωn

)
of Tn = 13.5, 4.5, 2.7, and 1.9 hours. The M2 tidal constituent has a

period of 12.42 hours; therefore, it can be concluded that only the n = 0 mode resonates
with the forcing tide, making 13.5 hours the approximate natural period of the Bay of
Fundy. In comparison, a natural period of 12.85 hours is estimated using numerical
simulations (see Section 4). This one-dimensional theory, and in particular Equation (5),
can also be used to predict an amplitude of 7.1 m in the Minas Passage by noting that the
amplitude of the tide at the opening of the channel is about 1.0 m. As Figure 3 illustrates,
the numerical simulations give an amplitude of 7 m in the Minas Basin; therefore, although
this simple theory does not take into account the changing depth of the ocean, bottom
friction or the nonlinear effects of the flow, it can be used to describe basic tidal resonance.

Due to the resonance described above, the M2 tidal constituent is significantly am-
plified in the Bay of Fundy. In [4], Dupont et al. conclude that the amplitude of the
M2 tide is over 4.5 times greater than any other tidal constituent in the Bay of Fundy;
therefore, only the M2 tide was used to force our numerical model. Slightly more accurate
tides could have been achieved by including the less dominant constituents in the model;
however, longer simulations would have been needed because these constituents primarily
influence the monthly and yearly variations in the tides.

3 Numerically Modelling the Tides

To numerically simulate the tides, a finite element grid was used which consisted of the
Bay of Fundy, Gulf of Maine and a region of the Atlantic Ocean as illustrated in Figures 1
and 2. The entire region (Figure 1) was approximately 600 000 km2 in area. The original
grid, which was obtained from David Greenberg at the Bedford Institute of Oceanography,
consisted of 9521 non-uniform triangular elements; however, we increased the resolution
by dividing each element in the original grid into four similar triangles. The new nodes
were located at the midpoints of the sides of the original triangles with values for the ocean
depth determined using linear interpolation. This process was again repeated creating a
third grid with the number of triangular elements increased by a factor of 16 in comparison
to the original grid. Due to the properties of similar triangles, this method of increasing
the resolution ensured that the desirable properties of the original grid, such as the angles
within the triangles, were all maintained. Numerical simulations were performed using
each of the three grids and convergence in the energy and power values were obtained.
By increasing the resolution of the grid, we also increased the number of points across the
Minas Passage from 5 in the original grid to 20 in the final grid.
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Figure 2: The location of nine observation stations which were used to compare the numerical results to
measured data. The figure also displays the finite element grid that was obtained from David Greenberg.
For the results presented in this paper, a higher resolution grid was used where each of the triangular
elements above was divided into 16 similar triangles.

An important characteristic of the finite element grid, which is evident in Figure 2,
is that regions of complex bathymetry and geometry are characterized by a greater res-
olution. In particular, the densities of the triangular elements near the coastline and in
shallow regions are much greater than that in the deep Atlantic Ocean.

To numerically simulate the tides, a Finite-Volume Coastal Ocean Model (FVCOM)
[3] is used. For the purposes of this research, the solutions are governed by the two-
dimensional momentum and continuity equations, given by

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g ∂ζ

∂x
− Fx, (6)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g∂ζ

∂y
− Fy, (7)

∂ζ

∂t
+

∂

∂x
[u(h+ ζ)] +

∂

∂y
[v(h+ ζ)] = 0, (8)

where x and y are the east and north directions; u and v are the depth integrated east and
north velocities; f is the Coriolis parameter (f = 2π sin (latitude)); g is the gravitational
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acceleration; h is the undisturbed depth of water; ζ is the height of the free surface relative
to h; t is the time; and, Fx and Fy are the east and north quadratic friction forces given
by

Fx = κu

√
u2 + v2

h+ ζ
and Fy = κv

√
u2 + v2

h+ ζ
,

where κ is the bottom friction coefficient.
Each triangular element in the grid, illustrated in Figure 2, is represented by its three

nodes. At each of the nodes, the longitude, latitude and ocean depth are specified. The
phase and amplitude of the M2 tide is also specified at the nodes located on the open
boundary (see Figure 1), which provides the forcing necessary to generate the tides. The
model allows water to freely flow into or out of the computational domain along the open
boundary; however, it is necessary to include a sponge layer to damp out reflected waves,
removing numerical instabilities. It is important that the open boundary is located beyond
the continental shelf, allowing the Bay of Fundy – Gulf of Maine system to respond freely
to the tidal forcing. Using FVCOM, the tides are then simulated with the values of u, v
and ζ saved every 1/24 of a tidal period for the last four periods of a 16 tidal period run.
The amplitude and phase of the tides can then be calculated at each node by fitting a
cosine curve to the surface height. To ensure that the simulations were producing accurate
results, these values were compared to measured values for the tidal phase and amplitude
at 51 observation stations obtained from David Greenberg. The locations of nine of these
stations are shown in Figure 2.

In order to achieve the most accurate results, the model was tuned by adjusting the
bottom friction coefficient until the mean amplitude difference between the calculated
and observed values was a minimum. After conducting several numerical simulations,
this bottom friction coefficient was determined to be 0.0026. In comparison, Dupont et
al. [4] achieved their smallest error using a coefficient of 0.0025; whereas, Sucsy et al. [12]
used 0.002. Greenberg [9], on the other hand, used two different values – 0.0024 in the
Gulf of Maine, and 0.0021 for the remainder of the region.

The final results for nine observation stations are summarized in Table 1. Observations
were not obtained for Cape Split; however, it is included in the table because the phase and
amplitude at the entrance to the Minas Passage is important in the discussion of turbines
in Section 4. For all 51 stations, the root mean square (rms) amplitude difference is 8 cm
and the rms phase difference is 3.1◦. In general, our errors are slightly smaller than those
of Greenberg [9] and comparable to Sucsy et al. [12] and Dupont et al. [4].

The calculated tidal amplitudes and phases are displayed for the Minas Passage and
Minas Basin in Figure 3. It is evident in this figure that the amplitude of the simulated
tide is greater than 6 m in some regions of the Minas Basin. The large phase lag of 10.1◦

between Cape Split and the Minas Basin (Table 1) indicates that there is a large difference
in the surface elevation (tidal head) across the channel. It is the hydrostatic pressure
associated with this tidal head that forces large tidal currents through the channel.
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Observed Modeled Difference
Station Amp. Phase Amp. Phase Amp. Phase
Boston 1.34 111 1.36 116.2 -0.02 5.2
Portland 1.33 103 1.36 106.4 -0.03 3.4
Saint John 3.04 98 3.05 97.2 -0.02 -0.8
Chignecto 4.18 103 4.27 100.4 -0.09 -2.6
Minas Basin 5.48 121 5.35 117.9 0.13 -3.1
Cape Split - - 4.71 107.8 - -
Isle Haute 4.18 99 4.07 96.5 0.11 -2.5
Westport 2.20 80 2.18 79.1 0.02 -0.9
Yarmouth 1.63 63 1.66 63.1 -0.03 0.1

Table 1: Observed and calculated amplitudes (m) and phases (◦) for several observation stations. There
was no measured data for Cape Split.

Figure 3: The numerically simulated amplitude (m) and phase (◦) of the M2 tide in the Minas Passage
and Minas Basin are represented by the colours and contours, respectively. The over 10◦ phase differ-
ence across the Minas Passage creates the large tidal head driving the flow through the channel. The
parameters referred to throughout the text are also displayed.

Because the primary goal of the research was to investigate the extraction of tidal
power using in-stream turbines, it was desired to determine the location of maximum
power density. The power per unit area can be determined by calculating the time aver-
aged kinetic energy flux which is given by
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PKE =
ρ

2T

∫ T

0

(u2 + v2)3/2 dt,

where T is the length of one tidal period (12.42 hours) and ρ is the density of the water.
As illustrated by Figure 4, the power density in the Minas Passage exceeds 18 kW/m2

which is much greater than anywhere else in the region due to the high velocity of the flow
passing through this channel. In fact, excluding the areas immediately surrounding the
Minas Passage, the average power density is less than 2 kW/m2. By integrating across
the channel, Triton Consultants [14] estimated that the total power associated with the
kinetic energy flux is 1.9 GW in the Minas Passage.

Figure 4: The power density (kW/m2) in the Minas Passage is much greater in this region than anywhere
else in the Bay of Fundy – Gulf of Maine where the power density is typically less than 2 kW/m2. The
high power density in this region makes it a promising location for the implementation of turbines.

4 Turbines and Tidal Power

As stated above, the strongest currents in the Bay of Fundy are located in the Minas
Passage, making it a promising location for the installation of turbines. If too many
turbines are placed in the channel, the flow will be impeded by the increased drag, causing
the power of the current to decrease. There is, therefore, a theoretical maximum to the
amount of tidal power that can be harnessed. The theory presented here is summarized
from the theoretical model of Garrett and Cummins in [6], where they examined a channel
connecting a small bay to the open ocean. Blanchfield et al. extended this theory to
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include the effects of flow acceleration in [2]. This theoretical model was then adapted to
the Minas Passage by Karsten et al. in [10].

To apply the theory of [6], we consider implementing turbines in the Minas Passage by
introducing a drag force, Fd, to the flow between the small inner bay (Minas Basin) and
the large exterior ocean (Bay of Fundy). The tidal elevation at the entrance to the Minas
Passage is expressed as a cosωt and inside the Minas Basin as ζb(t) (see Figure 3). It is
then assumed that there exists a balance between the turbine drag and the hydrostatic
pressure gradient that results from the tidal head across the channel. This balance is
expressed mathematically as follows,

ζb +
Lc
g
Fd = a cosωt, (9)

where Lc is the length of the channel over which the turbines are located (see Figure 3).
For the simplest analysis, it is assumed that the drag force is linear, that is Fd = r1u,
where r1 is the frictional coefficient associated with the turbines and u is the velocity
of the current along the channel. Continuity can also be applied by assuming that the
change in volume in the small bay is equal to the flux through the channel, resulting in
the differential equation,

Ab
dζb
dt

= Ecu, (10)

where Ab is the area of the small bay and Ec is the cross-sectional area of the channel.
Equations (9) and (10) can be derived from the governing shallow water equations (6 –
8) by integrating the momentum equations over the Minas Passage and the continuity
equation over the Minas Basin, respectively. In both cases the non-linear effects are
ignored.

Equation (10) can be solved for u and then substituted into Equation (9) to give the
following differential equation,

δ1
ω

dζb
dt

+ ζb = a cosωt,

where

δ1 =
r1LcAbω

gEc
.

This first order, linear differential equation can be solved to give

ζb =
a√

1 + δ2
1

cos (ωt− φ), (11)

tanφ = δ1, (12)

where φ is the phase lag across the channel. Equation (11) can then be differentiated and
substituted into Equation (10) to determine the velocity of the flow as

u = − 1√
1 + δ2

1

Abωa

Ec
sin (ωt− φ). (13)
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The linear turbine drag, Fd = r1u, can now be written as follows,

Fd = − δ1√
1 + δ2

1

ga

Lc
sin (ωt− φ). (14)

From this equation, it is evident that the magnitude of the drag force is an increasing
function of δ1 that varies like

|Fd| ∼
δ1√

1 + δ2
1

. (15)

At large δ1, the fraction in Equation (15) approaches 1; therefore, at high friction, the
magnitude of the drag force varies slowly and approaches a constant value. For small δ1,
Equation (12) can be used to make the approximation, φ ≈ δ1. Equation (11) can also
be used to conclude that the magnitude of the drag force at low friction varies like

|Fd| ∼ φ
|ζb|
a
, (16)

which indicates that the force increases linearly with the increase in phase. Combining
the approximations for high friction and low friction, it can be concluded that the drag
force initially increases rapidly with δ1 before approaching a constant value at large δ1.
On the other hand, the velocity, given by Equation (13), decreases slowly at first, and
then rapidly at large δ1. The average extractable power is proportional to the product of
Fd and u, as follows,

P =
ρEcLc
T

∫ T

0

Fdu dt. (17)

As δ1 is increased from zero, Fd initially increases faster than u decreases; therefore, at
low friction the power rises quickly. Eventually, the phase, and hence Fd, reaches its
maximum, but u continues to decrease, causing the power to decrease towards zero. This
behavior is evident in Figure 5, where the extractable power is plotted.

The exact function describing the power can be determined by substituting Equations
(13) and (14) into Equation (17) and then integrating,

P =
1

2

(
δ1

1 + δ2
1

)
ρgAbωa

2.

It can be easily shown that δ1 = 1 corresponds to the maximum power, which allows the
following simplification to be made,

P =
2δ1

1 + δ2
1

Pmax, (18)

where

Pmax =
1

4
ρgAbωa

2.

Using the parameters summarized in Table 2, this linear theory provides an estimate of
Pmax = 8.0 GW for the Minas Passage.

In deriving Equation (18), it was assumed that the drag force was linear; however, it
is more realistic to assume a quadratic drag force because the friction forces, Fx and Fy,
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Parameter Description Calculated Value
ρ water density 1026 kg/m3

Lc Length of Minas Passage 1.2× 104 m
Ec Cross-sectional area of Minas Passage 3.1× 105 m2

Ab Surface area of Minas basin 1.0× 109 m2

ω M2 tidal frequency 1.4× 10−4 s−1

a amplitude of forcing tides 4.73 m

Table 2: Parameters and their values for the Minas Passage and the Minas Basin.

are quadratic in the momentum equations (6 and 7). In [6] and [10], the drag force was
represented by Fd = r2u|u|. The analogous results to the quadratic theory of Karsten et
al. [10] can be derived from our linear model by determining the appropriate quadratic
drag parameter, δ2. The solution, u and ζ, (Equations 11 and 13) will also be a solution
for quadratic drag if Equation (9) is satisfied; that is, if the drag force, Fd, is equivalent
in the linear and quadratic cases. Thus,

r1u = r2u|u|,

where u is given by Equation (13), so

δ1√
1 + δ2

1

sin (ωt− φ) =
δ2

1 + δ2
1

sin (ωt− φ)| sin (ωt− φ)|, (19)

where

δ2 =
r2LcA

2
bω

2a

gE2
c

.

Equation (19) can be approximated by expanding the right hand side using a Fourier
series as follows,

δ1√
1 + δ2

1

sin (ωt− φ) =
δ2

1 + δ2
1

(
8

3π
sin (ωt− φ)− 8

15π
sin(3ωt− φ3) + ...

)
. (20)

It should be noted that the amplitude of the lowest order mode in the Fourier expansion is
at least fives times larger than the amplitudes of the higher order modes. The frequency
of the first term in the expansion is ω, which corresponds to the frequency of the M2

tide; therefore, it can be concluded that the tides are dominated by the M2 constituent.
Because their amplitudes are small, the higher order modes in Equation (20) can be
neglected. The coefficients on both sides of the resulting equation can then be matched
in order to determine the following relationship between δ1 and δ2,

δ2 =
3π

8
δ1

√
1 + δ2

1, (21)

or conversely,

δ1 =
8

3π
δ2

√√√√ 2

1 +
√

1 + 4
(

8
3π

)2
δ2
2

. (22)
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By expressing δ1 in terms of δ2, the results of the linear theory can be transformed into
the quadratic drag solutions of Karsten et al. [10] in the appropriate limit. In particular,
the extracted power as a function of δ2 can be determined by substituting Equation (22)
into Equation (18). This function is plotted in Figure 5 and it should be noted that
the maximum extractable power occurs at δ2 = 3

√
2π/8 which corresponds to δ1 = 1 in

Equation (21).
In order to compare the above theory to the results of simulations, it is necessary to

model the effect that turbines would have on the tides. In essence, the turbines cause
the water to slow down, acting as a drag on the flow. In a two-dimensional model, the
simplest way to represent the increased drag is to augment the bottom friction, as was
done in [13]. More specifically, the bottom friction is increased by an amount κt at each
of the nodes in the region defined by Lc in Figure 3. By simulating a turbine at each node
in the Minas Passage, a “turbine farm” is essentially represented.

For each numerical simulation, the total bottom friction drag power, D, is determined
by D = 1

2
ρ(κ0 +κt)(u

2 + v2)3/2 where κ0 is the natural bottom friction coefficient, 0.0026.
Figure 5 illustrates the agreement between the numerical simulations and the theory
presented above. As expected, the power initially increases rapidly due to the phase lag,
but eventually the decrease in speed causes the extracted power to decrease. Although it
is not so evident from Figure 5, in the limit as δ2 → ∞, P → 0 for both the theory and
the numerical simulations.

The theory presented here has several limitations. For simplicity, it does not contain
the effects of the acceleration or the nonlinearity of the flow. As well, the natural bottom
friction is not separated from the turbine friction in the calculations of the extractable
power. These issues are addressed in Karsten et al. [10], resulting in a better comparison
of the theoretical and numerical results. As is evident in Figure 5, the quadratic theory
overestimates the maximum extractable power at high friction. The numerical simulations
suggest that the maximum drag power in the Minas Passage is approximately 7.3 GW.
The power associated with only the turbine friction can be approximated by,

Pt =
κt

κt + κ0

D.

At maximum frictional power κt = 0.05 and D = 7.3 GW, thus it can be estimated that
up to 6.9 GW of power can be extracted by the turbines.

Obviously, when energy is removed from a system, especially a system governed by
resonance, there are bound to be effects on the areas both near and far from the power
extraction site. Figure 6 plots the relative change in tidal amplitude if the maximum power
is extracted. Because the flow through the Minas Passage is restricted by the presence of
the turbines, the amplitude of the tide within the Minas Basin decreases (Equation 11).
It would also make sense for the tides to decrease everywhere in the region, since energy
is being removed; however, this is not evident from the simulations (see Figure 6) as the
tides actually increase by 10 to 15% throughout the Gulf of Maine.

As mentioned earlier, the Bay of Fundy is characterized by high tides due to the
resonance that results because the length of the bay is nearly equal to one quarter of
the wavelength of the tides. By adding turbines, the flow through the Minas Passage
takes longer to reach the Minas Basin, which implies that the system is moving away
from resonance; however, the turbines also cause some of the water to no longer enter the
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Figure 5: A comparison between the frictional power values as determined by both theory and numerical
results. Each ‘x’ marker corresponds to a particular simulation that was completed.

Minas Passage, shortening the bay and causing the system to move closer to resonance.
Due to these contrasting arguments it is not immediately clear whether the turbines cause
the system to move towards or away from resonance. In [10], numerical simulations were
performed to calculate the resonant period of the system. This was done by varying the
period of the forcing tides until the total energy in the system was a maximum. Using this
method, Karsten et al. [10] calculated a period of 12.85 hours for the undisturbed system.
The results of [10] indicate that the resonant period of the system decreases as the turbine
drag is increased. In particular, a period of 12.80 hours was calculated for weak turbines
(κt = 0.005), whereas, at maximum turbine power (κt = 0.05), the period was reduced to
12.59 hours. The placement of a barrier across the Minas Passage caused the system to
move even closer to resonance with a period of 12.50 hours. Because the natural period of
12.42 hours is being approached as the turbine drag increases, stronger resonance should
amplify the tidal amplitudes. For the simulations, this is true throughout the Gulf of
Maine (see Figure 6).

The amplitude and phase changes that occur at nine locations are summarized in
Table 3 for a low friction simulation, a high friction simulation and a simulation with a
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Figure 6: The relative change in amplitude (%) of the tides as a result of extracting the maximum amount
of power from the Minas Passage.

barrier placed across the Minas Passage. Previous studies, [9] and [12], have examined
the barrier case in greater detail. The results of the simulations suggest that both im-
plementing a barrier and extracting the maximum power would lead to significant effects
on the tides throughout the entire region. The greatest effects occur in the Minas Basin
where extracting the maximum amount of power would cause the amplitude of the tides
to decrease by 195 cm. The natural tides at this location are 548 cm (Table 1), therefore,
the simulations indicate that the tidal amplitude is reduced by 36%. In addition, the
simulations suggest that the phase lag between Cape Split and the Minas Basin increases
by 34◦ (see Table 3), resulting in a total phase difference of 44◦ across the Minas Passage.
The theory presented above gives δ1 = 1 at maximum power; therefore, Equations (11)
and (12) suggest a 30% reduction in tidal amplitude in the Minas Basin, in addition to
a phase lag of 45◦. At lower friction (κt = 0.005) δ2 = 0.29; therefore, by Equation (21),
δ1 = 0.24. This can then be used to predict a 3% reduction in tidal amplitude and a phase
lag of 13◦. As Table 3 indicates, the numerical simulations give a 31 cm, or 6%, reduction
in tidal amplitude. The numerical simulations also result in a 7◦ increase in phase lag
between Cape Split and the Minas Basin, which corresponds to a total phase lag of 17◦.
Considering the limitations of this theory, the agreement between it and the simulations is
excellent. By including the effects of acceleration and the nonlinearity of the flow, Karsten
et al. [10] obtained better agreement between their theory and simulations. Overall, it is
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important to note that extracting maximum power would have a significant effect on the
tides; however, approximately 2.5 GW (κt = 0.005) could be extracted by turbines with
less than a 6% change in tidal amplitude throughout the Bay of Fundy – Gulf of Maine
region. It is unlikely that such a small change in the tides would have significant effects
on the environmental aspects of the region, and yet a large amount of power could still
be harnessed.

Amplitude Change (cm) Phase Change (◦)

Station κt = 0.005 κt = 0.05 barrier κt = 0.005 κt = 0.05 barrier
Boston 3 19 47 -1.6 -4.7 -0.6

Portland 3 18 45 -1.6 -4.9 -1.4
Saint John -3 1 41 -1.8 -8.8 -13.8
Chignecto -8 -18 27 -1.8 -9.9 -18.2

Minas Basin -31 -195 - 4.3 20.7 -
Cape Split -16 -55 -30 -2.6 -13.8 -31.0
Isle Haute -7 -20 16 -1.7 -9.6 -18.5
Westport 0 9 35 -1.5 -6.3 -7.5
Yarmouth 1 9 26 -1.2 -4.2 -3.2

Table 3: The changes in phase and amplitude resulting from a low friction simulation (κt = 0.005), a
high friction simulation (κt = 0.05) and a simulation with a barrier placed across the Minas Passage.
The extracted turbine power for the low friction and high friction simulations are 2.5 GW and 6.9 GW,
respectively.

5 Conclusion

The present demand for renewable energy has led to the discussion and investigation of
tidal power in the Bay of Fundy. With the highest tides in the world, it is obvious why
this region is of particular interest. Numerical simulations and a simple one-dimensional
theory were both used to approximate the natural period of the Bay of Fundy as 12.85
and 13.5 hours, respectively. Although both of these estimates are slightly higher than
the 12.42 hour period of the M2 tide, the near-resonance causes large tidal amplitudes to
occur in the Minas Basin.

The tides throughout the Bay of Fundy and Gulf of Maine were accurately simulated
using a numerical model. The results of these simulations confirmed that the fastest
currents are located in the Minas Passage, making it a promising location for the imple-
mentation of turbines.

By increasing the bottom friction in the Minas Passage, numerical simulations were
completed that examined the effect of turbines on the tides. In agreement with a simple
theory, it was estimated that up to 6.9 GW of power is available for extraction. The theory
and simulations also suggest that extracting maximum power would have a significant
effect (36% reduction) on the Minas Basin tides. Furthermore, simulations indicated that
the entire system would move closer to resonance and thus cause the tides in Boston to
increase by 15%. A change of this magnitude would most likely have serious environmental
consequences; however, because the power at low resistance is driven by the phase lag
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across the Minas Passage, up to 2.5 GW of power could be extracted with less than a 6%
change on the tides both locally and afar.

Through this research, it can therefore be concluded that a significant amount of
power can be extracted from the Minas Passage with minimal consequences on the tides.
This encourages the continued discussion of tidal power in the region. Further research
would involve performing more detailed numerical simulations where the turbines are more
accurately modeled to examine the resulting changes in flow patterns. The objective of
further research is to determine the most efficient and ecologically acceptable placement
of turbines.

Acknowledgments

The authors thank their supervisors, Richard Karsten and Ronald Haynes, for their guid-
ance in conducting this research and in preparing this paper. As well, we would like to
thank David Greenberg for providing the data for the numerical grid and observations.
The comments of the two anonymous reviewers are also appreciated as they helped to
significantly improve this paper. Finally, thanks must be extended to the Natural Sciences
and Engineering Research Council for the financial support that it provided both authors
through USRA awards.

References

[1] R. Bishop, Tides and the Earth-Moon System, Observer’s Handbook 2008, (2007),
p. 173.

[2] J. Blanchfield, C. Garrett, P. Wild, and A. Rowe, The Extractable Power
from a Channel Linking a Bay to the Open Ocean, Proceedings of the Institution of
Mechanical Engineers, Part A: Journal of Power and Energy, 222 (2008), pp. 289–297.

[3] C. Chen, R. Beardsley, and G. Cowles, An unstructured grid, finite-volume
coastal ocean model (FVCOM) system. Special Issue entitled “Advance in Computa-
tional Oceanography”, Oceanography, 19 (2006), pp. 78–89.

[4] F. Dupont, C. Hannah, and D. Greenberg, Modelling the Sea Level of the
Upper Bay of Fundy, Atmosphere-Ocean, 43 (2005), pp. 33–47.

[5] C. Garrett, Tidal Resonance in the Bay of Fundy and Gulf of Maine, Nature, 238
(1972), pp. 441–443.

[6] C. Garrett and P. Cummins, Generating Power from Tidal Currents, Journal
of Waterway, Port, Coastal and Ocean, 130 (2004), pp. 114–118.

[7] C. Garrett and P. Cummins, The Power Potential of Tidal Currents in Chan-
nels, Proceedings of The Royal Society, 461 (2005), pp. 2563–2572.

[8] A. Gill, Atmosphere-Ocean Dynamics, Academic Press, San Diego, CA, 1982.

36Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



[9] D. Greenberg, A numerical model investigation of tidal phenomena in the Bay of
Fundy and Gulf of Maine, Marine Geodesy, 2 (1979), pp. 161–187.

[10] R. Karsten, J. McMillan, M. Lickley, and R. Haynes, Assessment of Tidal
Current Energy for the Minas Passage, Bay of Fundy, Proceedings of the Institution
of Mechanical Engineers, Part A: Journal of Power and Energy, in press (2008).

[11] Nova Scotia to create test centre for tidal power, The Canadian Press (2008, January
8), The Globe and Mail.

[12] P. Sucsy, B. Pearce, and V. Panchang, Comparison of Two-and Three-
Dimensional Model Simulation of the Effect of a Tidal Barrier on the Gulf of Maine
Tides, Journal of Physical Oceanography, 23 (2006), pp. 1231–1248.

[13] G. Sutherland, M. Foreman, and C. Garrett, Tidal current energy assess-
ment for Johnstone Strait, Vancouver Island, Proceedings of the Institution of Me-
chanical Engineers, Part A: Journal of Power and Energy, 221 (2007), pp. 147–157.

[14] Triton Consultants Ltd., Canada Ocean Energy Atlas (Phase 1) Potential
Tidal Current Energy Resources Analysis Background, 2006. Available at
http://homepage.mac.com/max.larson/Triton/Papers.html.

37Copyright © SIAM 
Unauthorized reproduction of this article is prohibited


	Introduction
	Tidal Wave Resonance
	Numerically Modelling the Tides
	Turbines and Tidal Power
	Conclusion



