
A Numerical Study of Generalized Multiquadric

Radial Basis Function Interpolation

Maggie E. Chenoweth

Department of Mathematics, Marshall University

Advisor:

Dr. Scott A. Sarra

Department of Mathematics, Marshall University

October 13, 2009

Abstract

This work focuses on the generalized multiquadric (GMQ) radial
basis function. The GMQ is derived from the multiquadric (MQ),
which is used in radial basis function (RBF) interpolation. This is a
relatively new field of research, and many properties of the GMQ are
still unknown. Numerical experiments will be performed involving the
GMQ, and results will be analyzed to gain further understanding into
this type of function.

1 Introduction

Radial basis function (RBF) methods are part of an emerging field of math-
ematics. First studied by Roland Hardy, an Iowa State geodesist, in 1968,
these methods allow for scattered data to easily be used in computations.
This was previously done using polynomial interpolation, but RBF interpo-
lation has been shown to work in some cases where polynomial interpolation
has failed [9]. (A function is said to interpolate a set of data points if it passes
through those points.) RBF methods are frequently used to represent topo-
graphical surfaces as well as other intricate three-dimensional shapes [11].

A radial basis function, φ(r), is a one variable, continuous function de-
fined for r ≥ 0 that has been radialized by composition with the Euclidean
norm on R

d. RBFs may have a free parameter, the shape parameter, de-
noted by ǫ. If we are given a set of N centers, xc

1, . . . , x
c
N , in R

d, an RBF
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interpolant takes the form

s(x) =
N

∑

j=1

λjφ(‖ x − xc
j ‖2, ǫ). (1)

The λj coefficients are chosen by interpolation so that

s(xi) = fi

at a set of points that usually is located at the N centers. This leads to the
linear system

Bλ = f

which will be solved for the MQ (or GMQ) expansion coefficients. B is an
N × N matrix known as the interpolation matrix or system matrix with
entries

bij = φ(‖xc
i − xc

j‖2), i, j = 1, . . . ,N.

Its entries contain the functions representing the approximation space eval-
uated at the distances between centers. We evaluate the interpolant at M
points using (1) by forming an M × N evaluation matrix H with entries

hij = φ(‖xi − xc
j‖2), i = 1, . . . ,M and j = 1, . . . ,N.

The interpolant is then evaluated at the M points to obtain

fa = HB−1f = Hλ.

The most popular RBF that is used in applications today is the multi-
quadric (MQ)

φ(r) =
√

1 + ε2r2 = (1 + ε2r2)1/2. (2)

The properties of the MQ are well-known. However, a related RBF with
properties not as well-known is the generalized multiquadric (GMQ)

φ(r) = (1 + ε2r2)β β = · · ·
−3

2
,
−1

2
,

1

2
,

3

2
· · · (3)

For β < 0, the GMQ is strictly positive definite, and for 0 < β < 1, the
GMQ is conditionally positive definite of order one. In both cases, the
system matrix for the interpolation problem can be shown to be invertible.
With β > 1, the GMQ is conditionally positive definite of order ⌈β⌉, and to
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show that the system matrix, B, is invertible, it is necessary to append low
order polynomials to the RBF interpolant [1].

Through extensive numerical experiments, researchers have recently sug-
gested, but not proven, that the GMQ has desirable properties for β with
non-half-integer powers [6, 13, 14]. This work will focus on the less under-
stood GMQ. A series of numerical experiments will be analyzed to determine
if an optimal value for β exists.

2 RBF Interpolation

As previously mentioned, Hardy is acknowledged for formulating the MQ.
While working as a field engineer from 1947 to 1951, he first became in-
terested in stream and ridge lines. In his 1972 paper he writes, “Someone
showed me a ‘topographic map’ that had been ‘designed by a statistician’
who obviously knew a lot about statistics, but nothing about topography. It
was some sort of ‘orthogonal polynomial least squares fit of topography to
an array of fixed control points on the surface.’ Its resemblance to the actual
terrain at any point of correspondence between the map and the ground was
purely an accidental occurrence, of that I am certain.... A purely statistical
approach tends to obscure the need for a more detailed geometric construc-
tion of the surface and moves too soon, to an easier, less correct, but more
fashionable problem of curve fitting” [3].

Hardy believed that there should exist an interpolation method contain-
ing an exact fit of data to a topographical region. After much investigation,
he discovered what would later be known as the multiquadric (MQ) (2).
Before the MQ, trigonometric and algebraic polynomials were used. Hardy
chose the term “multiquadric” because of the quadric surface. Hardy stated
that he had considered “multiquadratic,” which many people believe is the
term, but he decided against it. The MQ is important because it allows for
scattered data to be converted into a very accurate fit model of a graph or
surface [4].

In 1979, Franke published an article that further supported Hardy’s MQ
method. Franke’s research dealt with comparing various methods to inter-
polate a test surface. He stated, “The most impressive method in these
tests is the multiquadric method of Hardy. It is consistently best or near
best in terms of accuracy, and always results in visually pleasant surfaces.
Nonetheless a certain skepticism persists because the method has no ap-
parent mathematical basis to explain its efficacy” [2]. Because of Franke’s
extensive research concerning the MQ, he is often credited for introducing
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the MQ into the field of mathematical science.
The next significant time in RBF history was in 1986 when Charles

Micchelli, an IBM mathematician, developed the theory behind the MQ
method. He proved that the system matrix for the MQ method was in-
vertible [8]. Four years later, physicist Edward Kansa first used the MQ
method to solve differential equations [5]. In 1992, results [7] from Madych
and Nelson showed the spectral convergence rate of MQ interpolation. Since
Kansa’s discovery, research in RBF methods has rapidly grown, and RBFs
are now considered an effective way to solve partial differential equations
and meshless methods [14]. In addition to this, the MQ method has been
proven to be a generalization of the pseudospectral methods to complex
domains and unstructured grids [10].

3 Numerical Experiments

Half-integer exponents have been found to work well for values of β in the
GMQ (2), but we will investigate non-half-integer powers as well.

According to Wang and Liu [13], β = 1.03 was an “optimal” value for
β for the GMQ. In 2003, Xaio and McCarthy [14] found that β = 1.99 is
an “optimal” value. Also, Kansa has recently suggested that the GMQ has
desirable outcomes when β = 5/2 [6]. However, the behavior of the GMQ
method with various β and ǫ is still not well understood. We perform several
experiments to see how these values compare to β = 1/2 (the MQ) and to
draw some conclusions about the GMQ.

We begin by comparing the shape of the graphs of the GMQ with six
values for β to see how this exponent influences the graph. As shown in
Figure 1, the smaller the absolute value of β the flatter the curve. All errors
are measured in the infinity norm.
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Figure 1: Plot of φ(r) for six values of β when ǫ = 1.

3.1 Experiment 1: Condition Number versus Accuracy

For our first experiment, we used two different functions

f(x) = ex3

+ cos(2x) (4)

f(x) = x4 + 3x2 − x − 2, (5)

where −1 ≤ x ≤ 1, to understand how values of β affect the accuracy of
the RBF method and the condition number of the system matrix. The
condition number is a measure of how difficult a problem is to be accurately
approximated by a numerical algorithm. In order to well approximate the
continuous error, we have evaluated the interpolant at M = 98 evenly spaced
evaluation points We see that when β increases, the shape parameter that
provides for the best approximation increases as well. In addition to this,
the condition numbers increase as the shape parameters decrease. However,
there is relatively good accuracy. The results are illustrated in Figures 2, 3,
4, and 5.
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Figure 2: Left: Error for GMQ approximation of test function (4) for values
of β > 1. Right: Condition number for GMQ approximation of test function
(4) for values of β > 1.
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Figure 3: Left: Error for GMQ approximation of test function (4) for values
of β < 1. Right: Condition number for GMQ approximation of test function
(4) for values of β < 1.
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TABLE 1: Minimum Errors for Equation (4)

β |error| ǫ

2.5 6.9e-6 3.8594
1.99 9.7e-6 3.3295
1.03 1.1e-5 2.5
0.5 9.7e-6 2.2465
-0.5 7.2e-6 1.8318
-1 1.3e-5 1.8779

Table 1: Comparison between β, error, and the corresponding shape param-
eter, ǫ.
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Figure 4: Left: Error for GMQ approximation of test function (5) for values
of β > 1. Right: Condition number for GMQ approximation of test function
(5) for values of β > 1.
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Figure 5: Left: Error for GMQ approximation of test function (5) for values
of β < 1. Right: Condition number for GMQ approximation of test function
(5) for values of β < 1.

TABLE 2: Minimum Errors for Equation (5)

β |error| ǫ

2.5 4.8e-7 3.4687
1.99 2.3e-8 3.3295
1.03 1.2e-6 2.6334
0.5 2.2e-6 2.2235
-0.5 2.1e-6 1.8318
-1 2.0e-6 1.5783

Table 2: Comparison between β, error, and the corresponding shape param-
eter, ǫ.

Error is measured by taking the infinity norm of the difference of the ap-
proximate and exact values for f(x). The minimum error is approximately
10−5 for all values of β. Likewise, the condition numbers are similar at the
optimal value of ǫ for each β. In order for the GMQ system matrix to be well-
conditioned, the shape parameter must not be too small. However, small
shape parameters are required to obtain good accuracy. Both conditions
can obviously not occur at the same time. This is known as the Uncertainty
Principle, which indicates the more favorably valued one quantity is the less
favorably valued the other is [12]. No optimal value for the shape parameter
was found for the set of β. As β increases, the corresponding shape param-
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eter also increases. This was also true when we tested larger values for β.
Our results showed that β=2.5 provided the best results for function (4),
but β=1.99 provided the best results for function (5). Hence, this indicates
that β is problem dependent.

3.2 Experiment 2: Minimum Values for N

Next, for a set of β, we determine the minimum N needed to obtain the
smallest value for the maximum error below a specified tolerance of 10−5.
For this experiment, we used the function

f(x) = esin(πx) (6)

where x is on the interval [-1, 1]. Values were obtained by restricting the
condition number of the system matrix to be between 1e15 and 1e17. Values
2.5, 1.99, 1.03, 0.5, -0.5, and -1 for β were tested.
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Figure 6: Left: Error for GMQ approximation of test function (6) for values
of β found by varying the number of N centers. Right: Shape parameter for
GMQ approximation of test function (6) for values of β found by varying
the number of N centers.
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TABLE 3: N and Shape

β Smallest N ǫ

2.5 25 1.25
1.99 32 1.94
1.03 27 1.29
0.5 25 0.98
-0.5 23 0.82
-1 21 0.63

Table 3: Comparison between β, the number of N centers, and the corre-
sponding shape parameter, ǫ.

From Table 3, we can conclude that there is not a strong relationship
between the values of β and the corresponding N and ǫ. When β = 0.5 and
2.5, the smallest number of N centers needed is 25. A larger variation is in
the shape parameter, ǫ.

3.3 Experiment 3: The Franke Function

Finally, a two-dimensional example was constructed using the function used
by Franke in his test of scattered data approximation methods [2]. Figure
7 is a surface created in Matlab with the GMQ. There are N = 618 centers
and M = 930 evaluation points. The shape parameter, ǫ, was selected so
that the system matrix has a condition number in the range of 1e15 and
1e17. This range produced the best results in experiment 2.

TABLE 4: Franke Function

β ǫ κ(B) Max Error

2.5 4.2 5.9e+16 7.26e-6
1.99 4.5 5.3e+16 3.14e-5
1.03 3.5 2.7e+16 1.43e-5
0.5 3 1.1e+16 9.23e-6
-0.5 2.5 2.1e+16 8.07e-6
-1 2.3 3.2e+16 8.66e-6

Table 4: Comparison between β, the shape parameter, the condition num-
ber, and the maximum error.
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Figure 7: Franke function produced using GMQ interpolation with β = 1.03
and ǫ = 3.

4 Concluding Remarks

Our numerical experiments suggest that the GMQ interpolation method
(which includes the standard MQ when β = 1/2) produces nearly the same
relative accuracy regardless of the value of the exponent β. The key factor
affecting the accuracy of the GMQ method, as dictated by the Uncertainty
Principle, is that the system matrix be critically conditioned. We say that
the system matrix is critically conditioned when its condition number is
such that 1e15 ≤ κ(B) ≤ 1e17. Numerical experiments indicate the GMQ
method is most accurate when the condition number of the GMQ system
matrix is in this range. To obtain a system matrix with a condition number
in the critical range, the value of the shape parameter ε will depend on the
value of the exponent β.

Claims that appeared in the literature stating that certain values of
β are “optimal” were disproved in our experiments. Instead, β seems to
be problem dependent, and the suggested optimal values did not produce
superior results.

68Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



References

[1] G. E. Fasshauer. Meshfree Approximation Methods with Matlab. World
Scientific, 2007. 1

[2] R. Franke. A critical comparison of some methods for interpolation of
scattered data. Technical Report NPS, pages 53–79, 1979. 2, 3.3

[3] R. L. Hardy. Multiquadric equations of topography and other irregular
surfaces. Journal of Geophysical Research, 76(8):1905–1915, 1971. 2

[4] R. L. Hardy. Theory and applications of the multiquadric-biharmonic
method: 20 years of discovery. Computers and Mathematics with Ap-

plications, 19(8), 1990. 2

[5] E. J. Kansa. Multiquadrics - a scattered data approximation scheme
with applications to computational fluid dynamics I: Surface approxi-
mations and partial derivative estimates. Computers and Mathematics

with Applications, 19(8), 1990. 2

[6] E. J. Kansa. Numerical simulation of two-dimensional combustion using
mesh-free methods. To appear in Engineering Analysis with Boundary

Elements, 2009. 1, 3

[7] W. R. Madych and S. A. Nelson. Bounds on multivariate interpolation
and exponential error estimates for multiquadric interpolation. Journal

of Approximation Theory, 70:94–114, 1992. 2

[8] C. Micchelli. Interpolation of scattered data: Distance matrices and
conditionally positive definite functions. Constructive Approximation,
2:1122, 1986. 2

[9] S. A. Sarra. Radial basis function interpolation. Submitted to SIURO,
2009. 1

[10] S. A. Sarra and E. J. Kansa. Multiquadric Radial Basis Function Ap-

proximation Methods for the Numerical Solution of Partial Differential

Equations. Tech Science Press, 2009. 2

[11] T. Sauer. Numerical Analysis. Pearson Education, Inc., Boston, 2006.
1

[12] R. Schaback. Error estimates and condition numbers for radial ba-
sis function interpolation. Advances in Computational Mathematics,
3:251–264, 1995. 3.1

69Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



[13] J. G. Wang and G. R. Liu. On the optimal shape parameters of radial
basis functions used for 2-D meshless methods. Computer Methods in

Applied Mechanics and Engineering, 191:2611–2630, 2002. 1, 3

[14] J. R. Xaio and M. A. McCarthy. A local heaviside weighted meshless
method for two-dimensional solids using radial basis functions. Com-

putational Mechanics, 31:301–315, 2003. 1, 2, 3

70Copyright © SIAM 
Unauthorized reproduction of this article is prohibited


	Introduction
	RBF Interpolation
	Numerical Experiments
	Experiment 1: Condition Number versus Accuracy
	Experiment 2: Minimum Values for N
	Experiment 3: The Franke Function

	Concluding Remarks



