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Abstract. Subset selection is a method for selecting a subset of columns from a real matrix, so that the subset
represents the entire matrix well and is far from being rank deficient.

We begin by extending a deterministic subset selection algorithm to matrices that have more columns than rows.
Then we investigate a two-stage subset selection algorithm that utilizes a randomized stage to pick a smaller number
of candidate columns, which are forwarded for to the deterministic stage for subset selection. We perform extensive
numerical experiments to compare the accuracy of this algorithm with the best known deterministic algorithm. We
also introduce an iterative algorithm that systematically determines the number of candidate columns picked in the
randomized stage, and we provide a recommendation for a specific value.

Motivated by our experimental results, we propose a new two stage deterministic algorithm for subset selection.
In our numerical experiments, this new algorithm appears to be as accurate as the best deterministic algorithm, but
it is faster, and it is also easier to implement than the randomized algorithm.
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1. Introduction. Given a real m×n matrix A and an integer k, subset selection attempts to
find the k most linearly independent columns that best represent the information in the matrix.

1.1. Example. In an effort to make the problem concrete, we look at the following simple
matrix:

A =





1 0 0
0 1 0
0 0 ǫ



 ,

where 0 < ǫ ≪ 1 is small but nonzero. We want to choose k = 2 representative columns of A.
Which two columns should we choose?

First, suppose we choose the two leading columns of A as the representative columns. We call
them A1, and we call the remaining column A2; that is,

A1 =





1 0
0 1
0 0



 , A2 =





0
0
ǫ



 .

Then the columns of A1 are linearly independent, and the best linear combination of A1 is close to
A2, because minz ‖A1z − A2‖2 = ǫ is small.
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Instead, suppose we choose columns one and three of A as the representative columns. We call
them A1, and we call the remaining column A2; that is,

A1 =





1 0
0 0
0 ǫ



 , A2 =





0
1
0



 .

Then the columns of A1 are still linearly independent, but not as linearly independent as in our
first choice. Because ǫ is small, the second column of A1 is close to the zero vector, so the columns
of A1 are close to being linearly dependent. Also, the best linear combination of A1 does not come
close to A2 because minz ‖A1z − A2‖2 = 1. Therefore our first choice of columns is more linearly
independent and represents the matrix well.

Gauging linear independence can be made precise by using singular values, which we introduce
in section 2.1. Using singular values, we move towards a mathematically precise definition of subset
selection. We then present systematic algorithms for subset selection, which are based on QR
decompositions, which we describe in section 2.4.

We use a permutation matrix Π that moves the representative columns to the left and all the
other columns to the right. Then the problem of subset selection is to find a permutation Π so that

AΠ =
(

A1 A2

)

where A1 contains the k most linearly independent columns in A, and where the best linear com-
bination of A1 is close to A2 so that minz ‖A1z − A2‖2 is small.

1.2. Development of Subset Selection. Subset selection is used to identify the most im-
portant columns in a matrix. This is important, for instance, in solving rank-deficient least squares
problems [10, Section 12.2]. Subset selection is also used in information retrieval [1, 5]. There the
matrices can be so large that there is not enough memory to work with the whole matrix. In these
cases, one needs to identify a smaller part of the matrix that represents the whole matrix well.
Additional applications can be found in genetics [3] and wireless communication [17].

Many subset selection algorithms use a QR decomposition to find the most representative
columns. One such QR decomposition was first introduced in 1965 by Golub and Businger [8, 9], [10,
Section 5.4.1]. Since then, many other algorithms have been proposed. In 1994, Chandrasekaran
and Ipsen [4] gave a comprehensive analysis of existing algorithms and proposed several hybrid
algorithms. In 1996, Gu and Eisenstat [12, Algorithm 4] presented an algorithm that is more
accurate than the hybrid algorithms in [4].

The theoretical computer science community has come up with randomized algorithms that
use probability distributions to find the most representative columns in a matrix. Some discussion
of these algorithms can be found in [13, 15, 7]. One of the recent randomized algorithms is a
two-stage algorithm by Boutsidis, Mahoney and Drineas [1, 2]. In the first stage the algorithm uses
a probability distribution to select candidates for the most representative columns. In the second
stage the algorithm performs subset selection on the smaller candidate set rather than on the whole
matrix.

1.3. Contributions. The purpose of our paper is to compare the randomized algorithm [1,
Algorithm 1] to Gu and Eisenstat’s deterministic algorithm [12, Algorithm 4]. We are interested
primarily in the accuracy of the randomized algorithm, although runtime issues are briefly discussed.

We perform experiments on five different classes of test matrices of dimension up to 500 (section
4.1). We find that if the randomized algorithm is run repeatedly, then the columns A1 it selects are
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generally less linearly independent than those from the Gu-Eisenstat algorithm, while the residuals
minz ‖A1z − A2‖2 from the randomized algorithm can be smaller than those produced by algorithm
[12, Algorithm 4] presented by Gu and Eisenstat (section 4.3) .

Our experiments indicate that the complicated probability distributions in the randomized
algorithm can be unstable (section 4.2), and that they can be replaced by simpler, more intuitive
distributions without sacrificing performance (section 4.5).

We have implemented two approaches to remedy the failure rate of the randomized algorithm
when it chooses fewer than the desired number of columns (sections 3.2.2 and 4.4).

Finally, we propose a new two-stage deterministic algorithm that performs comparably to the
Gu-Eisenstat algorithm [12] on our test matrices, but runs faster (section 5).

The paper proceeds as follows: Section 2 provides mathematical background information for
the rest of the paper. Section 3 describes the algorithms from [12] and [1] that we compare in this
paper. We present the results from experiments on our test matrices in section 4, and discuss our
new two-stage deterministic algorithm in section 5.

2. Mathematical Background. In this section, we present the most important tools for sub-
set selection: singular values and matrix norms for formulating the conditions for subset selection,
and QR decompositions for making the conditions easy to check.

We assume A is a real m × n matrix with rank r, and we want to choose k ≤ r columns to
represent A. For simplicity, we will assume that m ≥ n. This means we need to find a permutation
Π so that AΠ =

(

A1 A2

)

, where the representative columns are in A1 and the remaining columns
in A2.

2.1. Singular values. We begin with the singular value decomposition (SVD). The SVD of
A is defined as [10, Section 2.5.3]

A = UΣV T .

Here U is an m×m orthogonal matrix. This means that UT U = UUT = Im, where the superscript
T denotes the transpose and Im is the m×m identity matrix. The matrix V is a n× n orthogonal
matrix, so V T V = V V T = In. Σ is a m×n diagonal matrix with min{m, n} non-negative diagonal
elements called σi(A). These are the singular values of A. The singular values are ordered in
decreasing magnitude,

σ1(A) ≥ · · · ≥ σr(A) > σr+1(A) = · · · = σmin{m,n}(A) = 0. (2.1)

For the purposes of subset selection, the most important property of singular values is that
the distance of a matrix A to the set of matrices of rank k is equal to σk+1(A) [10, Theorem
2.5.3]. We say that the matrix A has full rank if σmin{m,n}(A) 6= 0. If σmin{m,n}(A) = 0 then A is
rank-deficient, i.e. rank(A) < min{m, n}.

The concept of rank-deficiency is important in subset selection. If a matrix is rank-deficient,
then its columns are linearly dependent. Since singular values give us a way to check if a matrix
is rank-deficient or close to rank-deficient, they help us gauge the linear independence of a set of
columns. We are looking for a subset of columns of A that best represent all the columns of A. For
expository purposes, we call the remaining columns “redundant”.

2.2. Matrix Norms. In connection with singular values, we quickly review two important
matrix norms: the 2-norm and the Frobenius norm. The 2-norm of a matrix is defined as the largest
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singular value of that matrix, i.e. ‖A‖2 = σ1(A). The Frobenius norm of a matrix A is

‖A‖F =

√

√

√

√

min{m,n}
∑

i=1

σi(A)
2

=

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij |2.

These definitions allow us to look at both the 2-norm and Frobenius norm in terms of singular
values.

2.3. Desirable Conditions for Subset Selection. With singular values and norms in hand,
we can now formulate our conditions for subset selection:

1. The k representative columns A1 should be far from rank deficient, that is, σk(A1) should
be as large as possible.

2. The best linear combination of A1 should be close to A2, that is, minz ‖A1z − A2‖2 should
be as small as possible.

Since the smallest singular value of a set of columns tells us how far the set is from linear
dependence, Condition 1 merely states that we want the k representative columns A1 to be very
linearly independent.

Condition 2 relates to minimizing the residual between the representative columns A1 and the
redundant columns A2. This means our subset has captured a large amount of information in the
matrix.

2.4. QR Decompositions. Many algorithms for subset selection are based on QR decom-
positions, because a QR decomposition gives us an upper triangular matrix R that has the same
singular values as A and has a determinant that is easy to calculate.

We discuss the QR decomposition here for matrices where m ≥ n. The case where m < n
is analogous and discussed in section 3.1.2. The general form of a QR decomposition of A with
column pivoting is:

AΠ = Q

(

R
0

)

,

where Π is the n × n column permutation matrix, Q is an m × m orthogonal matrix, and R is
an n × n upper triangular matrix. The zero matrix below R is of dimension (m − n) × n. Note
that applying a column permutation matrix Π′ to AΠ is equivalent to applying it to R since
AΠ = QR ⇐⇒ AΠΠ′ = QRΠ′.

We asserted above that R and A have the same singular values. To see this, take the SVD of
R, R = WΣV T . Since AΠ = QR and Q is orthogonal, A = (QW )Σ(ΠV )T is the SVD of A, with
the same singular values as R.

Since AΠ and R have the same singular values, and since the ith column of AΠ corresponds to
the ith column of R, we are able to reframe our subset selection in terms of R. Instead of selecting
a subset of A, we simplify the problem by performing subset selection on R. To distinguish the
representative columns, we partition

R =

(

Rk Bk

0 Ck

)

,

where Rk is a k × k upper triangular matrix, Bk is k × (n − k) and Ck is (n − k) × (n − k). If the
column permutation Π is used to reveal the rank of A, as in the algorithm by Golub and Businger
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[10, Section 5.4.1], then this permutation Π gives us a nonsingular Rk. The representative and the
redundant columns in the two matrices are related by

A1 = Q





Rk

0
0



 , A2 = Q





Bk

Ck

0



 .

The advantage of the upper triangular form of R is that it is efficient to compute the important
quantities for subset selection:

σi(A1) = σi(Rk), min
z

‖A1z − A2‖2 = σ1(Ck). (2.2)

The first equality says that the tall and skinny matrix A1 has the same singular values as the small
square matrix Rk. The second equality tells us that minimizing the residual between the chosen
columns and the redundant columns is equivalent to making the two-norm of Ck small. We prove
these two inequalities in Lemma 7.1 in the Appendix (Section 7).

Now we can rephrase the subset selection conditions in section 2.3 in terms of submatrices of
R, which makes the conditions easier to check.
Condition 1: The smallest singular value σk(Rk) should be as large as possible.
Condition 2: The largest singular value σ1(Ck) should be as small as possible.

However, σk(Rk) cannot be arbitrarily large, and σ1(Ck) cannot be arbitrarily small. This is
because the interlacing property of singular values implies that there are bounds on the singular
values of principal submatrices of R (Rk and Ck). The relevant inequalities are [10, Corollary 8.6.3]

σi(Rk) ≤ σi(R), 1 ≤ i ≤ k, (2.3)

and

σj(Ck) ≥ σk+j(R), 1 ≤ j ≤ n − k. (2.4)

3. The Algorithms. We present two algorithms for subset selection: first a deterministic
algorithm, and then a randomized algorithm.

3.1. The Deterministic Algorithm. Gu and Eisenstat [12, Algorithm 4] developed a QR
decomposition for subset selection that represents the best deterministic approximation to Condi-
tions 1 and 2 in section 2.4. In Lemma 3.1 (see section 3.1.2) we show that this algorithm can be
extended to matrices that are “wide and fat” with n > m.

Given k and a parameter f > 1, the representative columns chosen in Gu and Eisenstat’s
algorithm approximate the subset Conditions 1 and 2 by guaranteeing the following bounds for the
singular values of Rk and Ck:

σi(Rk) ≥ σi(A)
√

1 + f2k(n − k)
, 1 ≤ i ≤ k (3.1)

σj(Ck) ≤ σk+j(A)
√

1 + f2k(n − k), 1 ≤ j ≤ n − k,

where f ≥ 1 is a tolerance supplied by the user. Gu and Eisenstat’s algorithm also guarantees that
|(R−1

k Bk)ij | ≤ 1 for 1 ≤ i ≤ k, 1 ≤ j ≤ n − k.
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Gu and Eisenstat’s algorithm implies the following for the representative and the redundant
columns of the matrix A. Combining the bounds (3.1) with (2.2) implies that Gu and Eisenstat’s
algorithm produces a permutation Π so that AΠ =

(

A1 A2

)

, where

σi(A1) ≥
σi(A)

√

1 + f2k(n − k)
, 1 ≤ i ≤ k (3.2)

min
z

‖A1z − A2‖2 ≤ σk+1(A)
√

1 + f2k(n − k).

3.1.1. The Algorithm. We work with Gu and Eisenstat’s Algorithm 4 [12]. Our version is
presented as Algorithm 1 below.

First we use Golub and Businger’s QR decomposition with column pivoting [10, section 5.4.1]

to produce an initial QR decomposition AΠ = Q

(

R
0

)

where R is guaranteed to have a submatrix

Rk that is nonsingular. From now on the algorithm operates only on the matrix R and proceeds the
same way as [12, Algorithm 4]. We permute columns of R with the goal of increasing the singular
values of Rk. Based on the facts

|detA| =
n

∏

i=1

σi(A), σi(A) = σi(R) and | det A| = | detR| = | det(Rk) det(Ck)|,

we use the change in | det(Rk)| as a way to decide whether column i in Rk and column j in

(

Bk

Ck

)

should be permuted. Observe that |det(A)| is constant since the magnitude of the determinant is
unchanged by column permutations, so a permutation that increases | det(Rk)| must necessarily
decrease | det(Ck)|. When | det(Rk)| increases and | det(Ck)| decreases, we cannot conclude that all
singular values of Rk have increased nor that all singular values of Ck have decreased. However, we
can conclude that at least one singular value of Rk must have increased and at least one singular
value of Ck must have decreased. These permutations move the selected columns toward satisfying
Conditions 1 and 2 since we want the singular values of Rk to be as large as possible and the
singular values of Ck to be as small as possible.

Gu and Eisenstat [12, Lemma 3.1] derive a useful expression that can detect an increase in the
determinant before actually performing a permutation. To see this, suppose we actually permuted
columns i and j of R to get R̃, that is, R̃ = RΠij , where Πij is the identity matrix with columns i

and j permuted. Retriangularizing R̃ can be done with a QR decomposition

R̃ = Qij

(

R̃k B̃k

0 C̃k

)

,

where Qij is a n × n orthogonal matrix and R̃k is k × k upper triangular. Gu and Eisenstat [12,
Lemma 3.1] show that the ratio of the two determinants can be expressed as

∣

∣

∣

∣

∣

det R̃k

det Rk

∣

∣

∣

∣

∣

=
√

(Rk
−1Bk)2i,j + ‖Ckej‖2

2‖eT
i R−1

k ‖2
2, (3.3)

where ei is the ith column of the identity matrix, so that Ckej is the jth column of Ck and eT
i R−1

k

is the ith row of R−1

k . This means, we can test by how much | det R̃k| would increase compared to
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| detRk| by just looking at submatrices of R, without having to do a permutation. We only permute
columns i and j of R if the righthand side of equation (3.3) is greater than f . The algorithm is
run until | det R̃k|/| detRk| ≤ f . If f = 1 then we permute columns as long as the determinant
increases in magnitude.

Algorithm 1 Deterministic Algorithm for Subset Selection

Input: m × n matrix A with m ≥ n, integer k ≤ r, tolerance f ≥ 1
Output: Permutation Π so that AΠ =

(

A1 A2

)

where A1 and A2 satisfy the bounds (3.2).

Compute a QR decomposition with column pivoting on A to produce an initial permutation Π

and an initial R =

(

Rk Bk

0 Ck

)

with Rk nonsingular

while there exist i, j such that
√

(Rk
−1Bk)2i,j + ‖Ckej‖2

2‖eT
i R−1

k ‖2
2 > f do

Permute columns i and j + k of R: R̃ = RΠi,j+k

Retriangularize: R̃ = Qi,j+kR
Update: Π = Π Πi,j+k

end while

3.1.2. An Extension. We can extend [12, Theorem 3.2] to prove that Algorithm 1 computes
a strong RRQR factorization for wide and fat matrices where m < n and k = m.

Lemma 3.1. If A is m × n of rank m and k = m then Algorithm 1 produces a permutation Π
so that

σi(A1) ≥
σi(A)

√

1 + f2k(n − k)
, 1 ≤ i ≤ k.

Proof. This is a simplified version of the proof of [12, Theorem 3.2], where Ck is absent.
The initial QR decomposition with column pivoting in Algorithm 1 yields A = QR, and in

Lemma 7.1 we showed that σi(A) = σi(R), 1 ≤ i ≤ k. Since A has rank k = m by assumption, R =
(

Rk Bk

)

with Rk nonsingular. We factor out R−1

k to get R = RkW , where W =
(

Ik R−1

k Bk

)

,
and apply the product inequality for singular values to get σi(A) ≤ σi(Rk)‖W‖2. Then

‖W‖2
2 = ‖WWT‖2 = ‖I + R−1

k BkBT
k R−T

k ‖2 ≤ 1 + ‖R−1

k Bk‖2
2.

The proof that ‖R−1

k Bk‖2 ≤
√

1 + f2k(n − k) now follows as in [12, Theorem 3.2].

3.2. The Randomized Algorithm. Boutsidis, et al. [1] present a randomized subset selec-
tion algorithm that can achieve better bounds than the deterministic algorithm in section 3.1. The
randomized algorithm works in two stages, one randomized and one deterministic. Given that we
want to ultimately select k of n columns, the randomized stage chooses c̃ candidate columns. We
want k ≤ c̃ < n for the next stage. The deterministic stage then applies a deterministic subset
selection algorithm to the c̃ candidate columns to obtain the desired k representative columns.

In terms of accuracy, the randomized algorithm [1] aims to satisfy subset selection Condition
2 with a better bound than Algorithm 1. According to [1, Theorem 1], the randomized algorithm
produces a permutation Π so that with at least 70 percent probability AΠ =

(

A1 A2

)

where

min
z

‖A1z − A2‖2 ≤ O
(

k3/4(log k)1/2(n − k)1/4
)

σk+1(A). (3.4)
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3.2.1. The Algorithm. The algorithm works on rows of the right singular vector matrix of A.
If we look at the SVD A = UΣV T from section 2.1, we see that permuting columns of A results in
permuting columns of the right singular vector matrix V T . Moreover selecting particular columns
from A amounts to selecting the corresponding columns in V T .

If we look at the r rows of ΣV T corresponding to nonzero singular values, we can write them
as

(

Σk 0
0 Σr−k

) (

V T
k

V T
r−k

)

=

(

ΣkV T
k

Σr−kV T
r−k

)

.

Here we use our convention that we ordered the singular values in decreasing magnitude, see (2.1),
and group

Σk =







σ1(A)
. . .

σk(A)






, Σr−k =







σk+1(A)
. . .

σr(A)






,

so that Σk contains the k largest singular values, and Σr−k contains the r − k smallest nonzero
singular values. The corresponding singular vectors are

Vk =
(

v1 . . . vk

)

, Vr−k =
(

vk+1 . . . vr

)

,

so that the singular vectors in Vk are associated with the k largest singular values.
Now we present our view of the two-stage algorithm.
Randomized Stage. First we form a n × n diagonal matrix D with diagonal elements Dii =

1/
√

min{1, cpi}. Here c is an input parameter, which should be a multiple of k log k, and the values
pi represent a probability distribution which we describe further down. We use the diagonal matrix
to scale the right singular vector matrix V T

k , that is, W = V T
k D. Now we pick column i of W with

probability min{1, cpi}. The parameter c is an upper bound on the expected value of c̃. Every
time we check a column, we are essentially performing a Bernoulli trial with probability of success
min{1, cpi}. The trials are independent, so E(c̃) =

∑n
i=1 min{1, cpi}. Since

∑n
i=1 cpi = c, E(c̃) ≤ c.

After we examine every column of W and either select or reject it, we end up with a subset of c̃
candidate columns of W , ending the randomized stage. We call the matrix of candidate columns
WR. If ΠR is the permutation that moves the candidate columns in WR to the left of V T

k D, we can
write

(V T
k D) ΠR = WΠR =

(

WR ŴR

)

.

Deterministic Stage. We begin the deterministic stage with the c̃ columns WR, hoping that
c̃ ≥ k. We use a deterministic algorithm to select k representative columns from WR. We call
these k columns WD. That is, the deterministic stage produces a permutation ΠD that moves the
representative columns WD to the left of WR,

WRΠD =
(

WD ŴD

)

.

Combining the permutations from the randomized and deterministic stages gives

(V T
k D) Π = WΠ =

(

WD ŴD ŴR

)

,
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where

Π = ΠR

(

ΠD 0
0 In−c̃

)

.

Note that the permutation ΠR is n× n, because it works on n columns, while the permutation ΠD

is only c̃ × c̃, because it works only on the leading c̃ columns of WΠR. The permutation Π is the
one we want. It moves the representative columns of A to the left, AΠ =

(

A1 A2

)

.
Probability Distribution. We still need to describe the probabilities pi. They are computed from

nonzero singular values and right singular vectors as follows:

pi =
‖eT

i Vk‖2
2

2
∑n

j=1
‖ejVk‖2

2

+
‖(Σr−kV T

r−k)ei‖2
2

2
∑n

j=1
‖Σr−kV T

r−kej‖2
2

(3.5)

=
‖eT

i Vk‖2
2

2k
+

‖Aei‖2
2 − ‖AVkV T

k ei‖2
2

2(‖A‖2
F − ‖AVkV T

k ‖2
F )

. (3.6)

Note that pi ≥ 0 and
∑n

i=1
pi = 1. Although the distributions are mathematically equivalent, the

computation of (3.6) is cheaper. However, we note that in section 4.2 that numerical instability
can force the use of (3.5).

The algorithm is presented as Algorithm 2 below. Boutsidis, et al. [1, p.16] suggest running
the algorithm 40 times so that at least one run achieves the bound (3.4) with probability 1−10−20.

Algorithm 2 Randomized Algorithm for Subset Selection

Input: m × n matrix A of rank r, integer k ≤ r, parameter c = O(k log k)
Output: Permutation Π so that AΠ =

(

A1 A2

)

where A1 and A2 try to satisfy the bound (3.4)

Compute the r nonzero singular values of A, and the associated right singular vectors
Compute pi from (3.6)
{Randomized Stage}
Form the n × n diagonal matrix D with elements Dii = 1/

√

min{1, cpi}
Initialize: Π = In, W = V T

k D
c̃ = 0
for i = 1 : n do

Draw a qi from the uniform distribution on [0, 1]
if qi ≤ cpi then

c̃ = c̃ + 1
Permute columns i and j of W : W = WΠij

Update: Π = Π Πij

end if

end for

Set WR equal to the leading c̃ columns of W
{Deterministic Stage}
Apply Algorithm 1 to WR to return the permutation ΠD

Combine the permutations: Π = ΠR

(

ΠD 0
0 In−c̃

)
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3.2.2. Our Implementation. In order to implement the probabilities in the first stage, we
generate a random number qi from the uniform distribution on [0, 1]. If qi ≤ cpi, which happens
with probability min{1, cpi}, the column i of V T

k D is selected and moved to the left. If qi > cpi we
don’t do anything and do not include column i among the candidate columns.

Since Boutsidis, et al. [1, p. 20] give little guidance on what the crucial parameter c should
be, in our experiments we begin with c = 2k. If the randomized stage of Algorithm 2 produces
candidate columns WR that are too close to being rank deficient, i.e. σk(WR) < 1/2, then the
residual bound (3.4) may not hold [1, Lemma 1]. Thus, we double c and repeat the process until
either σk(WR) ≥ 1/2 or else c ≥ n. We stop once this doubling results in c ≥ n, because E(c̃) ≤ c
and we want E(c̃) < n. This iterative selection of c was proposed by Stan Eisenstat [6]. This
systematic selection process has the advantage of relieving the user from having to decide on a value
for c, a decision for which the user may have not have the requisite information, and, in particular,
of preventing the user from making an unfortunate decision that results in lower accuracy.

For the deterministic stage we use Algorithm 1 to find k representative columns in the k × c̃
matrix WR. The proof that the resulting A1 satisfies (3.1) is given in Lemma 3.1 in the Appendix
(section 7). In contrast, Boutsidis, et al. [1] use an algorithm based on a rank revealing LU
decomposition by Pan [16].

Since the randomized algorithm does not produce the same results in each of the 40 trials,
we keep track of the minimum, maximum and mean residuals and singular values of the subsets
selected.

Algorithm 3 Randomized Algorithm Iteratively Selecting c

Input: m × n matrix A of rank r, integer k ≤ r
Output: Permutation Π so that AΠ =

(

A1 A2

)

where A1 and A2 satisfy the bound (3.4)

Compute the r nonzero singular values of A, and the associated right singular vectors
Compute pi from (3.6)
c = k
while σk(WR) < 1/2 and c ≤ n do

c = 2c
Run the Randomized Stage in Algorithm 2

end while

{Now σk(WR) ≥ 1/2 or c > n}
Proceed with the Deterministic Stage of Algorithm 2

3.2.3. Comments and Concerns. Boutsidis, et al. [1] use the complicated probability
distribution (3.5) for their algorithm. This distribution is needed to prove [1, Lemma 2] and [1,
Lemma 4]. This distribution is hard for us to digest as well as computationally problematic (see
section 4.5). In section 4.5 we use a simpler distribution that is more intuitive.

Some care must be put into selecting an appropriate value for c. Algorithm 2 fails if c̃ < k, and
if c is not large enough, the chance of failure can be non-negligible. However, if we allow c to be too
large, then the randomized algorithm essentially reduces to performing the deterministic algorithm
on V T

k instead of A with the added computational cost of performing the SVD and computing the
probability distribution.

In addition, Boutsidis, et al. do not say anything about the smallest singular value of the rep-
resentative columns, σk(A1). Our experiments investigate how σk(A1) from Algorithm 2 compares
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to that from the deterministic Algorithm 1.

4. Experimental Results. We performed experiments to answer the following questions
about the randomized Algorithm 3:

• How does the randomized Algorithm 3 compare to the deterministic Algorithm 1 with
regard to Conditions 1 and 2?

• Can we determine a good c to use?
• Do we need to use the complicated probability distributions (3.5) and (3.6), or can we

instead use the simpler distribution pi = ‖eT
i Vk‖2

2/k [1, (5)]?
• Can we develop a deterministic algorithm based on the randomized algorithm?

All algorithms were coded in MATLAB. Likewise, all experiments were run in MATLAB. For all
algorithms in this section, the tolerance parameter f was set to 1.01. Running the Algorithm 3 40
times, as was necessary, at an optimal f = 1 would take exponential time, which is too long given
available computing power.

4.1. The Test Matrices. We test the algorithms on five different classes of matrices.
1. Kahan matrices. These are upper triangular matrices, where all columns have a unit

two-norm, but the matrices are close to being rank deficient. The Kahan matrices are well-
known test matrices for subset selection algorithms, because many algorithms for rank-
revealing QR with column pivoting fail to perform any permutations [12, Example 1].

2. Random matrices. These are dense matrices with elements sampled from a uniform distri-
bution on [0, 1]. The matrices were created using the rand function in MATLAB.

3. Scaled random matrices. These are n × n random matrices (with elements sampled uni-
formly from [0, 1]) whose ith row is multiplied by the scalar ηi/n. We used η = 2.

4. GKS matrices. These are upper triangular matrices. The jth diagonal element is equal to
1/

√
j. The remaining nonzero elements in column j are equal to −1/

√
j. These matrices

were introduced in [11].
5. SV gap matrices. These are square matrices designed to have a well-defined numerical rank

r. They have r very large singular values (on the order of 105), and the rest are very small
or zero. We use these matrices with k = r to see if the randomized algorithm recognizes
this and picks an appropriate set of columns.

Although subset selection is likely to be performed on less structured matrices, we chose these
test matrices because they are the test matrices used in both [1] and [12]. We want to replicate
their experiments, so we use approximately the same matrix dimensions as [1, 12] as well. For
each matrix type, we test one of size 100 × 100 and one of size 500 × 500. Due to limits on our
computing power, we were not able to replicate experiments on larger matrices. Furthermore, our
laptops forced us to use f = 1.01 instead of the optimal value f = 1 whenever Algorithm 1 is used,
including when it is used as a subroutine of a randomized algorithm. This makes the algorithm
run faster since fewer column permutations are performed. However, the bounds (3.1) and (3.2)
become worse, indicating the subset chosen could possibly be better.

Just as we test matrices similar to those in [1], we use k values similar to those in [1].

4.2. A Numerical Issue. An important problem we found with the randomized algorithms
is that distribution (3.6) can be numerically unstable. We constructed a 100 × 100 SV gap matrix
where we get negative values for probabilities and a distribution that does not sum to one. This
numerical instability is likely caused by cancellation in the subtractions in (3.6).

If either the sum of all probabilities is not equal to one or the probability associated with a
column is negative, then our code for Algorithm 2 or 3 switches to the alternative expression (3.5),
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which is equivalent to (3.6) in exact arithmetic.

4.3. Results. We begin by presenting results from the 500 × 500 matrices, since they are
representative of the results from the 100 × 100 matrices. Remember, we want large values of
σk(A1) and small values of minz ‖A1z − A2‖2.

In this section’s experiments, we give the randomized algorithm all the chances it needs to satisfy
conditions for good results by using Algorithm 3, which iteratively selects c instead of taking it as
an input. We run Algorithm 3 forty times, and each run is allowed to choose a value of c.

In Table 4.1 we display σk(A1) for various values of k when A is the 500 × 500 Kahan ma-
trix. When run 40 times, the randomized Algorithm 3 produces average values of σk(A1) that
are comparable to those of the deterministic Algorithm 1. However, if we look at min σk(Rk)
for k = 100, 160, 180 we see that some runs of the randomized Algorithm 3 can get much smaller
values of σk(A1). This means, for the Kahan matrix, the randomized Algorithm 3 can produce
representative columns that are much closer to being rank deficient than those produced by the
deterministic Algorithm 1.

Algorithm 1 Algorithm 3
k σk(A1) max σk(A1) min σk(A1) mean σk(A1)
20 3 × 10−1 3 × 10−1 8 × 10−1 2 × 10−1

40 8 × 10−2 7 × 10−2 3 × 10−2 5 × 10−2

60 2 × 10−2 1 × 10−2 7 × 10−3 1 × 10−2

80 5 × 10−3 4 × 10−3 1 × 10−3 3 × 10−3

100 1 × 10−3 9 × 10−4 3 × 10−4 7 × 10−4

120 3 × 10−4 2 × 10−4 1 × 10−10 2 × 10−4

140 7 × 10−5 7 × 10−5 2 × 10−10 4 × 10−5

160 2 × 10−5 2 × 10−5 8 × 10−11 1 × 10−5

180 4 × 10−6 4 × 10−6 3 × 10−10 2 × 10−6

200 1 × 10−6 8 × 10−7 1 × 10−9 6 × 10−7

220 2 × 10−7 2 × 10−7 4 × 10−9 1 × 10−7

240 6 × 10−8 6 × 10−8 2 × 10−8 4 × 10−8

Table 4.1

σk(A1) for Algorithm 1 and 40 runs of Algorithm 3 on a 500 × 500 Kahan matrix A.

In Table 4.2 we display the residuals minz ‖A1z − A2‖2 for various values of k when A is the
500×500 Kahan matrix. When run 40 times, the randomized Algorithm 3 produces average values
of residuals that are an order of magnitude lower than those of Algorithm 1, but even the largest
residuals can be smaller than those of the deterministic Algorithm 1. The residuals in Table 4.2 were
collected from the same runs as in Table 4.1. This means, for the Kahan matrix, the randomized
Algorithm 3 produces residuals that are as good, if not better, than those of the deterministic
Algorithm 1. In Table 4.3 we show the values of c considered by Algorithm 3.

If we look at Tables 4.4 and 4.5, we see that Algorithm 3 performs comparably to Algorithm 1
on a wide variety of matrices. Although the singular values and residuals are comparable, the two
algorithms usually do not choose the same columns for A1. This is understandable, since matrices
might not have a unique set of linearly independent columns. For example, there are

(

n
k

)

sets of k
linearly independent columns to choose from a n × n identity matrix.

Algorithm 3 gets better residual results on various matrices, but the results are not more than
one order of magnitude better. However, it is evident in Table 4.5 that Algorithm 1 almost always
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satisfies Condition 2 better than Algorithm 3. In the presence of random fluctuations and roundoff
error, these slightly better residuals do not justify use of the randomized algorithm, especially
given that there is no guidance on how to set the parameter c in [1]. In our implementation, the
randomized Algorithm 3 has 40 trials, and in each trial it has the opportunity to try different c
values. Algorithm 3 always goes through at least two c values, sometimes up to five. Although this
set-up is computationally expensive, it might give us an intuition for how to pick one good value
for c.

4.4. Estimating a Good c. One way we can improve the randomized Algorithm 2 is to find
a single value for c that works for many matrices. This way, each of the 40 trials does not have to
go through many values of c, easing the computational load.

The experiments in this section are meant to help us find a single c for the randomized Algorithm

Algorithm 1 Algorithm 3
k residual max residual min residual mean residual
20 7 × 100 1 × 100 5 × 10−1 5 × 10−1

40 2 × 100 1 × 100 1 × 10−1 2 × 10−1

60 4 × 10−1 9 × 10−1 3 × 10−2 5 × 10−2

80 1 × 10−1 3 × 10−2 7 × 10−3 8 × 10−3

100 2 × 10−2 9 × 10−3 2 × 10−3 2 × 10−3

120 6 × 10−3 2 × 10−3 4 × 10−4 5 × 10−4

140 1 × 10−3 6 × 10−4 1 × 10−4 1 × 10−4

160 3 × 10−4 1 × 10−4 2 × 10−5 3 × 10−5

180 8 × 10−5 2 × 10−5 6 × 10−6 7 × 10−6

200 2 × 10−5 5 × 10−6 1 × 10−6 2 × 10−6

220 4 × 10−6 8 × 10−7 4 × 10−7 4 × 10−7

240 1 × 10−6 1 × 10−7 9 × 10−8 9 × 10−8

Table 4.2

Residuals minz ‖A1z − A2‖2 for Algorithm 1 and 40 runs of Algorithm 3 on a 500 × 500 Kahan matrix A.

k # c values tried c values tried mean c̃
20 5 40, 80, 160, 320, 640 51
40 4 80, 160, 320, 640 89
60 4 120, 240, 480, 960 129
80 3 160, 320, 640 154
100 2 200, 400, 800 190
120 3 240, 480, 960 222
140 2 280, 560 242
160 1 640 264
180 1 720 255
200 2 400, 800 253
220 2 440, 880 267
240 2 480, 960 286

Table 4.3

The different c values for the 40 runs of Algorithm 3 in Tables 4.1 and 4.2.
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Algorithm 1 Algorithm 3
Matrix Type residual max residual min residual mean residual

Kahan 7 × 100 6 × 10−1 5 × 10−1 5 × 10−1

SV-Gap 6 × 100 1 × 101 7 × 100 1 × 101

GKS 3 × 100 2 × 100 1 × 100 1 × 100

Random 3 × 101 3 × 101 3 × 101 3 × 101

Scale Rand 4 × 101 5 × 101 4 × 101 5 × 101

Table 4.4

Residuals minz ‖A1z − A2‖2 from Algorithm 1 and 40 runs of Algorithm 3 on 5 different classes of 500 × 500
matrices A when k = 20. Here the SV Gap matrix has 20 large singular values.

Algorithm 1 Algorithm 3
Matrix Type σk(A1) max σk(A1) min σk(A1) meanσk(A1)

Kahan 3 × 10−1 2 × 10−1 1 × 10−6 2 × 10−1

SV-Gap 1 × 104 2 × 104 5 × 103 1 × 104

GKS 4 × 10−1 2 × 10−1 2 × 10−1 2 × 10−1

Random 6 × 100 6 × 100 5 × 100 5 × 100

Scale Rand 8 × 100 8 × 100 7 × 100 8 × 100

Table 4.5

Smallest singular values σk(A1) from Algorithm 1 and 40 runs of Algorithm 3 when k = 20 on five different
classes of 500 × 500 matrices A. Here the SV Gap matrix has 20 large singular values.

2. We do this by looking at how different c values affect the accuracy of the randomized Algorithm
2. If the results do not vary drastically for different values of c, we should be able find one. We
already have some guidance on this problem. From Table 4.6, we see that c = 4k appears to be
chosen frequently for small values of k. Being chosen frequently indicates that for this c value the
candidate columns are sufficiently linearly independent, i.e. σk(WR) ≥ 1/2 in Algorithm 3.

In the following experiments, we ran Algorithm 2 40 times with c = 2k, 4k, 8k, . . . , 2ik until
c > n. Judging by Figures 4.1 – 4.5, it looks like c = 4k would be a good value for two reasons.
The first reason is that the residuals minz ‖A1z − A2‖2 do not vary much with different values of c.
The second reason is that the number c̃ of candidate columns chosen in the randomized stage goes
up as c goes up. We want c̃ to be as small as possible. This makes the efficiency gains as large as
possible. Since c = 4k gets small residuals and low values of c̃, we believe it would be a good c to
use in general. We note that this result might not hold for all k, but it tends to work well for small
values of k.

4.5. A Simpler Probability Distribution. Expression (3.6) for the probability distribution
is numerically unstable, while expression (3.5) is computationally expensive. Boutsidis, et al. [1]
mention another probability distribution [1, (5)] that bounds the Frobenius norm of the residual.
This probability is

pi = ‖eT
i Vk‖2

2/k. (4.1)

This probability distribution (4.1) is much simpler and more efficient to compute. Below we com-
pare the distributions (3.6) and (4.1) on our test matrices, with 40 runs of Algorithm 3 for each
distribution. Once again, in the instances where (3.6) was numerically unstable, we used expression
(3.5), which is equivalent in exact arithmetic.

63Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



Matrix # c’s tried c values most frequent c value mean c̃
Kahan 5 40, 80, 160, 320, 640 2k = 40 50
SV-Gap 3 40, 80, 160 4k = 80 89

GKS 4 40, 80, 160, 320 8k = 160 132
Random 3 40, 80, 160 4k = 80 93

Scale Rand 3 40, 80, 160 4k = 80 96
Table 4.6

The different c values from runs of Algorithm 3 in Tables 4.4 and 4.5.
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Fig. 4.1. Different values of c for 40 runs of Algorithm 2 on the 500 × 500 Kahan matrix when k = 20
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Fig. 4.2. Different values of c for 40 runs of Algorithm 2 on the 500 × 500 SV gap matrix when k = 20
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Fig. 4.3. Different values of c for 40 runs of Algorithm 2 on the 500 × 500 GKS matrix when k = 20
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Fig. 4.4. Different values of c for 40 runs of Algorithm 2 on a 500 × 500 random matrix when k=20

In Table 4.7, we present the residuals minz ‖A1z − A2‖2 for the five types of test matrices
of order 500. These values are representative of the results for matrices of order 100. As in
the earlier experiments, we record the maximum, minimum and average of the residuals. Table
4.7 illustrates that the magnitude of the residuals is essentially the same for both probability
distributions. Therefore, the simpler probability distribution (4.1) seems to produce residuals that
are as small as the ones produced by (3.6).

In Table 4.8, we present the smallest singular values of the representative columns, σk(A1), for
the five types of test matrices of order 500. These results were extracted from the same runs as
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Fig. 4.5. Different values of c for 40 runs of Algorithm 2 on a 500 × 500 scaled random matrix when k = 20

Matrix Type Distribution max residual min residual mean residual c̃
SV gap Prob (3.5) 1 × 101 7 × 100 1 × 101 89

Prob (4.1) 1 × 101 6 × 100 9 × 100 96

GKS Prob (3.6) 2 × 100 1 × 100 1 × 100 132
Prob (4.1) 1 × 100 1 × 100 1 × 100 98

Rand Prob (3.6) 3 × 101 3 × 101 3 × 101 93
Prob (4.1) 3 × 101 3 × 101 3 × 101 82

Scaled rand Prob (3.6) 5 × 101 4 × 101 5 × 101 96
Prob (4.1) 5 × 101 4 × 101 5 × 101 82

Kahan Prob (3.6) 6 × 10−1 5 × 10−1 5 × 10−1 50
Prob (4.1) 6 × 10−1 5 × 10−1 5 × 10−1 43

Table 4.7

Residuals minz ‖A1z − A2‖2 for the 500 × 500 matrices when k = 20

those for the residuals above. Table 4.8 illustrates that the simpler probability distribution (4.1)
yields representative columns that are as far from being rank deficient as the columns from (3.6).

According to the results of our experiments in Tables 4.7 and 4.8, the simpler probability
distribution (4.1) performs as well as (3.6). Although the two distributions are associated with
different theoretical bounds [1, Theorem 1], we see no empirical reason to support the use of (3.5)
or (3.6).

4.6. Counter-Example to the Theoretical Bound of the Randomized Algorithm.

Upon a suggestion by Stan Eisenstat [6], we performed experiments on a matrix of the form

(

Ik 1k,n−k/
√

k + 2

0m−k,k Im−k,n−k/
√

k + 2

)

(4.2)
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Matrix Type Distribution max σk(A1) min σk(A1) mean σk(A1)
SV gap Prob (3.5) 2 × 104 5 × 103 1 × 104

Prob (4.1) 2 × 104 8 × 103 1 × 104

GKS Prob (3.6) 2 × 10−1 2 × 10−1 2 × 10−1

Prob (4.1) 2 × 10−1 2 × 10−1 2 × 10−1

Rand Prob (3.6) 6 × 100 5 × 100 5 × 100

Prob (4.1) 6 × 100 5 × 100 5 × 100

Scaled rand Prob (3.6) 8 × 100 7 × 100 8 × 100

Prob (4.1) 8 × 100 8 × 100 8 × 100

Kahan Prob (3.6) 2 × 10−1 1 × 10−6 2 × 10−1

Prob (4.1) 2 × 10−1 2 × 10−1 2 × 10−1

Table 4.8

Smallest singular values for the representative columns of the 500 × 500 matrices when k = 20

Algorithm 1 Algorithm 3
Matrix Type residual max residual min residual mean residual

(4.2) 0.2312 3.3808 0.2312 3.2224
Table 4.9

Residuals minz ‖A1z − A2‖2 from Algorithm 1 and 40 runs of Algorithm 3 on a 500 × 500 matrix of the form
(4.2) when k = 20

.

where 1j,k denotes the j × k matrix consisting entirely of ones, while 0j,k denotes the j × k zero
matrix. Eisenstat [6] has shown that the randomized algorithm picks columns from this matrix
that violate the bound (3.4). In particular, it can be shown that the residual grows faster than

O(k3/4 log1/2 k(n − k)1/4) as n grows large for a fixed k, implying the probability of achieving any
such bound would decrease to 0 as n becomes large.

We confirmed this experimentally. Although Algorithm 3 can do as well as Algorithm 1, as
shown in Table 4.6, it never does better during the 40 runs. Additionally, as n grows large for a
fixed k, Table 4.6 shows the minimum residuals of Algorithm 3 start to get large.

5. Making the Randomized Algorithm Deterministic. We have two concerns with the
randomized Algorithm 2. The first is the use of probability distributions (3.5) and (3.6). Their
complexity creates problems: (3.5) is expensive to compute because it requires a SVD, while (3.6)
is numerically unstable. The simpler distribution (4.1) seems to work equally well (see section 4.5).
Our second concern is the choice of c: Boutsidis, et al. [1] do not give a clear way to determine c.

To remedy these concerns, we used our empirical results to construct a two stage deterministic
algorithm. We saw that Algorithm 3 often selects c = 4k, and we also saw that the simpler
probability distribution (4.1) works as well as the complicated one (3.6). So, in our deterministic
version of Algorithm 2, we select the 4k columns of V T

k with the largest 2-norms. If multiple
columns have the same norm as the 4kth largest column, we simply take the first column with
that norm. Then we apply the deterministic Algorithm 1 to these 4k candidate columns. Since we
deterministically select enough candidate columns, there is no need to run the algorithm more than
once. This is summarized as Algorithm 4. Although we have no bounds for this algorithm, we view
it as a viable alternative for Algorithms 1 and 3.
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n 100 250 500 750 1000
Algorithm 1 0.2887 0.2887 0.2887 0.2887 0.2887

min Algorithm 3 0.2887 3.2462 4.5778 0.2887 6.4646
Table 4.10

Residual for Algorithm 1and minimum residual for 40 runs of Algorithm 3 with k = 10 on an n × n matrix of
the form (4.2).

Algorithm 4 Two Stage Deterministic Algorithm for Subset Selection

Input: m × n matrix A of rank r, integer k ≤ r
Output: Permutation Π so that AΠ =

(

A1 A2

)

Compute the r nonzero singular values of A, and the associated right singular vectors
Permute the columns of V T

k in order of decreasing column norms: W = V T
k Π1

Set Ã4k equal to the leading 4k columns of AΠ1

Apply Algorithm 1 to Ã4k to return the permutation Π2

Combine the permutations: Π = Π1

(

Π2 0
0 In−4k

)

5.1. Intuition behind Algorithm 4. As in section 3.2.1 we partition the SVD of A so that
the right singular vectors in Vk are associated with the k largest singular values. We permute the
columns of V T

k (rows of Vk) so that the columns are arranged in order of descending 2-norm. That
is, we choose a permutation matrix Π1 so that

W = V T
k Π1, where ‖Wei‖2 ≥ ‖Wei+1‖2, 1 ≤ i ≤ n − 1.

Now we distinguish the columns with largest two norm and partition W =
(

W1 W2

)

, where
W1 is k × k. This is equivalent to sorting the columns of V T

k using (4.1). Since

‖W1‖2
F =

k
∑

i=1

‖W1ei‖2
2,

the permutation Π1 maximizes ‖W1‖2
F among all k columns of V T

k and minimizes ‖W2‖2
F .

We want to make the Frobenius norm ‖W2‖F small because, intuitively, this might also make
the two norm ‖W2‖2 smaller. This intuition comes from the fact that the Frobenius norm of W2

is an upper bound for the two norm of W2; specifically ‖W2‖2
2 ≤ ‖W2‖2

F ≤ k‖W2‖2
2. Since W

has orthonormal rows, we can apply the CS decomposition [10, Theorem 2.6.2] to W1 and W2 to
conclude

σk(W1)
2 + ‖W2‖2

2 = 1.

This means, as ‖W2‖2 gets smaller, σk(W1) increases. We want σk(W1) to increase because this
makes W1 better conditioned; that is, the columns are more linearly independent. Since σk(W1) =
1/‖W−1

1 ‖2, an increase in σk(W1) implies a decrease in ‖W−1
1 ‖2.

So far we have argued, based on intuition, that rearranging columns of V T
k in order of descending

two-norms leads to making W1 as well-conditioned as possible. Now we use [11, Theorem 6.1], [14,
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Theorem 1.5] to show what that means for our bounds:

σk(A)

‖W−1
1 ‖2

≤ σk(A1), and min
z

‖A1z − A2‖2 ≤ ‖W−1
1 ‖2 σk+1(A).

Therefore permuting columns from V T
k with large norm to the front, brings representative columns

from A to the front, so that σk(A1) is close to σk(A), and minz ‖A1z − A2‖ is close to σk+1(A).

5.2. Comparison with Algorithm 1. Since runtime improvements on large matrices would
be a reason for developing an alternative algorithm to Algorithm 1, we ran Algorithm 1 and our
new Algorithm 4 on our largest test matrices, of order 2000× 2000, with a k = 40. We set f = 1
to get the best possible bounds with Algorithm 1. This was not feasible in our earlier experiments
with the probabilistic Algorithms 2 and 3, for these algorithms are run 40 times, and with f = 1,
Algorithm 1 may take exponential time. This makes any runtime gains of the new Algorithm 4
more noticeable since it performs Algorithm 1 on a fraction (4k = 160) of the 2000 columns of the
matrix. Table 5.1 compares the smallest singular values σk(A1) and residuals minz ‖A1z − A2‖2

from Algorithms 1 and 4. We also listed the ratio of run time from Algorithm 4 and Algorithm 1,
which we got from Matlab’s tic-toc function.

Matrix Residuals σk(A1) Time Alg 4/Alg 1
Alg 1 Alg 4 Alg 1 Alg 4

Kahan 4 × 100 4 × 100 8 × 10−2 8 × 10−2 0.11
rand 9 × 101 9 × 101 1 × 101 1 × 101 0.03
scalerand 1 × 102 1 × 102 2 × 101 2 × 101 0.07
GKS 4 × 100 3 × 101 3 × 10−1 3 × 10−1 0.02
(4.2) 2 × 10−1 2 × 10−1 1 × 100 1 × 100 0.09

Table 5.1

Smallest singular values σk(A1) and residuals minz ‖A1z − A2‖2 for three 2000 × 2000 matrices when k = 40

Surprisingly, we see in Table 5.1 that there are no significant differences in the performance of
the two deterministic algorithms in 3 out of the 4 cases. Algorithm 4 gives a larger residual than
Algorithm 1 on the GKS matrix, but the results are still within one order of magnitude different.
Also, Algorithm 4 is not susceptible to the problems that matrix (4.2) caused for Algorithm 3.
Algorithms 1 and 4 get the same results on this type of matrix. Finally, when timed with MATLAB’s
tic-toc function, the new two stage Algorithm 4 is much faster than Algorithm 1.

6. Future Work. We briefly discuss some future research we would like to perform. We
would like to use a finer iteration for values of c in Algorithm 3 instead of simply doubling it. Also,
we would like to provide bounds for Algorithm 4, as well as running time comparisons for all the
algorithms.
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7. Appendix. We show (2.2).
Lemma 7.1. With the assumptions of section 2.4

σi(A1) = σi(Rk), min
z

‖A1z − A2‖2 = σ1(Ck).

Proof. First we relate the submatrices of A and R. Distinguishing the leading k columns in A
and R gives

A =
(

A1 A2

)

=
(

Q1 Q2 Q3

)





Rk Bk

0 Ck

0 0



 .

This implies

A1 = Q1Rk, A2 = Q1Bk + Q2Ck. (7.1)

From QT Q = Im follows QT
1 Q1 = Ik, so that Q1 has orthonormal columns. Hence Rk and A1 =

Q1Rk have the same singular values, σi(A1) = σi(Rk), 1 ≤ i ≤ k. This proves the first equality of
the lemma.

In order to prove the second equality of the lemma, we express the residual as

min
z

‖A1z − A2‖2 = ‖(Im − A1A
†
1)A2‖2, (7.2)

where A†
1 is the Moore-Penrose inverse. Since by assumption, A1 has k linearly independent

columns, we can write the Moore-Penrose inverse as A†
1 = (AT

1 A1)
−1AT

1 . From (7.1) and the

fact that Q1 has orthonormal columns follows A†
1 = (RT

k Rk)−1RT
k QT

1 . Now we argue that Rk is
invertible. Since by assumption A1 has full column rank, σk(A1) > 0. The first equality of the
lemma implies that σk(Rk) > 0. Since Rk is a k× k matrix with all k singular values non zero, this

means, Rk is invertible. Hence the Moore-Penrose simplifies to A†
1 = R−1

k QT
1 .

Substituting the expressions for A1 and A2 from (7.1) into (7.2) and using the facts QT
1 Q1 = I

and QT
2 Q1 = 0 gives

‖(Im − A1A
†
1)A2‖2 = ‖(Im − Q1RkR−1

k QT
1 )(Q1Bk + Q2Ck)‖2

= ‖(Im − Q1Q
T
1 )(Q1Bk + Q2Ck)‖2

= ‖Q1Bk + Q2Ck − (Q1Q
T
1 )(Q1Bk) − Q1Q

T
1 Q2Ck‖2

= ‖Q2Ck − Q1Q
T
1 Q2Ck‖2 = ‖Q2Ck‖2.

At last, ‖Q2Ck‖2
2 = ‖(Q2Ck)T Q2Ck‖2 = ‖CT

k Ck‖2 = ‖Ck‖2
2 = σ1(Ck)2.
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