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Abstract. The Euler-Lagrange equations associated to the problem of
minimizing a power-law functional acting on symmetrized gradients are
identified. A formal derivation of the limiting system of partial differ-
ential equations stemming from these equations as p tends to infinity
is provided. Our computations are reminiscent of the derivation of the
infinity Laplace equation starting from the p-Dirichlet integral.

1. Introduction

The problem of finding, among all functions with prescribed boundary
conditions, those which minimize a given functional is central in the study
of calculus of variations. There is a close connection between this problem
and the study of ordinary or partial differential equations; it turns out that
minimizers of certain integral functionals are solutions to the so-called Euler-
Lagrange equations. These equations are differential equations associated
to the minimization problem. A well known example in this direction is that
given a bounded open domain Ω in RN (N ≥ 1) with smooth boundary ∂ Ω,
minimizers u ∈ C2(Ω) of the Dirichlet functional

(1) I(u) =
1
2

∫
Ω
|∇u(x)|2 dx,

subject to the boundary condition u = g on ∂ Ω, where g : ∂ Ω → R is a
given continuous function, are solutions of the boundary value problem

(2)

{
−∆u = 0 in Ω
u = g on ∂ Ω,

where

∆u =
N∑

i=1

∂2u

∂x2
i

This paper is based on work done under the supervision of Marian Bocea while the
author was an undergraduate student at North Dakota State University.
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is the Laplace operator. The converse of the above statement is also true,
that is, solutions of (2) are minimizers of I in the admissible class

A = {u ∈ C2(Ω) : u = g on ∂ Ω}.
This is called “Dirichlet’s Principle” (see, e.g., Evans [12]). Similarly, mini-
mizing the p-Dirichlet functional (p ≥ 2)

(3) Ip(u) =
1
p

∫
Ω
|∇u(x)|p dx

leads to the p-Laplace equation

(4) −∆pu := −div
(
|∇u|p−2∇u

)
= 0.

During the recent decades there has been an increasing interest in under-
standing asymptotic behavior, as p → ∞ of minimizers of the p-Dirichlet
functional Ip and its generalizations. This is motivated in part by appli-
cations to problems arising in materials science (see, e.g. Garroni, Nesi,
and Ponsiglione [13], Bocea and Nesi [9], and references therein). It turns
out that minimizers up of Ip subject to boundary conditions converge, as
p→∞, to minimizers of the limiting functional

(5) I∞(u) := ess supx∈Ω|∇u(x)|.
Minimizing in a properly interpreted sense supremal functionals of this type
is the central problem in the rapidly emerging area of calculus of variations
in L∞. Besides materials science, these issues are motivated by applications
to other fields (see the discussion in Barron, Jensen, and Wang [7]).

It was first observed by Aronsson [1–5] that studying the minimization
problem for I∞ also leads to a PDE, the infinity-Laplace equation:

(6) −∆∞u :=
N∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0,

which can be regarded as a limiting case of the p-Laplace equation (4) as
p→∞ in the following way. For p > 2, consider a smooth solution u of (4),
which is also a minimizer of (3). Note that, after computations, (4) can be
rewritten as

(7) −(p− 2)|∇u|p−4∆∞u− |∇u|p−2∆u = 0.

Dividing by (p− 2)|∇u|p−4 in (7) brings about the equation

(8) −∆∞u−
1

p− 2
|∇u|2∆u = 0.

A keen reader may question whether or not division by (p − 2)|∇u|p−4 is
permitted on the set where |∇u| = 0. However, in this case the left hand
side of (8) also vanishes on this set. Formally letting p → ∞ in (8) now
leads to the infinity-Laplace equation (6). This computation can be made
rigorous (see, e.g., Bhattacharya, DiBenedetto, and Manfredi [8]): if up is
a (weak) solution of (4), then up converges uniformly on compact subsets
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of Ω to a “viscosity solution” of (6), called an ∞-harmonic function. We
recall that a continuous function u is a viscosity solution of (6) if on one
hand, for every local maximum point x ∈ Ω of u − ϕ, where ϕ is a C2

function in a neighborhood of x and u(x) = ϕ(x), we have −∆∞ϕ(x) ≤ 0,
and on the other hand, whenever x ∈ Ω is a local minimum point of u− ϕ,
where ϕ is a C2 function in a neighborhood of x and u(x) = ϕ(x), we have
−∆∞ϕ(x) ≥ 0. An excellent account on the theory of infinity harmonic
functions can be found in Aronsson, Crandall, and Juutinen [6].

In this paper we consider smooth minimizers u : Ω → R3 of functionals
of the form

u 7→
∫

Ω
|e(u)|p dx,

acting on symmetrized gradients e(u) = 1
2

(
∇u+ (∇u)T

)
of vector-valued

maps u : Ω→ R3, we identify the Euler-Lagrange equation that such mini-
mizers must solve, and we formally derive the system of PDEs suggested by
these equations as p → ∞. It turns out that the structure of the individ-
ual equations in the limiting system is strikingly similar to the ∞-Laplace
equation (6).

2. Background

In this section we recall several definitions and results which are needed
in the sequel. The first one is an old friend from vector calculus, Green’s
First Identity.

Lemma 2.1 (Green’s First Identity [16]). Let u and v be functions defined
on Ω ⊂ R3. Assume that u is twice differentiable and that v is differentiable
in Ω. Then ∫

∂Ω
v
∂u

∂n
dS =

∫
Ω
∇v · ∇u dx+

∫
Ω
v∆u dx,

where ∂u
∂n = n · ∇u is the directional derivative of u in the outward normal

direction.

Definition 2.2 (Support [15]). The support of a continuous function f :
Ω→ R is the closure of the set {x ∈ Ω : f(x) 6= 0}. The collection of all real
continuous functions on Ω whose support is compact is denoted by Cc(Ω).

Definition 2.3 (Function Space Cn(Ω̄; RN )). Let Ω ⊂ RN be an open set,
and let n ∈ N∪{∞}. The space Cn(Ω̄; RN ) is the collection of all functions
f : Ω→ RN , f = (f1, f2, ..., fN ), such that, for each i = 1, ..., N , f i ∈ Cn(Ω̄)
the space of n times differentiable functions defined on Ω̄.

The next statement is a key result from real analysis which is sometimes
called The Fundamental Theorem of Calculus of Variations.

Lemma 2.4 (Du Bois-Reymond Lemma [10]). Let f : Ω → R be a locally
integrable function such that∫

Ω
f(x)ϕ(x)dx = 0, ∀ϕ ∈ Cc(Ω).

114Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



 MARK SPANIER

Then f = 0 almost everywhere in Ω. In particular, if f is continuous in Ω,
the conclusion reads: f = 0 in Ω.

3. The derivation of the limiting equations

Let p ≥ 2 and let Ω ⊂ R3 be an open, bounded domain with smooth
boundary. We consider the problem of minimizing the functional

(9) I(u) =
∫

Ω

∣∣∣∇u(x) +∇u(x)T
∣∣∣p dx

among all possible functions u ∈ C2
(
Ω̄; R3

)
belonging to the admissible set

(10) A = {u ∈ C2
(
Ω̄; R3

)
|u = g on ∂ Ω},

where g : Ω̄ → R3 is a given continuous function. In (9), | · | stands for the
usual norm in the space M3×3 given by |A| =

√
tr(ATA), where AT is the

transpose of the matrix A. In what follows, for given matrices A,B ∈M3×3,
we denote by A·B the scalar product of A andB, defined by A·B = tr(ABT ).

Assume that u ∈ A is a minimizer of I, that is I(u) = min
v∈A

I(v). We have

I(u) ≤ I(u + tϕ) for all ϕ = (ϕ1, ϕ2, ϕ3) ∈ C1
(
Ω̄; R3

)
, with ϕi = 0 on ∂ Ω.

Thus, we must have d
dtI(u+ tϕ)|t=0 = 0. Differentiating

I(u+ tϕ) =
∫

Ω

∣∣∣(∇u(x) +∇u(x)T
)

+ t
(
∇ϕ(x) +∇ϕ(x)T

)∣∣∣p dx
with respect to t gives

d

dt
I(u+ tϕ)

=
∫

Ω

d

dt

(∣∣∣∇u(x) +∇u(x)T + t
(
∇ϕ(x) +∇ϕ(x)T

)∣∣∣2) p
2

dx

=
∫

Ω

d

dt

(∣∣∣∇u(x) +∇u(x)T
∣∣∣2 + t2

∣∣∣∇ϕ(x) +∇ϕ(x)T
∣∣∣2

+ 2t
(
∇u(x) +∇u(x)T

)
·
(
∇ϕ(x) +∇ϕ(x)T

)) p
2

dx

=
p

2

∫
Ω

(∣∣∣∇u(x) +∇u(x)T
∣∣∣2 + t2

∣∣∣∇ϕ(x) +∇ϕ(x)T
∣∣∣2

+ 2t
(
∇u(x) +∇u(x)T

)
·
(
∇ϕ(x) +∇ϕ(x)T

)) p
2
−1

(
2t
∣∣∣∇ϕ(x) +∇ϕ(x)T

∣∣∣2 + 2
(
∇u(x) +∇u(x)T

)
·
(
∇ϕ(x) +∇ϕ(x)T

))
dx.
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Thus, at t = 0 we have

d

dt
I(u+ tϕ)

∣∣∣∣
t=0

= p

∫
Ω

∣∣∣∇u(x) +∇u(x)T
∣∣∣p−2 (

∇u(x) +∇u(x)T
)
·
(
∇ϕ(x) +∇ϕ(x)T

)
dx,

and hence, we must have

(11)

∫
Ω

∣∣∣∇u(x) +∇u(x)T
∣∣∣p−2 (

∇u(x) +∇u(x)T
)
·
(
∇ϕ(x) +∇ϕ(x)T

)
dx

= 0.

In what follows, given any vector function v = (v1, v2, v3) and i, j ∈ {1, 2, 3},
vj
xi will denote the partial derivative of the jth component of v with respect

to xi. Using this notation we can rewrite
(
∇u(x) +∇u(x)T

)
·
(
∇ϕ(x) +∇ϕ(x)T

)
as follows:(

∇u(x) +∇u(x)T
)
·
(
∇ϕ(x) +∇ϕ(x)T

)
=

〈4u1
x1
, 2(u1

x2
+ u2

x1
), 2(u1

x3
+ u3

x1
)〉 · 〈ϕ1

x1
, ϕ1

x2
, ϕ1

x3
〉+

〈2(u1
x2

+ u2
x1

), 4u2
x2
, 2(u3

x2
+ u2

x3
)〉 · 〈ϕ2

x1
, ϕ2

x2
, ϕ2

x3
〉+

〈2(u1
x3

+ u3
x1

), 2(u3
x2

+ u2
x3

), 4u3
x3

)〉 · 〈ϕ3
x1
, ϕ3

x2
, ϕ3

x3
〉

This, with e(u) := 1
2

(
∇u(x) +∇u(x)T

)
, (11) becomes∫

Ω
|e(u)|p−2 [〈2u1

x1
, u1

x2
+ u2

x1
, u1

x3
+ u3

x1
〉 · ∇ϕ1

+〈u1
x2

+ u2
x1
, 2u2

x2
, u3

x2
+ u2

x3
〉 · ∇ϕ2

+〈u1
x3

+ u3
x1
, u3

x2
+ u2

x3
, 2u3

x3
〉 · ∇ϕ3] dx = 0.

Taking ϕ = (ϕ1, 0, 0), (0, ϕ2, 0), and (0, 0, ϕ3), with ϕi ∈ C∞c (Ω), i ∈
{1, 2, 3}, we obtain:∫

Ω
|e(u)|p−2 〈2u1

x1
, u1

x2
+ u2

x1
, u1

x3
+ u3

x1
〉 · ∇ϕ1 dx = 0, for all ϕ1 ∈ C∞c (Ω);∫

Ω
|e(u)|p−2 〈u1

x2
+ u2

x1
, 2u2

x2
, u3

x2
+ u2

x3
〉 · ∇ϕ2 dx = 0, for all ϕ2 ∈ C∞c (Ω);∫

Ω
|e(u)|p−2 〈u1

x3
+ u3

x1
, u3

x2
+ u2

x3
, 2u3

x3
〉 · ∇ϕ3 dx = 0, for all ϕ3 ∈ C∞c (Ω).

In view of Lemmas 2.1 and 2.4 we obtain that u =
(
u1, u2, u3

)
must satisfy

the following system of PDEs:

(12)


−div(|e(u)|p−2〈2u1

x1
, u1

x2
+ u2

x1
, u1

x3
+ u3

x1
〉) = 0

−div(|e(u)|p−2〈u1
x2

+ u2
x1
, 2u2

x2
, u3

x2
+ u2

x3
〉) = 0

−div(|e(u)|p−2〈u1
x3

+ u3
x1
, u3

x2
+ u2

x3
, 2u3

x3
〉) = 0.
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This can be written as

(13) −Div(|e(u)|p−2e(u)) = 0,

where, for smooth matrix-valued maps U : Ω→ M3×3 the differential oper-
ator Div is defined by

Div U :=

 div U (1)

div U (2)

div U (3)

 ,

with U (i)(x) := (Ui1(x), Ui2(x), Ui3(x)), i = 1, 2, 3, standing for the ith row
of the matrix U(x), x ∈ Ω. Note the similarities between (13) and the
p-Laplace equation (4) which one obtains in the scalar case starting from
the p-Dirichlet integral. By definition of the divergence operator the first
equation in (12) reads
∂

∂x1
(|e(u)|p−22u1

x1
)+

∂

∂x2
(|e(u)|p−2(u1

x2
+u2

x1
))+

∂

∂x3
(|e(u)|p−2(u1

x3
+u3

x1
)) = 0.

We have
∂

∂xk
|e(u)|p−2

=
∂

∂xk

 3∑
i,j=1

(
ui

xj
+ uj

xi

)2


p−2
2

=
p− 2

2

 3∑
i,j=1

(
ui

xj
+ uj

xi

)2

( p−2
2
−1)

∂

∂xk

 3∑
i,j=1

(
ui

xj
+ uj

xi

)2


=
p− 2

2
|e(u)|p−4 ∂

∂xk

 3∑
i,j=1

(
ui

xj
+ uj

xi

)2


= (p− 2) |e(u)|p−4

 3∑
i,j=1

(
ui

xj
+ uj

xi

)(
ui

xjxk
+ uj

xixk

)
= (p− 2) |e(u)|p−4 δku,

where

δku :=
3∑

i,j=1

(
ui

xj
+ uj

xi

)(
ui

xjxk
+ uj

xixk

)
.

Using this, the first equation in (12) now becomes

|e(u)|p−2
(
2u1

x1x1
+ u1

x2x2
+ u1

x3x3
+ u2

x1x2
+ u3

x1x3

)
+ (p− 2)|e(u)|p−4

[
2u1

x1
δ1u+ (u1

x2
+ u2

x1
)δ2u+ (u1

x3
+ u3

x1
)δ3u

]
= 0.

After dividing this equation by (p− 2)|e(u)|p−4 we arrive at
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1
p− 2

|e(u)|2
(
2u1

x1x1
+ u1

x2x2
+ u1

x3x3
+ u2

x1x2
+ u3

x1x3

)
+
[
2u1

x1
δ1u+ (u1

x2
+ u2

x1
)δ2u+ (u1

x3
+ u3

x1
)δ3u

]
= 0,

which, after formally letting p→∞, leads to the limiting equation

(14) 2u1
x1
δ1u+ (u1

x2
+ u2

x1
)δ2u+ (u1

x3
+ u3

x1
)δ3u = 0.

In a similar fashion the last two equations in (12) lead, as p→∞, to

(15) (u2
x1

+ u1
x2

)δ1u+ 2u2
x2
δ2u+ (u2

x3
+ u3

x2
)δ3u = 0,

and

(16) (u1
x3

+ u3
x1

)δ1u+ (u2
x3

+ u3
x2

)δ2u+ 2u3
x3
δ3u = 0,

respectively. In vector notation, (14), (15), and (16) can be collectively
rewritten in the form

(17) e(u)

 δ1u
δ2u
δ3u

 = 0.

We would like to point out that the structure of the PDEs in the sys-
tem (17) closely resembles that of the ∞-Laplace equation (6) which is the
corresponding limiting equation in the case of gradients of (scalar) functions.
Indeed, first note that (6) can be rewritten as

(18) −〈∇
(
|∇u|2

)
,∇u〉 = 0,

where 〈·, ·〉 stands for the usual inner product in R3. Next, observe that
2δku is in fact the kth component of the vector function ∇

(
|e(u)|2

)
. Thus,

if we denote by [e(u)]k the kth row of the matrix-valued function e(u), the
system (14)-(16) or, equivalently, (17), may be rewritten as

(19)


−〈∇

(
|e(u)|2

)
, [e(u)]1〉 = 0

−〈∇
(
|e(u)|2

)
, [e(u)]2〉 = 0

−〈∇
(
|e(u)|2

)
, [e(u)]3〉 = 0.

Given the rich literature available regarding the existence, uniqueness and
regularity of viscosity solutions for the ∞-Laplace equation, it would be
interesting to pursue similar questions for solutions, in a suitable weak sense,
of the limiting system (19) derived in this paper. However, it is still not clear
what the right notion of solution should be in this case. Although various
definitions of viscosity solutions for systems of PDEs have been introduced
in the literature (see, e.g., [11], [14]), we have not yet been able to identify
one which is applicable to the special structure of (19).
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