
Invasion Fronts and Pattern Formation in a Model of Chemotaxis
in One and Two Dimensions.

Koushiki Bose,1 Tyler Cox,2 Stefano Silvestri,3 Patrick Varin 4

Sponsors: Matt Holzer5, Arnd Scheel6

Abstract

The purpose of this paper is to explore spatio-temporal pattern formation via invasion fronts in the
one and two dimensional Keller-Segel chemotaxis model. In the one-dimensional case, simulations show
that solutions that begin near an unstable equilibrium evolve into periodic patterns. These in turn evolve
into new patterns through a process known as coarsening. In the two-dimensional case, we encounter
only periodic patterns in the wake of the initial front. Transverse patterning only arises as a result of a
transverse instability of these periodic patterns from the leading invasion front.
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1 Introduction

It is known that certain bacteria including E. coli and S. typhimurium respond to self-secreted chemicals
through movement [2]. The process by which these bacteria move in accordance with the level of certain
self-secreted chemicals is known as chemotaxis. Experiments and simulations show that chemotaxis gives rise
to spatial patterns in bacterial concentrations [1,2]. A standard model that is used to describe the motion of
the bacteria in the presence of attracting or repelling chemicals is the Keller-Segel model [6,8]. We consider
the minimal model [3], which is defined by the system of partial differential equations:

ut = ∇ · (∇u− bu∇v)

vt = κ∇2v + u− v, (1.1)

where u(x, t) is the density of the bacteria, while v(x, t) is the concentration of the chemical with x ∈ Rn.
The parameters b > 0 denotes the chemotactic sensitivity, while κ > 0 denotes the rate of diffusion of the
chemical relative to the bacteria.

It is well known that the Keller-Segel model gives rise to spatial patterns in the bacterial concentration.
The space-time diagram in Figure 1.1 describes the temporal progression of a solution that begins near a
homogeneous equilibrium with a localized perturbation on the left boundary. The instability invades from
the source of the perturbation and a periodic quasi-equilibrium appears in the wake of this unstable front.
This pattern is in turn unstable and develops into another periodic pattern with twice the period via a
process called coarsening. In this paper we explore the spreading speeds of these unstable fronts as well as
the coarsening dynamics.

In Section 2, we consider the one-dimensional case of x ∈ R. We set up the system of equations, determine
the homogeneous steady states, and examine the linear stability around these points in Section 2.1. Here
we see the importance of the average cell density in the stability of the system. In Section 2.2, we introduce
spreading speeds and discuss how to find them using double root computations. These will be essential
in determining the behavior and evolution of instabilities in the system. For a detailed discussion of front
propagation into unstable states and linear spreading speeds in different systems, see [10]. In Sections 2.3
and 2.4 we find analytic expansions for the spreading speeds and selected wave numbers in the cases of small
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Figure 1.1: Two typical solutions to the one dimensional chemotaxis equations (1.1). Unstable homogeneous
equilibria give way to periodic patterns which in turn develop into coarser patterns via a coarsening process.
Here we show two different coarsening phenomena.

and large density. In Section 2.5, we study the invasion process numerically. We calculate predictions for the
linear spreading speed from the complex dispersion relation and compare with direct numerical simulations.
We also compare wavenumber predictions with direct simulation.

Coarsening is studied in Section 2.6. We linearize about the periodic equilibria to find unstable eigenvalues
and eigenfunctions. We use numerical methods to predict two different modes of coarsening. In one of these
coarsening modes, one peak simply grows at the expense of the other, while in the other, two peaks move
towards each other to merge into a larger peak.

Finally in Section 3, we study the spreading in two dimensions. We allow the initial perturbation to
be modulated periodically in a transverse variable and compute spreading speeds for such transversely
modulated patterns. Our main results show that fronts that are not modulated in the transverse direction
propagate the fastest. The primary invasion front, therefore, always admits a stripe pattern in its wake. We
then study the linearization at these primary stripe patterns and observe transverse instabilities to conclude
that the initial stripes will eventually evolve into another pattern with a transverse dependence.

2 The Chemotaxis Model in One Dimension

2.1 Linearization and Stability Analysis

We begin this section by considering the chemotaxis model in one dimension. Notice that the constant b
in Equation (1.1) may be scaled out by using the new variables ṽ = bv and ũ = bu. After performing this
transformation and dropping the tilde on the variables for readability, the model becomes

ut = (ux − uvx)x,

vt = κvxx + u− v. (2.1)

Next, we look at the spatially homogeneous system to determine the steady states. That is,

d

dt
u(t) = 0,

d

dt
v(t) = u− v. (2.2)

The phase portrait of system (2.2) is shown in Figure 2.1.
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Figure 2.1: Phase portrait for the spatially homogeneous system.

As we can see, the equilibrium solutions lie on the line u = v. We denote the homogeneous steady states
as (u∗, v∗). Upon linearizing the system (2.1) near (u∗, v∗), we find that

ut = uxx − χvxx,
vt = κvxx + u− v, (2.3)

where χ = u∗ is the average cell density. Taking the Fourier transform, the system simplifies to ~ut = A~u,
where ~u = (û, v̂)T and

A =

(
−k2 χk2

1 −(κk2 + 1)

)
.

The eigenvalues of A are given by

λ± =
1

2
Tr(A)± 1

2

√
(Tr(A))2 − 4Det(A), where (2.4)

Tr(A) = −1− (1 + κ)k2,

Det(A) = k2(κk2 + 1− χ).

Note that, because Tr(A) < 0, at least one eigenvalue is negative. This implies that the sign of the determi-
nant of A will determine the sign of the other eigenvalue. Recall that the system is stable if both eigenvalues
are negative, and is unstable if the eigenvalues have opposite sign. It can be easily determined that χ = 1 is
the bifurcation value separating stable states from unstable states (see Figure 2.2).

Therefore, the system contains instabilities when χ > 1. For non zero k the dispersion relation has
a maximum, which suggests that a periodic pattern will emerge from this unstable equilibrium. We are
interested in the long term dynamics of the system, after a small localized perturbation of the steady state
(u∗, v∗). Specifically, we are interested in the speed at which the instability propagates, and the selected
wavelength of the long term solution.

The value of the wavenumber k that corresponds to the largest unstable eigenvalue λ is called the most
unstable mode. This gives us one possible prediction for the wavenumber selected by the linear instability.
This calculation yields

k2 =
−κ(−1 + κ+ 2χ) +

√
κχ(1 + κ)

2
(−1 + κ+ χ)

κ(−1 + κ)
2 . (2.5)
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Figure 2.2: Dispersion Curves: Re λ± versus k.

In the following section, we introduce double roots as a method for finding the selected speed, wavelength
and wavenumber of the instability. In Section 2.5, we will numerically calculate the selected wavenumber
using double roots and compare it to the expression in (2.5).

2.2 Spreading Speeds

Consider the change of coordinates to a comoving frame ξ = x− st, whereby the linearized system becomes

ut = uξξ + suξ − χvξξ,
vt = κvξξ + svξ + u− v. (2.6)

Using the ansatz ~u(t, ξ) = eλt+νξ ~u0 with λ , ν ∈ C yields

λu0 = (ν2 + sν)u0 − χν2v0,
λv0 = (κν2 + sν)v0 + u0 − v0. (2.7)

Nontrivial solutions of this system relate spatial modes to temporal behaviours. These non-trivial solutions
exist whenever the determinant of the above equation is zero. This determinant is known as the dispersion
relation and its roots relate λ and ν,

d(λ− sν, ν) = det

(
ν2 + sν − λ −χν2

1 κν2 + sν − 1− λ

)
.

Definition 1. Pinched Double Root If d(λ∗ − sν∗, ν∗) = 0 and ∂νd(λ∗ − sν∗, ν∗) = 0, then (λ∗, ν∗) is
called a double root of the dispersion relation [4].

Furthermore, a double root (λ∗, ν∗) is pinched if it satisfies

Re ν±(λ)→ ±∞ for Re λ→∞

where ν±(λ) corresponds to the roots of d(λ− sν, ν) = 0 which satisfy the double root condition [4].

The λ∗ corresponding to the pinched double root (λ∗, ν∗) is called the pointwise growth mode, and is a
measure of the pointwise stability or instability of the system. Spatially heterogeneous patterns in chemotaxis
were studied by Murray and Myerscough in [9]. They constructed a simple caricature dispersion relation to
obtain estimates of the double roots.

The double roots provide information about the linear spreading speed, defined below, as well as the
selected wavelength of the invasion front. Intuitively, the spreading speed measures the speed of the comoving
frame for which we see a transition between growth and decay of solutions to the linear system (i.e. Re λ = 0).
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Definition 2. Linear Spreading Speed [4] The spreading speed s∗ is defined as

s∗ = sup{s; d(λ− sν, ν) possesses a pinched double root in Re λ > 0}.

The temporal frequency, ω, associated with this speed provides information on the pattern that is pro-
duced in the wake of the front. Specifically, this invading front lays a trough or peak every 2π

ω time units.
Moving back to the original stationary frame, this corresponds to the development of nucleation sites every
2πs
ω spatial units. Hence, the selected wavelength is 2πs

ω .

2.3 Analytic Spreading Speeds Using Perturbations: χ close to 1

We begin with an investigation of linear spreading speeds near the onset of instability at χ = 1 using the
double roots computation. Setting χ = 1+µ where µ ≥ 0 is small, we compute the expansions of the selected
wavenumber, frequency, and speed near this unstable equilibrium.

The double root is computed according to Definition 1. The dispersion relation and its ν derivative are
given by

d(λ− sν, ν) = (λ− sν)2 + λ(1 + (−1− κ)ν2) + κν4 + ν3(1 + κ)s+ µν2 − sν
∂νd(λ− sν, ν) = −2s(λ− sν) + 2λ(−1− κ)ν + 4κν3 + 3ν2(1 + κ)s+ 2µν − s. (2.8)

We use the following scaling for our expansions:

λ̂ = λκ/µ2,

ŝ = s
√
κ/µ3/2,

ν̂ = ν
√
κ/µ.

We substitute these new variables into Equations (2.8) and solve for λ̂ and ŝ in terms of ν̂

λ̂ = 3ν̂4 + ν̂2 +O(µ),

ŝ = 4ν̂3 + 2ν̂ +O(µ). (2.9)

At leading order, the system behaves like the Cahn-Hilliard model linearized at an unstable equilibrium [4].

Now we set ν̂ = η̂+ik̂. From the definition of the spreading speed, we set Re λ̂ = 0, and to maintain physical
relevance we assert that Im ŝ = 0. These two conditions, in addition to Equations (2.9), allow us to solve

for the four variables η̂, k̂, λ̂ and ŝ.

We first obtain η̂2 and k̂2:

η̂2 =
−1 +

√
7

24
+O(µ), k̂2 =

3 +
√

7

8
+O(µ).

Recall that η̂ = Re(ν̂) and k̂ = Im(ν̂). Therefore, the above values, inserted into Equations (2.9) yield a

linear spreading speed ŝ and eigenvalue λ̂. The imaginary part of the eigenvalue gives the temporal frequency
ω̂.

ŝ =

√
2

27
(17 + 7

√
7) +O(µ), λ̂ =

i(3 +
√

7)

4

√
2 +
√

7

6
+O(µ).
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Therefore, close to χ = 1, we find the linear spreading speed and corresponding double root

s =
µ3/2

√
κ

√
2

27
(17 + 7

√
7) +O(µ5/2), (2.10)

ω =
µ2

κ

(3 +
√

7)

4

√
2 +
√

7

6
+O(µ3),

Re ν =

√
µ

κ

√
−1 +

√
7

24
+O(µ3/2),

Im ν =

√
µ

κ

√
3 +
√

7

8
+O(µ3/2).

These expansions give intuition for the behavior of the system close to χ = 1 and will be compared with
simulations in Section 2.5.

2.4 Large χ Limit

We now look for the spreading speed in the limit of infinite bacterial density. Let χ = 1/ε, where ε > 0 is
small. We set κ = 1 since it allows us to easily calculate explicit solutions.

We scale the variables as follows:

v = εv̂,

t = εt̂,

x =
√
εx̂ (2.11)

and obtain, dropping hats,

ut = uxx − vxx,
vt = vxx + u− εv. (2.12)

At ε = 0, we find the simplified dispersion relation

d(λ, ν) = (−λ+ ν2)2 + ν2.

It is interesting to note that this is the dispersion relation that is obtained if we omit the term −v from
the second equation in the system (2.3). That is, considering χ large in the linear approximation is equivalent
to a chemotaxis model where the chemical does not decay.

We pass into a comoving frame and obtain the dispersion relation

d(λ− sν, ν) =
(
−λ+ sν + ν2

)2
+ ν2.

From the definition of the spreading speeds we set the real part of λ equal to 0. This condition, in addition
to the double root conditions d = 0 and ∂νd = 0, allow us to solve for s, λ, and ν. The imaginary part of λ
is the temporal frequency ω. Finally, we rescale to obtain the original variables before the transformations
in (2.11)

s∗ = ±√χ, (2.13)

ω∗ = χ/2.

ν∗ =
∓√χ± i√χ

2
.

The linear spreading speed, frequency, and wavenumber all increase with χ. The selected wavelength is
2πs∗
ω∗

= 4π√
χ . One can verify that in this limit, the selected wavenumber coincides with the fastest linearly

growing mode computed from (2.4). Figure 2.8 compares the spreading speeds obtained here with those
computed numerically. This simple case gives us explicit formulas which will be useful in the two-dimensional
case considered later in Section 3.
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2.5 Numerical Computation of Double Roots and Spreading Speed

At this point, we have an expression for the spreading speed for the limiting values of χ, i.e. χ ≈ 1 and
χ → ∞. However, we cannot calculate the spreading speed analytically for intermediate values of χ. In
this regime, we will compute the spreading speed numerically as follows. The double root computation is a
system of four equations, the real and imaginary part of d(λ − sν, ν) and ∂νd(λ − sν, ν), in four variables,
the real and imaginary part of λ and ν. Finding the double roots of the dispersion relation, therefore, can be
done numerically using Newton’s method to solve this system of equations. Verifying the pinching condition
requires following the roots of the dispersion relation as Re λ becomes arbitrarily large.

Additionally, the spreading speed and the selected wavelength can be calculated from direct simulation.
A hybrid of Crank-Nicolson and explicit Euler finite difference scheme was employed in the simulation of this
system. The Crank-Nicolson scheme was used in the simulation of the diffusion terms, while the expicit Euler
scheme was used in the simulation of nonlinear and cross-terms. The size of the finite differences (∆x and
∆t) varied according to the expected wavelength and the spreading speed due to restrictions in simulation
time, but did not exceed values of 0.1. Simulation shows emergence of periodic patterns mentioned in Section
2.1 and the evolution of the front as it propagates into the unstable homogeneous equilibrium. Figure 2.3
shows the spacetime diagram that illustrates this phenomenon.

Figure 2.3: A spacetime diagram of v illustrating the invasion process after an initial perturbation at the
boundary. The invasion front propagates with constant speed through the unstable regime. This data is
used to compare the observed spreading speed with the results of the double root computation.

Figure 2.4 compares the spreading speeds calculated via the double root computation and those calculated
from simulation. The strong agreement between the spreading speeds computed from the double roots of the
dispersion relation and those observed in direct simulation indicates that instabilities in the linear system,
rather than the nonlinear terms, drive the propagating front and select the pattern observed in its wake.
Moreover, for values of χ close to 1, the spreading speed and wavelength also agree with the expansions
obtained in Sections 2.3 (Figure 2.6).

2.6 Periodic Steady States and Coarsening

Simulation indicates that the periodic pattern that emerges from an unstable homogeneous steady state is a
quasi-equilibrium, which eventually develops into a different periodic equilibrium with twice the wavelength.
This process is called coarsening. So far, we linearized the system about the homogeneous steady state
u∗ = v∗ to perform all our analysis in the previous sections. To investigate the coarsening dynamics we look
at periodic steady state solutions. The equilibrium condition to the one dimensional chemotaxis equations
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Figure 2.4: Spreading speed s∗ over two parameter ranges calculated from the double root computation (–)
as well as direct simulation (•). The strong agreement between the spreading speeds computed from the
double roots of the dispersion relation and those observed in direct simulation indicates that instabilities
in the linear system, rather than the nonlinear terms, drive the propagating front and select the pattern
observed in its wake.

Figure 2.5: The selected wavelength L over two parameter ranges calculated from the double root computa-
tion (–) as well as direct simulation (•).

(2.1) gives us

(ux − uvx)x = 0

κvxx + u− v = 0. (2.14)

From the first equation in (2.14) we have

ux − uvx = c

=⇒ (log (u)− v)x =
c

u
.

Now let the period be L. Since we considered periodic steady state solutions, the left side vanishes when
integrated over the period L. Because

∫
L

1
u is necessarily positive, we find that c = 0. Integrating once again

introduces a second constant of integration, µ. Simplifying we get u = eµ+v. Substituting into the second
equation of system (2.1), we obtain

κvxx + eµ+v − v = 0. (2.15)
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Figure 2.6: On left, comparison of spreading speed computed through expansions in 2.10 (–) and from
numerics (•) for κ = 0.5. They agree closely for χ close to 1. On right, plot of the relative error, that is of
L (observed) over L (predicted).

Figure 2.7: Comparison of selected wavenumber pre-
dicted (–) from (2.5) and from the numerics (•) for
κ = 0.5.

Figure 2.8: Comparison of spreading speed predicted
(–) from (2.13) and from numerics (•) for κ = 1. They
agree more closely as χ increases, as predicted in Sec-
tion 2.4.

We remark that this differential equation derives form the Hamiltonian

H = κ
v2x
2
− v2

2
+ eµ+v. (2.16)

which is conservative.
The fact that this system is conservative will be of special interest when we analyze the stability of its

fixed points.
It is readily observed that this system has a saddle-node bifurcation as µ is varied, specifically at v = 1

when µ = −1. Equation (2.15) has exactly one fixed point when µ = −1, no fixed points when µ > −1 and
two fixed points when µ < −1, which we shall refer to as v±. To determine the stability of these fixed points
we consider the Jacobian J of the the system,

J =

 0 1
1− eµ+v

κ
0

 .
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Figure 2.9: Phase portraits for the second-order ODE in Equation (2.15). Observe that a saddle-node
bifurcation occurs at µ = −1. When µ < −1 there are no fixed points for v, when µ = −1 there is exactly
one fixed point, and when µ > −1 there are two fixed points v±.

Evaluating at the fixed points the Jacobian becomes

J± =

 0 1
1− v±

κ
0

 .

The trace of J is always 0, so the determinant will determine the stability of the fixed points. Specifically,
because v− and v+ emerge at v = 1 and travel monotonically to 0 and infinity, respectively, as µ increases,
one fixed point will give the Jacobian a negative determinant, corresponding to a saddle point, while the
other gives the Jacobian a positive determinant corresponding to a center. Centers are usually sensitive to
nonlinearities, but because this is a Hamiltonian system the stability of this center is preserved and there
are periodic trajectories in the neighborhood of this fixed point.

Figure 2.9 illustrates that periodic solutions to Equation (2.15) orbit v+ and have a minimum value in
(v−, v+), thus every periodic solution to (2.15) can be uniquely identified by an initial condition vx = 0,
v ∈ (v−, v+), up to translations. Therefore, there is a one parameter family of periodic orbits, parameterized
by their global minima. Orbits near v+ are approximated by the simple harmonic oscillator with a period
of 2πκ

(1−v+) . As orbits approach the homoclinic orbit that connects v− to itself their periods grow to infinity.

2.6.1 Linearization

To study coarsening dynamics we first linearize the chemotaxis equations, given by system (2.1), about the
periodic steady states u∗, v∗

ut = uxx − u∗xvx − uxv∗x − u∗vxx − uv∗xx
vt = κvxx + u− v. (2.17)

or as a matrix equation ~ut = A~u where

A =

(
∂xx − v∗x∂x − v∗xx −u∗x∂x − u∗∂xx

1 κ∂xx − 1

)
.

For nonhomogeneous steady states, u∗x and v∗x do not vanish, so we must keep many of the terms that
disappeared in (2.3). As a result the linearization is more complicated and does not allow us to analyze the
system with the Fourier transform as we did before. Instead we use numerical methods to understand the
system near these periodic equilibria.
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2.6.2 Discretization of Periodic Steady States

Because u∗, v∗ are characterized by a system of non-linear differential equations, (2.14), we cannot find
them explicitly, rather we employ numerical techniques to approximate the linearization about these periodic
equilibria. We must discretize the system to perform this computation.

Discrete solutions for v∗ were obtained by solving the initial value problem of (2.15), the corresponding
u∗ solutions were obtained by the relation u∗ = eµ+v

∗
. Note that because the phase plane for v is reflection

symmetric about vx = 0, periodic solutions are even. Thus, solving the problem over one half period is
sufficient to describe solutions on the whole line. The numerical approximation to v∗ given by the solution
to the initial value problem is not necessarily periodic; this is because the numerical techniques do not
conserve the Hamiltonian (2.16) and therefore solutions do not lie on a closed orbit. Newton’s method was
used with this preliminary solution as an initial guess in order to solve the periodic boundary value problem,
ensuring that the solution lies on a periodic orbit.

In the construction of the boundary value problem symmetric finite differences were used to approximate
the derivative D with homogeneous periodic boundary conditions, while the usual second-order discrete
Laplacian L with homogeneous periodic boundary conditions was employed

D =
1

2∆x


0 1 −1
−1 0 1

. . .

−1 0 1
1 −1 0

 ,L =
1

∆x2


−2 1 1
1 −2 1

. . .

1 −2 1
1 1 −2

 .

Solutions to this problem, however, lie in a two dimensional subspace–relating to translation invariance and
mass conservation. To eliminate this problem, we introduced two additional equations, which limit solutions
to even functions with a fixed mass m∗, and two additional variables, σ and ε that artificially add mass
and translate the solutions u and v. This reduces the dimension of the solution space. The boundary value
problem, then, becomes

Lu−DuDv + σ + εDu = 0

Lv + u− v + εDv = 0

u(0)− u(L) = 0

u′(0)− u′(L) = 0
L∫

0

udx−m∗ = 0.

The solution that results from this procedure, however, has an arbitrary wavelength, not the wavelength as
would be naturally selected by a front that travels through the unstable homogeneous steady state described
in Section 2.1. Thus, the numerical double-root computation described in Section 2.5 was used to determine
the selected wavelength for a given κ and average mass. With this information, Newton’s method was
employed iteratively to solve the boundary value problem while slowly varying the period, by changing ∆x
in the D and L with a fixed number of points, in order to follow the solution to the selected wavelength. From
here, solutions were followed in mass, m∗, and the corresponding selected wavelength in order to generate a
family of steady state solutions for a given κ.

2.6.3 Coarsening Modes and the Discrete Approximation to the Linearization

The discretization described in the previous subsection allows us to rewrite the augmented matrix of equation
(2.17) as:

A =

(
L −Dv∗D −D2v∗ −Du∗D − u∗D2

I κL − I

)
.
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The eigenvalues of this matrix determine the stability of these periodic steady states. When the discretized
steady states u∗, v∗ contains only a single period, the linearization has no unstable eigenvalues and two zero
eigenvalues which correspond to translation invariance and mass conservation. Using discretized steady states
that contain two periods, however, allows neighboring peaks to interact and admits two distinct eigenvalues
which we will refer to as λ1/2. Figure 2.10 illustrates the dependence of these eigenvalues on the average cell
density, and suggests that each eigenvalue has a regime in which it dominates.

λ

mass

λ1

λ2

Figure 2.10: The first four eigenvalues of the linearization around a steady state with two periods. Note the
two zero eigenvalues. There are two distinct positive eigenvalues corresponding to two modes of coarsening.
There are clear regimes when one coarsening mode dominates over the other.

The eigenfunctions corresponding to these unstable eigenvalues give information as to the dynamics of
the system near these equilibria. These eigenfunctions are plotted in Figure 2.11 and suggest two distinct
mechanisms for coarsening. The eigenfunction corresponding to λ1 predicts a “parasitic” coarsening process
in which one spike grows while the other shrinks, the eigenfunction corresponding to λ2 predicts an “ag-
gregate” coarsening process in which the two spikes move towards each other and meet in the center of the
domain.

λ1 λ2

Figure 2.11: Eigenfunctions corresponding to the two unstable eigenvalues seen in Figure 2.10. These
eigenfunctions describe two different coarsening modes, a “parasitic” mode (λ1) in which one peak simply
grows at the expense of the other, and an “aggregate” mode (λ2) in which the two peaks move towards each
other and merge to make a larger peak.
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Although these eigenfunctions cannot predict the long term behavior of the system, we predict that the
parasitic eigenfunction will allow one spike to grow at the expense of the other, until the smaller spike has
been completely consumed, with little to no translation. The aggregate eigenfunction, we predict, will allow
spikes to move together and merge into a larger spike the center of the domain with little to no growth
beforehand.

Using our numerically generated periodic steady states, we prepare a periodic pattern of two periods
with a small random spatial perturbation. Direct simulation of this initial condition with periodic boundary
conditions leads to coarsening. We observe that the selected coarsening mode is predicted exactly by the
dominant eigenvalue, with a smooth transition from the parasitic coarsening mode to the aggregate coarsening
mode in the region where λ1 ≈ λ2. Figure 2.12 illustrates these different coarsening modes.

λ1 > λ2 λ1 ≈ λ2 λ1 < λ2

Figure 2.12: Periodic steady states perturbed with spatial white noise. Simulation results agree precisely
with the dominance of the parasitic eigenfunction in the parameter regime when λ1 > λ2 and the dominance
of the translational eigenfunction in the parameter regime when λ1 < λ2. In the intermediate regime where
λ1 ≈ λ2 a hybrid of the two coarsening modes is observed.

In fact, this dichotomy between parasitic and aggregate coarsening appears also in the spatial invasion
process; the primary invasion front is followed by a secondary coarsening front, see Figure 1.1. The transition
between parasitic coarsening and translational coarsening in the spatial invasion problem, however, is not
quite predicted by the eigenvalue computations here. In order to predict the dominant coarsening mode in the
spatial invasion problem one must repeat the invasion speed and selected wavenumber calculations described
in Section 2.2 for these selected periodic equilibria. Since the periodic equilibria are inhomogeneous, this is
a much more involved process and we did not pursue that here.

3 The Chemotaxis Model in Two Dimensions

3.1 Linearization and Stability Analysis

In two space-dimensions, one can follow many of the same recipes as in the one-dimensional case. From a
PDE perspective, a major difference between the one-dimensional and the two-dimensional case is the fact
that solutions in bounded domains with sufficient initial mass will blow up in finite time [7]. Of course, the
study of subsequent spike formation and possible coarsening is somewhat subtle, once concentrations become
infinite. We will therefore introduce aggregation-limiting terms as proposed in the literature [5], replacing
u∇v by a nonlinear function φ(u)∇v, where φ(u) = u for u ≤ umax and φ(u) ≡ umax otherwise. For umax

sufficiently large, the model then coincided with the classical Keller-Segel model [8].
In this section we are interested in whether we can study the formation of patterns in two-dimensions

as an invasion problem. We work on the cylinder where (x, y) ∈ R × S1, since we will only allow bounded
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Figure 3.1: Dispersion Surface: λ vs k and p for κ = 0.5, and χ = 1.5.

modulations in the transverse direction. As in Section 2.1 , the model is linearized around the homogeneous
steady state u∗,

ut = uxx + uyy − u∗(vxx + vyy)

vt = κ(vxx + vyy) + u− v.

We use the ansatz for the solution ~u(t, x, y) = eλt+νx+ipy ~u0 where λ, ν ∈ C and p ∈ R. Setting u∗ = χ, the
dispersion relation is

d(λ, ν, p) = (ν2 − p2 − λ)(κ(ν2 − p2)− 1− λ) + χ(ν2 − p2).

We notice that χ = 1 is the bifurcation point between stable and unstable states when p is small. For large p,
we will see that the system is always stable since the growth rate is negative. Hence χ > 1 is a necessary but
not sufficient condition for instability. We are interested in whether the parameter p gives rise to instabilities
and the spreading speeds associated with these. We will first consider χ close to 1 and obtain an expansion
for the speading speed and selected wave number. In these expansions, the dependency of the spreading
speed on p tells us how transverse modulations evolve when χ is close to 1. Next, in Section 3.3, we consider
the large χ limit to see how p affects the growth rate of the instability. For both these cases, we conclude
that for small modulations in the transverse directions, the instability spreads at a slower rate.

Similar to Figure 2.2, λ was plotted against the transverse and the longitudinal wave numbers in Figure
3.1. This is now a surface in two-dimensions. The picture is of course isotropic, and, fixing a longitudinal
wavenumber with maximal growth, we noticed that the growth rate is non-increasing as a function of the
transverse wave number, all other parameters kept constant. That is, p = 0 is the most unstable mode.
When p2 exceeds χ−1

κ , the growth rate is always negative.
Finally in Section 3.4 we present a discussion of transverse instabilities that are seen when we linearize

the chemotaxis system around a periodic steady state. Numerical results indicate that there are transverse
instabilities that appear behind the preliminary invasion front and create patterns.

3.2 Analytic Spreading Speed in 2D using Perturbations: χ close to 1

To investigate the linear stability of the system around the homogeneous steady state, we need to find the
double roots of the dispersion relation (Definition 1), for each fixed p ∈ R. That is, we solve

(ν2 − p2 − λ+ sν)(κ(ν2 − p2)− 1− λ+ sν) + χ(ν2 − p2) = 0

(2ν + s)(κ(ν2 − p2)− 1− λ+ sν) + (2κν + s)(ν2 − p2 − λ+ sν) + 2νχ = 0. (3.1)
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Since we will consider expansions of the solutions near the unstable equilibrium χ = 1, we set χ = 1 + µ,
where µ ≥ 0 is small. The variables are scaled as follows

λ̂ = λκ/µ2

ŝ = s
√
κ/µ3/2

ν̂ = ν
√
κ/µ

p̂ = p
√
k/µ.

Following the same procedure as in Section 2.3, we find solutions

λ̂ = 3ν̂4 − p̂4 + (ν̂2 + p̂2)− 2ν̂2p̂2 +O(µ)

ŝ = 4ν̂(ν̂2 − p̂2) + 2ν̂ +O(µ).

Once again, Re λ̂ = 0 and Im ŝ = 0 for ν̂ = η̂ + ik̂. We solve for η̂2 and k̂2

η2 =
−1 + 2p2 +

√
(7− 4p2 + 4p4)

24
+O(µ)

k2 =
3− 6p2 +

√
(7− 4p2 + 4p4)

8
+O(µ).

Now the linearized spreading speed and the double root are calculated

s =
µ3/2

√
κ

√
2

27

(
2− 4p2 +

√
7− 4p2 + 4p4

)√
−1 + 2p2 +

√
7− 4p2 + 4p4 +O(µ5/2)

ω =
µ2

κ

3− 6p2 +
√

7− 4p2 + 4p4

4

√
2 + 4p2 + 4p4 + (1− 2p2)

√
7− 4p2 + 4p4

6
+O(µ3)

Re ν =

√
µ

κ

√
−1 + 2p2 +

√
(7− 4p2 + 4p4)

24
+O(µ3/2)

Im ν =

√
µ

κ

√
3− 6p2 +

√
(7− 4p2 + 4p4)

8
+O(µ3/2).

Plotting s vs p in Figure 3.2 we see that the fastest spreading mode is at p = 0. Hence, for χ ≈ 1,
the spreading speed decreases with increasing p indicating that the fastest instability is the one with no
transverse modulation.

Figure 3.2: Spreading speed as a function of the transverse wave number
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3.3 Effect of p2 in the Large χ Limit

Recall from Section 2.4 that setting χ large in the linear approximation is equivalent to a chemotaxis model
where the chemical does not decay. Once again, κ is taken to be 1 for simplicity, since it allows us to easily
calculate explicit solutions. The dispersion relation is

(−λ+ sν + ν2 − p2)
2

+ χ(ν2 − p2) = 0.

When p = 0, we know the spreading speed and selected wavenumber from Section 2.3. We now study the
spreading speed as we perturb away from p2 = 0 to examine the effect of adding a small modulation in the
transverse direction. Perturbation is done around the solutions (ν∗, λ∗) found in the one-dimensional model
(2.13),

ν = ν∗ + ν1p
2 +O(p4)

λ = λ∗ + λ1p
2 +O(p4). (3.2)

Notice that Re λ1 measures the rate of change of Re λ with respect to p2. Now from the dispersion
relation we have

(−λ∗ − λ1p2 + s∗(ν∗ + ν1p
2) + (ν∗ + ν1p

2)
2 − p2)

2
+ χ((ν∗ + ν1p

2)
2 − p2) = O(p4). (3.3)

From the double root computation for the one-dimensional model in Section 2.4 we have the following

relations: (−λ∗ + s∗ν + ν2∗)
2

+ χν2∗ = 0 and (2ν∗ + s∗)(−λ∗ + s∗ν∗ + ν2∗) + χν∗ = 0. Hence (3.3) simplifies
and yields

λ1 = −1− χ

2(−λ∗ + s∗ν∗ + ν2∗)
.

Recall from Section 2.4 that s∗ = ±√χ, λ∗ = iχ/2, ν∗ =
∓√χ±i√χ

2 . Hence we get Re λ1 = −1/2. Finally
from (3.2) we have,

d(Re λ)

dp2
= −1/2 < 0.

Since λ measures the growth rate of instabilities, the above result shows that adding small modulations
in the transverse direction makes the instability spread at a slower rate.

3.4 Transverse Instabilities in Periodic Patterns

We see no evidence of transverse instabilities when we linearize about a homogeneous equilibrium; that is,
there are no transverse instabilities on the leading edge of the unstable front. Thus we turn again to the
linearization about (u(x, y), v(x, y)) = (u∗(x), v∗(x)), where (u∗(x), v∗(x)) are the periodic states studied in
Section 2.6. Noting that u∗y = v∗y = 0, in two dimensions the linearization becomes

u(t, x, y)t = uxx + uyy − u∗xvx − u∗xvx − u∗vxx − uv∗xx − u∗vyy
v(t, x, y)t = vxx + vyy − v + u.

We Fourier transform over the transverse direction to obtain the linear system ~ut = (A − p2B)~u where
~u = (u, v)T and A and B are given by

A =

(
∂xx − v∗x∂x − v∗xx −u∗x∂x − u∗∂xx

1 κ∂xx − 1

)
, B =

(
1 −u∗
0 1

)
.

By discretizing as we did in Section 2.6.3 we can obtain the eigenvalues λ of the matrix (A − p2B) and
construct the dispersion relation in the transverse wavenumber p. This dispersion relation is plotted in
Figure 3.3. The dispersion relation for the transverse wavenumber p is similar to the dispersion relation
illustrated in Figure 2.2 and reveals transverse instabilities that will appear behind the preliminary invasion
front and create patterns in its wake.
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Figure 3.3: λ as a function of p, the transverse wavenumber, for the chemotaxis equations linearized about
a periodic equilibrium. The positive maximum in the dispersion relation reveals transverse instabilities that
occur behind the preliminary invasion front.

Here we remark that when linearizing about a equilibrium that contains two periods, as pictured in Figure
3.3, the eigenvalues of (A− p2B) have a multiplicity of two. Moreover, the eigenvectors of these eigenvalues
correspond to the parasitic coarsening modes. This may be interpreted as follows. Transverse breakup of the
stripe patterns is much faster than one-dimensional coarsening (note the size of the eigenvalues in Figure 3.3
relative to those in 2.10). It is moreover largely independent of interaction between transverse stripes. As
a consequence, the linear analysis does predict a transverse wavenumber and therefore a transverse spacing
of a resulting periodic array of spikes. These periodic arrays may, however, shift relative to each other,
forming effectively patterns of hexagons or squares, say. The linear analysis cannot distinguish between such
arrangements because of the weak interaction between subsequent stripes.

4 Conclusion

In the one-dimensional Keller-Segel chemotaxis model, simulations showed that solutions which begin near
an unstable homogeneous equilibrium evolve into periodic patterns as time increases. These patterns form a
quasi-equilibrium which by a secondary invasion process develops a new pattern with double the wavelength.
For cell densities close to the threshold of instability, we obtained expansions for the speed of the primary
invasion front and the selected wavelength. In order to study the coarsening dynamics, we explored the
linearization about periodic equilibria. The unstable eigenvalues of this linearization and their corresponding
eigenfunctions revealed two different coarsening modes: a ”parasitic” mode in which one peak grows at the
expense of the other; and an ”aggregate” mode in which neighboring peaks move towards each other and
merge to form a larger peak.

In two space dimensions, we showed that the initial invasion front creates a periodic pattern with no
transverse dependence. Transverse patterning arises as a result of a transverse instability of these periodic
patterns in the leading edge of the front. We showed this by numerically examining the linearization at these
periodic patterns.
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