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Abstract Pedersen and Sherman have recently developed a multi-pool model
of insulin vesicle secretion from pancreatic beta-cells [12]. In the Pedersen-
Sherman model, pool sizes are reported as concentrations; however, concen-
trations of the different pools vary by as much as seven orders of magnitude.
Very low concentrations indicate there could be discrete numbers of vesicles in
some of the pools, leading naturally to the questions regarding stochasticity
in the signalling pathway. We therefore simulate a discrete counterpart of the
deterministic model with a (hybrid) Gillespie-style stochastic simulation al-
gorithm. The stochastic simulations are calibrated to the deterministic model
in the mean. We estimate the variances in pool sizes numerically and show
it closely tracks the mean, indicating a Poisson-like result. Our numerical re-
sults demonstrate that the mean behavior indicated in the Pedersen-Sherman
model is evident with just one islet.

Keywords Insulin secretion · Stochastic · Deterministic · Gillepie SSA ·
Variance · Mean

1 Introduction

Insulin is a hormone of the body that underlies energy regulation. The beta-
cell in the pancreatic islets of Langerhans is the site where insulin is produced
and packaged for release into the blood by a process called exocytosis. Insulin
secretion is mediated by calcium influx into the cell which raises cytosolic
concentrations. Insulin is folded into secretory “vesicles” deep in the cell in an

A. Dwivedi
Indian Institute of Science Education and Research, Pune, Maharashtra-411021, India
E-mail: ankit.dwivedi@alumni.iiserpune.ac.in

P. Goel
Indian Institute of Science Education and Research, Pune, Maharashtra 411021, India
E-mail: pgoel@iiserpune.ac.in

19

bmh
Text Box
 Copyright © SIAM  Unauthorized reproduction of this article is prohibited



  Ankit Dwivedi

organelle called the Golgi apparatus, and is transported to the cell membrane
to be readied for secretion. Insulin vesicles pass through a sequence of stages
of maturation in order to complete the process of binding with the membrane
before final release, as shown in Fig. 1. These “pools” typically contain a few
vesicles each. The kinetics of movement of vesicles between the pools is not fully
understood, and mathematical modeling is one approach used to complement
experimentation in this direction.

It is common practice in biochemistry to write down differential equations
for such reactions, assuming mass action kinetics is an effective model. These
equations are thus rooted in a continuum assumption, that the pools are well
represented as concentrations. However, such an assumption needs to be re-
examined when “copy numbers” of a specie (such as the insulin vesicles in the
various pools) are too few in number to warrant a concentration viewpoint.
The typical method of replacing the deterministic ordinary differential equa-
tions (ODEs) is the use of stochastic simulations due to Gillespie, called the
stochastic simulation algorithm (SSA). The SSA tracks the progress of the
particles of a specie in a manner statistically consistent with the reaction rate
equations. In the common applications of the SSA, however, reaction rates are
typically constant, i.e. independent of time.

Fig. 1 Schematic overview of the model. As explained by Pedersen and Sherman in [12],
the granules from reserve pool (RP) move towards the membrane passing through almost-
docked Pool (AP). Before docking to the membrane vesicles tether weakly with high affinity
for cytosolic calcium and are said to be in the highly calcium sensitive pool (HCSP). Then,
maturing further vesicles go through docking and priming and are said to be in docked
pool (DP) and primed pool (PP) , respectively. After priming the vesicles are in very close
vicinity of the calcium channels having low affinity for microdomain calcium and are said
to be in the immediately releasable pool(IRP). FHP and FIP are the fusion pools of
HCSP and IRP, respectively. RHP and RIP are the releasing pools of HCSP and IRP ,
respectively.

In a cell, vesicles are held in a large reserve pool (RP) from which they move
towards the membrane through an almost docked pool (AP). Here granules are
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tethered weakly to the membrane with a very high affinity for cytosolic calcium
(Ci) and are said to be in the highly calcium sensitive pool (HCSP). Maturing
further the granules undergo docking (DP) and then priming (PP). The primed
granules progress further into an immediately-releasable pool (IRP) in which
the granules are situated close to L-type calcium channels, and fuse with a
low affinity to microdomain calcium (Cmd). FHP and FIP are fusion pools of
HCSP and IRP, respectively. Once granules are fused the fusion pore expands
and the vesicles enter into releasing pools, RHP and RIP of HCSP and IRP,
respectively. The docked pool, primed pool and the immediately releasable
pool are collectively identified as the readily releasable pool (RRP) [12].

In [12], the authors have constructed a mathematical model of insulin vesi-
cle maturation and secretion in cells in islets of Langerhans. The reaction
overview of the multi-pool model of insulin vesicle secretion is as shown in
Fig. 2. The model is modified from earlier work [2,12], and includes nine con-
secutive vesicle pools representing granules in different states. The dynamics of
each vesicle pool is represented by ODEs and is recapitulated in the Appendix:
Supporting information.
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Fig. 2 Reaction overview of the model by Pedersen and Sherman [12]. The rates r5, r3, r2

and fH(Ci) are a function of cytosolic calcium Ci and the rate fI(Cmd) is the function of
microdomain calcium Cmd.

The Pedersen-Sherman vesicle model is a theoretical model of granule se-
cretion, that is, the existence of these several pools is inferred on the basis of
model calibration to experimental data. The model compels an exercise to de-
tect the molecular identity of these pools experimentally. However, an attempt
to study the microscopic nature of secretion with the model will necessarily
have to contend with two difficulties: (i) The granular nature of vesicles, and
(ii) the stochasticity of transitions events and secretion. In the present work
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we study both of these aspects of the Pedersen-Sherman model: We construct
a model equivalent to [12] with integral numbers of granules in the various
pools, and in addition, reactions are determined stochastically as well.

Insulin secretion is well known to follow a two-phase pattern: a sharp, high-
amplitude rapid release phase that lasts about 5 minutes, and a longer, more
sustained slow phase that develops over an hour. Different mechanisms have
been suggested for the two phases. In one theory, the first phase is large due
to exocytosis of the already docked granules and the second phase secretion is
relatively flat and rises with a very slow rate due to being fed from newcomer
granules [3,6]. Another line of experimental evidence indicates that two differ-
ent releasing pools with different calcium sensitivities exist [18,19]. Pedersen
and Sherman propose that including a pool with a high calcium sensitivity
away from the L-type calcium channels leads to the newcomer granules partic-
ipating in the second phase of insulin secretion [9,8]. To calibrate their model
Pedersen and Sherman follow the experimental protocols of Yang et al. [18,
19] in which the membrane was depolarized to 20 mv three times for 10 ms to
stimulate the IRP, followed by a photo elevation of Cai to 1.8 µM to release
the HCSP. Parameters in [12] were chosen to represent the pools sizes obtained
by Rorsman et al. [14]. To obtain release in the model on longer timescales -
on the order of an hour - a burst-protocol was used: successive square pulses
of membrane depolarisation from -70 mV to 20 mV. Thus a fast protocol was
picked to study secretion on a timescale of a few seconds, and a slow protocol
studied secretion over a time course of 50 minutes; the two protocols reveal
the relative contributions to secretion from the RRPs.

Before experiments can be carried out to investigate the identity and dy-
namics of the pools anatomically, it would be useful to know if the model
can be placed on a firmer theoretical basis. Since experiments are carried out
in terms of individual copy numbers, a translation of the concentration val-
ues to numbers is necessary. If there were large copy numbers in the pools
across multiple cells, then the average behavior of the ensemble will directly
correspond to the concentrations in the Pedersen-Sherman model (that is, in
the thermodynamic limit of stochastics). Experiments, however, are performed
with a few islets, and pool sizes are typically only in the tens per islet. Then
it is necessary to know, a priori, minimum numbers of islets necessary to con-
duct experiments such that the deviation from the asymptotic scenario can be
treated as relatively small. In a hand waving sense, tens of thousands of copy
numbers are required in order to be able to safely ignore fluctuations in a sim-
ulation. To the best of our knowledge such estimates not yet been constructed
for this system: There is no way to know if fluctuations are an important
consideration for extending the Pedersen-Sherman model to experiments.

Further, for fitting models to experimental data it is imperative to know
what variance to expect in the measured values. When the conditions of the
Central Limit Theorem are satisfied [4,17], variance typically scales as 1/

√
N

with sample size, N. However as we shall show below that this system behaves
in a Poissonian fashion instead, and as such variance is equal to the mean
regardless of the sample size. That is, when the size of the variation is equal to
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the size of signal itself it becomes challenging to pick out an average response
especially from a few cells. Moreover, the variance cannot, a priori, be expected
to decrease with the addition of a few more cells. Thus it is not clear how many
experiments (i.e. how many cells) are required in order to obtain a reliable
estimate of mean behavior (and variance as well).

Our stochastic simulations that track the copy numbers of vesicles reinforce
the continuum-based Pedersen-Sherman model. It validates the mean behav-
ior of the deterministic model as an average over multiple cells. Further, the
stochastic simulations give a sense of the variance to be expected in secretion
from individual cells. Our numerical results also demonstrate that the mean
behaviour of the Pedersen-Sherman model is recovered over a thousand cells.

In the chemical reaction system when the rates are constant and do not
depend on time, it is well known that using the Gillespie algorithm the average
over several stochastic simulations is the deterministic solution. In [15] it has
been shown that this holds true for the case with time-dependent rates as well.

In the insulin secretion granule pools model, as cytosolic calcium and mi-
crodomain calcium change with time, the reaction rates of the pool are time
dependent. We propose to check numerically that using the Gillespie stochastic
simulation algorithm on this model, the mean over several stochastic simula-
tions is same as the deterministic solution. In fact because the Poisson process
is involved, the variance should be equal to the mean as well.

2 The hybrid Gillespie algorithm with time-dependent rates

The granule pools are stimulated by an influx of calcium through L-type cal-
cium channels; the model responds to both microdomain and cytosolic calcium
rises. Calcium time courses are prescribed in the model, and the rate constants
that are sensitive to calcium determine propensities of the reactions in a time-
varying fashion. We therefore adopt a hybrid Gillespie SSA, that is, using
ODEs to implement the choice of next reaction in the stochastic equations.
This algorithm is a modification of the classical Gillespie SSA [5] to include
time-dependent propensities, as explained in Fig. 3.

We note that although there are several software packages that allow for
stochastic simulations, such packages as COPASI [7] typically cannot solve
coupled ODE-SSA simulations. The modification of the SSA that accommo-
dates time varying propensities is as follows. In the Gillespie SSA the next
reaction time is exponentially distributed with a rate parameter equal to the
total propensity, p0 =

∑M

k=1 pk of M reactions. The hybrid Gillespie algorithm
replaces the constant propensities pk with time-varying propensities pk(t). In
the Gillespie SSA the time of the next reaction, tnext, is distributed expo-
nentially, that is, e−p0 tnext . The hybrid Gillespie algorithm accounts for time-
dependent propensities by replacing the tnext distribution as e−

∫

0

tnext p0(t)dt

[1]. As in the insulin granule pools model some of the rates are dependent on
the time varying calcium as in Eqs. (22) and (23) in Appendix: Supporting
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Information. We therefore use hybrid Gillespie SSA to carry out the stochastic
simulations.

Fig. 3 Flowchart representing the steps involved in hybrid Gillespie SSA. At t=0, initial
granule number of the pools is defined (red box). Then, total propensity is calculated corre-
sponding to the reactions taking place in the system (green box), which is time-dependent.
Later, two random numbers ξ1 and ξ2 are generated from uniform distribution, ξ1 is used
to calculate the time of occurrence of the next reaction and ξ2 is used to select the reaction
occurring at time of occurrence of the next reaction. The granule numbers of the pools
involved in the selected reaction are updated and the process is repeated.

The pseudocode for the hybrid Gillespie SSA is as follows:

1. Compute the total propensity as

p0(t) =

M
∑

k=1

pk(t) (1)

where the index k parameterizes the M reactions involved, pk(t) is the
time-varying reaction rate of the kth reaction.

2. Generate two uniformly distributed random numbers, ξ1, ξ2 ∈ U [0, 1].
3. Assume a reaction has just taken place. Initiate a differential equation

equating a dummy variable to the total propensity, dX(t)
dt

= p0(t) together
with X(0) = 0.

4. Integrate until X(τ) = − ln ξ1.
5. Update the species involved in the reaction using ξ2 identically as in SSA.
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We note that step (3) calls for integration of the time-varying total propen-
sity. In the simulations below we use a simple Euler scheme with a small time
step to capture stopping events with a reasonable accuracy. The algorithm can
probably be investigated for more efficient integrators, which may in fact work
well with additional optimizations such as tau-leaping [13]; we do not pursue
these directions further in this paper.

3 Results

Pedersen and Sherman [12] describe two different stimulation protocols used to
extract information about secretions responses from the pools. We term these
the “fast” and “slow” protocols: the fast protocol is best suited for studying the
secretion response over 10 seconds, while the slow protocol exacts longer time
responses over 50 minutes. We first discuss the fast protocol , and will consider
the slow protocol in the following sections. An islet is typically comprised of
about a 1000 beta-cells. Each stochastic run corresponds to the behavior of a
single cell. Here we would like to ask how many islets are expected to be re-
quired for experiments? That is, how many runs does it take for the stochastic
simulations to agree, in the mean sense, with the deterministic model of Peder-
sen and Sherman. We calculate the mean and variance for both the protocols,
and see that the mean and the variance agree well around 1000 simulations.
The reason that the variance is higher for the large pools is because the mean
is higher as well, and for small pools the variance is lower because the mean
is lower, refer Appendix: Reservoir coupling induces variance.

3.1 Fast responses to calcium pulses

When simulating the model for the fast protocol as defined by Pedersen and
Sherman in [12], we have taken microdomain calcium Cmd and cytosolic cal-
cium Ci to be close fits to the calcium traces solved via ODEs in [12]. Simulat-
ing with the Pedersen-Sherman calcium equations, the stochastic simulations
were not tracking the sudden changes in the IRP due to the microdomain cal-
cium. The sudden peaks in Cmd were not tracked by the SSA. This is why, we
use the fits of the equations with broader pulses. We have used the MATLAB
fit tool to fit the solution of the calcium ODEs as defined by Pedersen and
Sherman in [12]. Cmd is composed of three thin square pulses at 0.1 sec, 0.2
sec and 0.3 seconds of width 0.01 seconds as shown in Fig. 4(a). Ci is held at
steady-state until a sudden rise to 2µM at 0.5 seconds depicting a flash re-
lease as shown in Fig. 4(b). The corresponding fit equations are as mentioned
in Appendix: Supporting information, Eqs. (24) and (25).
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Fig. 4 The fast stimulation protocol. Calcium concentration curves (red) compared with
the fits of the calcium concentration curves provided in Eqs. (24) and (25). Calcium con-
centrations (µM) are plotted versus time used to detect fast responses of the model. (a)
Microdomain calcium is approximated as a function with 3 square pulses at t = 0.1 s, 0.2
s and 0.3 s and (b) Cytosolic calcium is a function with sudden rise of concentration at t
= 0.5 s to depict flash release of calcium and closely overlaps with the cytosolic calcium
defined by Pedersen and Sherman.

We show the mean and variance over 1000 stochastic runs compared to the
deterministic solution for all the nine pools corresponding to the fast protocol,
shown in the figures below:
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Fig. 5 Figures (a)-(c) are the almost docked pool (AP), docked pool (DP) and primed pool
(PP) , respectively, simulated with the fast protocol shown in Fig. 4 for 10 seconds. These
are large pools and do not show an appreciable depletion over fast time scales. 20 stochastic
runs (green) are overlaid on the deterministic solution (black). The mean (red) of AP, DP
and PP over 1000 runs and variance (blue) are seen to lie close together.
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Fig. 6 Figures (a)-(c) are the highly calcium sensitive pool (HCSP), its fusion (FHP)and
releasing pool (RHP) , respectively, simulated with the fast protocol shown in Fig. 4 for
10 seconds. The mean (red) of HCSP, FHP and RHP over 1000 runs and variance (blue)
are seen to lie close to each other. 20 stochastic runs (green) and the deterministic solution
(black) are also overlaid. The HCSP pool responds to a rise in cytosolic calcium Ci at t =
0.5 seconds, but is largely insensitive to microdomain calcium.
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Fig. 7 Figures (a)-(c) are the immediately releasable pool (IRP), its fusion (FIP) and
releasing pool (RIP) , respectively, simulated with the fast protocol shown in Fig. 4 for 10
seconds. The mean (red) of IRP, FIP and RIP over 1000 runs and variance (blue) are seen to
lie close to each other. Overlaid are 20 stochastic runs (green) and the deterministic solution
(black). The IRP chain is sensitive to the three pulses of Cmd but not to Ci. IRP is only
slowly replenished from DP and PP over ten seconds.
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In figures (5-7) we compute the mean (red) and variance (blue) over 1000
stochastic simulations with the fast protocol up to 10 seconds. To solve the
ODEs involved in the Hybrid SSA, an Euler method was used with a timestep
of 10−4. Fig. 7 shows that the IRP chain detects the three square pulses of
the microdomain calcium at 0.1, 0.2 and 0.3 seconds due to a proximity to
the L-type calcium channels. The HCSP pool detects the rise in the cytosolic
calcium photo released at 0.5 seconds, Fig. (5, 6) but responds to microdomain
calcium to a very small extent. Therefore, first phase insulin secretion is largely
due to RIP (the releasing pool of IRP) and the second phase is due to RHP
(that releasing pool of HCSP) as described in [12].

The average over 1000 runs of a stochastic model shows good agreement
with the deterministic curves (black). This suggests that the Pedersen-Sherman
model denotes the average behavior of roughly about one islet. Notice also the
variance in individual runs (20 such trajectories are overlaid in green) is or the
same order as the mean; an average variance computed from the 1000 runs
(blue traces) also confirm the theoretical relationship expected of this system,
namely variance is equal to the mean. We therefore confirm that the results of
the Pedersen-Sherman deterministic concentrations for the fast protocol can
be interpreted as the mean of at least 1000 stochastic simulations.

3.2 Slow responses to calcium pulses

In this section we discuss the slow protocol described by Pedersen and Sher-
man [12]. In the slow protocol in order to simulate the glucose stimulation
the rate of mobilization of granules from RP to AP is augmented by a factor,
Gluc:

r5 = Gluc r50
Ci

Ci+Kp
, (2)

where,

Gluc =

{

1 for 0 ≤ t < 10

3 for t ≥ 10.
(3)

Cmd and Ci are fit to the calcium traces in [12], shown in Fig. 8. The
fits closely trace the calcium concentrations of Pedersen and Sherman in [12].
Hence, we use the fitted functions instead of computing Ci and Cmd in order
to save on computational costs involved in solving the full calcium differential
equations, especially since small time steps would need to be used to ensure
accurate solutions. Microdomain calcium Cmd is 263.5 µM for t < 90 seconds
and switches between the values 0.1132 µM and 263.5 µM at 30 second in-
tervals for 3000 seconds as shown in Fig. 8(a). Similarly, cytosolic calcium Ci

switches at 30 seconds intervals for 3000 seconds as show in Fig. 8(b).The Ci

fit equation is mentioned in Appendix: Supporting information, Eq. 26
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Fig. 8 The slow stimulation protocol induced by a burst-like depolarisation pattern. The
calcium trace in the deterministic model follows voltage switches (not shown), up from -70
mV to -20 mV at t = 0, 120, 180, 240 and so on up to 3000 seconds and down from -20 mV
to -70 mV at t = 90, 150, 210 and so on up to 2970 seconds [19,12]. Fitted microdomain
and cytosolic calcium (in µM) (black) are shown for the first 300 seconds, and closely
approximate the curves in [12] (red).

We show the mean and variance over 1000 stochastic simulations com-
pared to the deterministic results for the slow protocol in [12]. The individual
stochastic simulation solutions are not shown for the slow protocol. The figures
corresponding to the stochastic simulation for the slow protocol are as shown
below:
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Fig. 9 Figures (a)-(c) are the almost docked pool (AP), docked pool (DP) and primed pool
(PP), respectively, simulated with the slow protocol shown in Fig. 8 over 3000 seconds. These
large pools are influenced by an increased flux of granules from RP by glucose amplification,
Eq. (2), and show an appreciable change over these long timescales . The mean (red) and
variance (blue) have converged close to the deterministic solution (black) for 1000 cells.

32



A stochastic version of the Pedersen-Sherman insulin secretion model

0 500 1000 1500 2000 2500 3000
5

10

15

20

25

30

Time (seconds)

H
C

S
P

(a) HCSP

0 50 100 150 200
9

10

11

12

13

14

15

16

Time (seconds)

H
C

S
P

(b) HCSP; first 200s

0 500 1000 1500 2000 2500 3000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (seconds)

F
H

P

(c) FHP

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

Time (seconds)

F
H

P

(d) FHP; first 200s

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

Time (seconds)

R
H

P

(e) RHP

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

Time (seconds)

R
H

P

(f) RHP; first 200s

Fig. 10 Figures (a)-(c) are the highly calcium sensitive pool (HCSP), its fusion (FHP)and
releasing pool (RHP), respectively, stimulated with the slow depolarisation protocol shown
in Fig. 8 over 3000 seconds. (b), (d) and (f) are the zoomed views of HCSP, FHP and RHP,
respectively up to 200 seconds. The mean (red) of HCSP, FHP and RHP over 1000 stochastic
runs and variance (blue) are seen to lie close to the deterministic solution. The HCSP pool
responds actively to the cytosolic calcium, Ci, and is largely insensitive to microdomain
calcium, Cmd. Notice the slow overall increase in the HCSP is the major component of
second phase insulin secretion.
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Fig. 11 Figures (a)-(c) are the immediately releasable pool (IRP), its fusion (FIP) and
releasing pool (RIP), respectively, stimulated with the slow depolarisation protocol shown
in Fig. 8 over 3000 seconds. (b), (d) and (f) are the zoomed view of IRP, FIP and RIP,
respectively for the first 200 seconds. The mean (red) of IRP, FIP and RIP over 1000
stochastic simulations and variance (blue) are seen to lie close to the deterministic solution.
The IRP chain is sensitive to the microdomain calcium, Cmd, and much less to cytosolic
calcium, Ci. Notice that secretion is heavy in the first phase.

In figures (9-11) we compute the mean (red) and variance (blue) over 1000
stochastic simulations with the slow protocol for 3000 seconds. The Euler
time step was taken to be 10−4. Fig. 9 shows the mean and variance for
the large pools AP,DP and PP which are influenced by an increased flux of
granules from RP by glucose amplification. These pools show an appreciable
change over the long timescale. The highly calcium sensitive pool (HCSP),
its fusion pool (FHP) and its releasing pool (RHP) are shown in Fig. 10.
These pools respond mainly to the cytosolic calcium (Ci) and are largely
insensitive to the microdomain calcium (Cmd). The increase in the HCSP is the
major component of second phase insulin secretion. Fig. 11 shown immediately
releasable pool (IRP), its fusion pool (FIP) and releasing pool (RIP). These
pools are mainly sensitive to Cmd and much less to Ci. Secretion from the IRP
is dominant in the first phase.
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In the case with slow protocol also, we show that mean over 1000 stochas-
tic simulations shows good agreement with the deterministic results in [12].
Also, the average variance computed from the 1000 runs (blue traces) agrees
with the theoretical relationship expected of this system, namely variance is
equal to the mean. We therefore confirm that the results of the Pedersen-
Sherman deterministic concentrations for the slow protocol can be interpreted
as the mean of 1000 stochastic simulations as also shown for the fast protocol
simulations in the above section.

Therefore, we can confidently state that the mean over around 1000 stochas-
tic simulations or one islet (1000 cells) is enough to trace the Pedersen-Sherman
deterministic results [12].

4 Discussion

The Pedersen-Sherman model is currently the most comprehensive insulin se-
cretion model which is able to explain an impressive array of experimental
observations [10,11,16]. However, before it can be successfully used together
with experiments to determine the molecular identities of the granule pools,
a few questions need to be addressed of the model itself, namely the consid-
eration of discrete vesicle numbers and the stochasticity of transition events.
From an experimentation point of view, it is crucial to know the coarseness
with which measurements need to be made, that is, whether to seek concen-
trations or discrete particles. Our model assumes each pool is comprised of
integral numbers of granules, and estimates the mean behaviour of stochastic
runs over multiple beta-cells. The current model is thus able to inform instru-
mentation in advising the technique appropriate to detection of each pool: for
the large pools AP, DP and PP, modeling techniques sensitive only to mass
concentrations are likely to be adequate, while for the smaller pools, the HCSP
and IRP chains, algorithm that explicitly tracks discrete numbers would prob-
ably be best effective. When the experimental technique used is also sensitive
to fluctuations (such as atomic force microscopy or total internal reflection
microscopy), we note that variances in the pool sizes are expected to be on
the order of the mean copy numbers.

Finally, in order to use the Pedersen-Sherman model to study mean be-
haviour, our simulations have indicated that around thousand beta-cells are
enough to get good expected values of the means. Thus, one islet is ought to
be sufficient to perform experiments with.
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A Appendix : Supporting Information

A.1 Equations

Reactions in the stochastic model, Fig. 2, correspond to the differential equations in [12].
Initial conditions are shown in Table A.2, and the parameters are given in Table A.3.

IRP ′ = (r1 PP − r−1 IRP − fI (Cmd) IRP ) (4)

PP ′ = (r−1 IRP − (r1 + r−2) PP + r2 DP ) (5)

DP ′ = (r3 HCSP + r−2 PP − (r−3 + r2) DP ) (6)

AP ′ = (r5 − r−5 AP − r4 AP + r−4 HCSP ) (7)

HCSP ′ = (r4 AP − (r−4 + r3) HCSP + r−3 DP − fH(Ci) HCSP ) (8)

FIP ′ = (fI (Cmd) IRP − u2 FIP ) (9)

RIP ′ = (u2 FIP − u3 RIP ) (10)

FHP ′ = (fH(Ci) HCSP − u2 FHP ) (11)

RHP ′ = (u2 FHP − u3 RHP ) (12)

where r2 = r20
Ci

Ci+Kp2

; r3 = r30
Ci

Ci+Kp
; r5 = r50

Ci
Ci+Kp

In [12] Cmd and Ci are solved via the following ODEs. Molar fluxes through L-type and
R-type calcium channels are defined as

JL = α IL/vmd, (13)

JR = α IR/vcell, (14)

where the respective currents are

IL = gL m∞(v) (V − VCa), (15)

IR = gR m∞(v) (V − VCa), (16)

with
m∞(v) = 1/(1 + exp((Vm − V )/sm)) (17)

Calcium pumps and calcium stores fluxes are

Jserca = Jmax
serca

C2

i

K2
serca+C2

i

, (18)

Jpmca = Jmax
pmca

Ci

Kpmca+Ci
, (19)

Jncx = Jncx0 (Ci − 0.25) (20)

L = Jserca + Jpmca + Jncx + Jleak, (21)

Compartmental calcium equations are:

C′

md = (−fmd JL − fmd B (Cmd − Ci)), (22)

C′

i = (−fi JR + fv fi B (Cmd − Ci)− fi L), (23)

where Cmd is microdomain calcium and Ci is bulk cytosolic calcium concentration, measured
in µM .
Instead of using the equations for calcium compartments mentioned above, we have fit Cmd

and Ci using time-dependent functions as described below:
The fit equations corresponding to the fast protocol are as follows:

Cmd(t) = 0.11 + 48.01 Θ(t − 0.1) Θ(0.1 + 0.01− t))

+(Θ(t − 0.2) Θ(0.2 + 0.01− t))

+(Θ(t − 0.3) Θ(0.3 + 0.01− t)), (24)
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where, Θ(t) is the Heaviside function. Ci is held at steady-state until a sudden rise to 2µM
at 0.5 seconds following a flash release as shown in Fig. 4(b):

Ci(t) =























0.06 for t < 0.5
{

1.3 exp(−((t + 0.63)/1.2)2)

+(3.3× 108) exp(−((t + 1036)/220.8)2)

+1.4 exp(−((t − 0.47)/2)2)
}

for t ≥ 0.5

(25)

The Ci fit equation corresponding to the slow protocol is as follows:

a(t) = 0.3 exp(−((t − 53.43)/232.3)2) + 0.0048 exp(−((t − 5.85)/3.02)2)

− 1.3× 1010 exp(−((t − (−37.3))/7.5)2)

− 0.0028 exp(−((t − 13.55)/4.3)2) + 0.0036 exp(−((t − 3.6)/1.73)2)

+ 0.0068 exp(−((t − 11.81)/6.13)2) + 0.0054 exp(−((t − 16.8)/17.26)2)

b(t) = (5.02 × 104) exp(−((t + 19.1)/5.45)2)

+ 0.076 exp(−((t − (−851.6))/1985)2) (26)

Ci is increasing at a rate a(t) and decreasing with rate b(t).

Fusion rates from IRP (fI (Cmd)) and HCSP (fH (Ci)) follow Hill functions,

fI(Cmd) = fmax
I

Cn
md

Kn
I

+Cn
md

, (27)

fH(Ci) = fmax
H

Cn
i

Kn
H

+Cn
i

(28)

A.2 Initial conditions

Pool numbers at the beginning of the simulations were assigned from an appropriate normal
distribution, N(µ,

√
µ), where µ corresponds roughly to the steady-state concentration of the

pool. Table A.2 shows the distributions corresponding to each pool, and the steady state
values of microdomain and cytosolic calcium concentrations as well [12].

Table A.2: Initial conditions and steady state

Pool Initial condition

IRP N(8,
√

8)

PP N(38,
√

38)

DP N(298,
√

298)
FIP 0
RIP 0

AP N(965,
√

965)

HCSP N(12,
√

12)
FHP 0
RHP 0

Calcium domain Steady state (µM)
Cmd 0.0674
Ci 0.06274
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A.3 Parameters

Parameters of the model are as in [12].

Table A.3: Parameters

Parameter Value Parameter Value

r1 0.005 s−1 gL 150 pS
r−1 0.025 s−1 gR 150 pS
r20 0.00015 s−1 Vm -20 mV
r−2 0.001 s−1 VCa 25 mV
r30 0.002 s−1 Sm 5 mV
r−3 0.00007 s−1 Jmax

Serca
41 µM/s

r4 0.002 s−1 KSerca 0.27 µM
r−4 0.16 s−1 Jmax

pmca 21 µM/s

r50 0.224 s−1 Kpmca 0.5 µM
r−5 0.0002 s−1 Jleak -0.94 µM/s
u1 2000 s−1 Jncx0 18.67 s−1

u2 3 s−1 fmd 0.01
u3 0.02 s−1 fi 0.01
kp 0.01 B 17250 s−1

kp2 0.01 α 5.18× 10−15 µmol/s/fA
fmax

I
30 s−1 vcell 1.15× 10−12 pl

KI 22 µM vmd 0.00385 × 10−15 pl
fmax

H
30 s−1 fv vmd/vcell

KH 2.5 µM n 4
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B Appendix : Reservoir coupling induces variance

It is interesting to note that there are two major sources of variance in pool sizes. We discuss
next its implications in the context of the stochastic model simulations.

Copy numbers of the pools are integral, and stochastic, as are the transitions between
the states as well; hence variance is introduced into granule numbers as the system evolves.
In other words, even if multiple instances of the model were each started with the same
initial numbers of granules, in say AP, fluctuations would be rapidly introduced in the pools
downstream (and AP as well). On the other hand, the simulations have also to account for
the fact that even if the pools are at equilibrium, that is, unstimulated, fluctuations will
naturally arise in the pool numbers simply from stochastic transitions between the various
states. Each of these sources of variation in the pools has important implications for a correct
estimation of the expected values of variance in the simulations.

In the Pedersen-Sherman model the almost-docked pool is in contact with a large
reservoir-style “reserve pool”, a much larger source of vesicles maintained in the Golgi body
with which the AP is largely in equilibrium. (Because of this flux from the reserve pool
we view this is an open system). On the other hand, if the AP were modeled as a fixed,
large-sized pool with no source term, that closed system would differ from the open system
in only an RP ←→ AP flux. In the Pedersen-Sherman model AP decays very slowly during
exocytosis, at least over a few seconds. For modeling AP on that timescale, either an open or
a closed system would appear to be very similar. Indeed, in either situation the mean sizes
of all the pools are very nearly identical (simulations not shown). However, it turns out that
if the pools are initiated with the same constant numbers across multiple instances of the
stochastic simulations, that is, in the closed system, variance is invariably underestimated
throughout time (without affecting the mean). It is therefore important to assign variance
correctly when determining the initial values of pool numbers. In other words, we have to
account for fluctuations in the initial states of the pools at equilibrium1, or a component of
variance would be missing in the simulations.

This behavior can be demonstrated in a simple example. We compute below the expec-
tations of mean and variance for a simple decay process, with and without coupling to a
source flux.

1. A simple decay process. For a pure death process

AP
k1−→ φ (29)

the mean evolves as
dE[AP]

dt
= −k1 E[AP], (30)

and the variance can be shown to be

Var[AP] = AP(0) e−k1t

(

1− e−k1t

)

, (31)

where E[AP] and Var[AP] represent the expectation value of mean, and variance of
AP(t), respectively [4,17]. Figure 12 shows the average result of 5000 instances of this
process. Notice that variance is zero in the beginning because we assume each simulation
to be started with exactly the same number of AP particles, namely AP(0) = 5.

2. A decay process coupled to a reservoir. On the other hand, for

k0−→ AP
k1−→ φ. (32)

the mean evolves as
dE[AP]

dt
= k0 − k1 E[AP], (33)

1 Of course, the open system has the additional advantageous feature that the system can
asymptotically be in an equilibrium with a reservoir, while in a closed system AP would
(eventually) be depleted completely.
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Fig. 12 The average behaviour of E[AP] and Var[AP] over 5000 instances using Gillespie
SSA. In both open and close system, in each instance AP(0) = 5 and Var[AP](t=0) = 0.
Also the parameters k0 = 3 and k1 = 1. In the open system, both the mean and the variance
are settling near the value k0/k1. In the closed system, E[AP]→0 and Var[AP]→0 as t→∞.
Notice also that if k0 << k1, the asymptotic value of E[AP] in (32) is nearly zero as well.

and
dE[AP2]

dt
= k0 − 2k1 E[AP2] + (2k0 + k1)E[AP]. (34)

The variance can be computed from Eqs. (33) and (34); its steady-state value can be seen
to satisfy Var[AP] = k0/k1. Also notice that, as above, Var[AP(t = ∞)] = E[AP(t =
∞)], although only system (32) can asymptotically be at an equilibrium away from zero.

Figure 12 demonstrates that variance in the open system ought to be initialized to the
steady-state mean values of the pools. For details of the initial pool sizes in the model
simulations see Table A.2.

Thus variance in the pool sizes arises from two sources, only one of which is the stochas-
ticity that arises as the system evolves. The other component that introduces variance in
the system is reservoir coupling: initial fluctuations, especially in the AP pool, need to be
accounted correctly before calcium stimulations can be examined in the model.
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