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Abstract. We develop a mathematical model that determines the “best all-time college coach(es)”

of the past century in a given sport. We propose ranking college coaches through Markov chain-

based aggregation of ranked lists using holistic criteria. Our model synthesizes four full or partial

ranked lists based on win percentages, victories, career durations, and effort levels to produce the

final comprehensive rankings. As a demonstration, we determine that Ron Mason, Augie Garrido,

and Gus Donoghue are the top all-time college coaches of the past century in NCAA Division I

men’s ice hockey, baseball, and men’s soccer, respectively. Our general model is applicable not only

across all possible sports but also to both male and female coaches. Additionally, it accounts for

differences among coaches in their coaching time-periods.
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1. Introduction

In this paper, we develop a mathematical model that determines, using various criteria, the

“best all-time college coach(es)” of the past century in a given sport. Ranking college coaches

based on a single factor, such as the win percentage, tends to be biased. For instance, in the
1
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Men’s Ice Hockey Coaching Records of the National Collegiate Athletic Association (NCAA) [4],

Alfred Winsor Jr. (1906–1922) is ranked number one on the list of “Winningest Coaches All-Time

by Percentage [of Wins]” under “Division I Coaching Records.” Although his win percentage—

the percentage of wins out of the total games coached—is 0.761, he has only 86 victories—the

number of wins out of the total games coached—compared to Ron Mason (1967–2002), who has

924 victories. Mason is ranked first on the “Winningest Coaches All-Time by Victories” list and

third on the “Winningest Coaches All-Time by Percentage [of Wins]” list, whereas Winsor does

not even appear on the former list. These rankings neither account for the generational differences

between Winsor and Mason’s coaching time-periods with respect to the number of total games

a college team played nor use holistic criteria. In order to compensate for these deficiencies, we

propose ranking college coaches through Markov chain-based rank aggregation. This method allows

for various partial ranked lists, which are lists that rank only a select number of coaches, to be

aggregated into a single ranked list [1]. To implement this method, we first compile two available

partial ranked lists, which are based on win percentages and victories, from the NCAA. Alongside

these lists are additional coaching statistics such as years of coaching experience and total number

of games coached. Using this data, we generate two new ranked lists—based on years of coaching

experience and “effort level”—to expand standards of evaluation. Our model synthesizes these four

ranked lists to determine the top five all-time college coaches of the past century in NCAA Division

I men’s ice hockey, baseball, and men’s soccer. Our general model is applicable to all college sports

and both genders.

2. Mathematical Model

2.1. Rationale. Availability of data is an influential factor when choosing an appropriate model

for ranking. It is often difficult and expensive to obtain a complete set of raw data for a full list

of college coaches regarding their win percentages, salaries, years of coaching experience across

various divisions of a sport, and so on. Although databases of this sort are not usually in the public

domain, ranked lists, especially those based on just one criterion, are abundant in this information

age. Rank aggregation blends the available partial ranked lists into a more comprehensive ranking.

It is an effective technique to create a superior ranking using obtainable data [2].

To aggregate the ranked lists, we use a rating method that involves the “casting of votes” [2] by

one individual or item for another. A relatively weak entity in a list casts, according to a criterion,

one or more votes for a stronger entity in recognition of the stronger entity’s superiority. In this

process, every entity obtains a number of votes, attributable to multiple ranked lists. Mathemati-

cally manipulating the summation of these votes produces a stochastic matrix, which is also called

a transition probability matrix. Graphically, this matrix contains the probabilities of a “random

walker” transitioning from every node to every other on a graph that has a node representing every

entity. In one’s imagination, the proportion of time the random walker spends on each node in the

long-run determines the final ranking [2]. The power of this method lies in its pairwise comparison

of all entities with one another [1].

The above outlined Markov chain-based method that aggregates both available partial ranked

lists and further-generated ranked lists is a particular algorithm motivated by Dwork et al.’s

study [1], which compares different methods of rank aggregation. According to the study, rank

13



DETERMINING TOP ALL-TIME COACHES THROUGH MARKOV RANK AGGREGATION

aggregation using Markov processes is effective for comparing partial lists where some entities ap-

pear on all the lists and other entities appear only on one or a few lists; that is, this Markov method

is effective whenever the partial ranked lists in question are not disjoint. Since we mainly deal with

data from multiple lists with some coaches appearing more than once, the Markov method is prefer-

able. Dwork et al. [1] also mention the effectiveness of the Markov method when handling “top-m”

lists, which preserve the ranks of only coaches who are ranked within m places in the partial lists

and nullify the ranks of the others ranked below m. Top-m lists are discussed thoroughly in the

next section. The Markov method is both computationally efficient and capable of easily handling

partial lists that are widely available on the web [1]. This method is, therefore, practical for ranking

the top five all-time college coaches in any sport.

2.2. Methodology. The first step is to rank different coaches under various criteria using available

data. Let there be v “data-lists” with different data about u coaches such that aij is the datum

relating to coach i on list j. Note that u, v ∈ N and u, v ≥ 2; also, note that the indices i and j

belonging to the sets C = {i ∈ N : i ≤ u} and L = {j ∈ N : j ≤ v} relate to coaches and data-lists

respectively. Then, v ranked lists corresponding to the data-lists are generated as follows: let rij of

the j-th ranked list be the ranking of coach i on the data-list j; specifically, let rij be the rank of

aij based on its magnitude relative to the other values in the data-list j such that duplicate values

in the data-list j have the same rank. The ranked list j could be in ascending or descending order,

but the “best” value(s) in the list j should have a rank of 1.

For example, the first column of Table 1 contains a portion of the list of u = 72 men’s ice

hockey coaches in the past century with a minimum of 10 years of coaching experience at the

Division I level [4]; the second and the third columns contain v = 2 data-lists [4] relating to the win

percentages and victories respectively, while the fourth and fifth columns contain the v = 2 ranked

lists corresponding to the two data-lists respectively.

Coach Wi. Vi. Wi. rank Vi. rank T-5 wi. rank T-5 vi. rank

Ron Mason 0.6961 924 3 1 3 1

Jerry York 0.6138 913 30 2 0 2

Jack Parker 0.6433 873 19 3 0 3
...

...
...

...
...

...
...

Table 1. Win percentage (wi.), victories (vi.) [4], the ranks on the win percentages-

based and victories-based ranked lists—wi. rank and vi. rank respectively—and the

corresponding ranks on the top-5 lists—t-5 wi. rank and t-5 vi. rank, respectively—

of each of 72 Division I men’s ice hockey coaches. Table 10 in the Appendix is the

full version of this table.

Complete sets of desired data concerning all coaches might not always be available. Generally,

only data related to a select group of coaches, who are highly ranked in a few of the categories and

unranked in the rest, are available. Such “partial lists” of data can skew the final ranking when

only the ranked lists are used, as it would ignore the data of the missing coaches. The purpose

of the second step is to mitigate this by creating “top-m” lists, which retain the top m ranks but

14



                                                        JAY, KARAPAKULA, AND KRAKOFF

render the lower ranks null, as column vectors of a matrix. Let m ∈ N be a “cut-off” parameter

such that m ≤ u. Then, let bij be the entry located on the i-th row and the j-th column of the

u× v matrix B such that

bij =

{
rij if rij ≤ m

0 if rij > m.

The sixth and seventh columns of Table 1, for instance, contain the top-5 lists, where m = 5,

relating to win percentages and victories of the Division I men’s ice hockey coaches respectively.

Depending on the choice of m, the matrix B, which contains the top-m lists in the form of column

vectors, could have one or more rows all filled with 0’s, signifying that some of these coaches have

ranks below m in all of the categories and thus must not be considered for the final ranking. The

purpose of the third step is to eliminate the data of these coaches before proceeding further. Let

u0 be the number of rows i in B for which
∑v

j=1 rij = 0; that is, let u0 be the number of rows i in

B having all entries zero. Then, a new matrix C is obtained from B by removing these u0 rows as

follows. Let n = u− u0. Have cst be the entry located on the s-th row and t-th column of an n× v
matrix C such that cst = bij , where t = j, for a certain coach i, whose ranks in various ranked lists

are all on the s-th row, given that
∑v

t=1 cst 6= 0 for every row s. In this matrix C, each row has at

least one nonzero element; that is, each coach represented in this matrix C has a rank within m in

at least one of the categories.

The matrix C relating to the top-5 lists for Division I men’s ice hockey coaches comprises the

second and the third columns of Table 2.

Coach T-5 wi. Rank T-5 vi. Rank

Ron Mason 3 1

Jerry York 0 2

Jack Parker 0 3

Rick Comley 0 4

Red Berenson 0 5

Ned Harkness 2 0

Vic Heyliger 5 0

Larry Armstrong 4 0

Alfred Winsor Jr. 1 0

Table 2. Win percentages-based and victories-based top-5 lists relating to Division

I men’s ice hockey coaches.

According to Langville and Meyer [2], “[the] Markov rating method can be summarized with one

word: voting.” Every column in the matrix C is related to a top-m list, which is further related

to a certain ranking under a category. Rankings on every top-m list can be thought of as results

of contests between the coaches against one another in a particular category. According to the

“results” (or rankings) in that particular category, a higher-ranked coach would receive “vote(s)”

on behalf of a lower-ranked coach in acknowledgement of the fact that the higher-ranked coach
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fares better than the lower-ranked coach in that category. The number of votes the higher-ranked

coach receives from the lower-ranked coach depends on the number of places the higher-ranked

coach is ahead of the lower-ranked one on the corresponding top-m list; this is purely a heuristic.

Of course, a lower-ranked coach does not receive any “votes” from a higher-ranked coach, and a

coach whose rank is null in that particular category can neither cast “votes” for nor receive them

from other coaches. Also, a coach cannot vote for himself. Note that all of these are also heuristics.

The fourth step is to record the number of votes the coaches cast for one another in each category.

For this purpose, let dt,xy be the entry located on the x-th row and the y-th column of the n × n
matrix Dt (among v such n× n matrices) such that

dt,xy =

{
cxt − cyt if cxt ≥ cyt ≥ 1

0 otherwise;

in specific, dt,xy = 0 when cxt = 0, or when cyt = 0, or in the case where 1 ≤ cxt < cyt. Thus, dt,xy

indicates the theoretical number of votes the x-th row’s coach casts for the y-th column’s coach

according to the top-m list in the t-th column of C. In the example of Division I men’s ice hockey

coaches, the win percentages-based matrix D1 and the victories-based matrix D2, both of whose

rows and columns relate to Ron Mason (RM), Jerry York (JY), Jack Parker (JP), Rick Comley

(RC), Red Berenson (RB), Ned Harkness (NH), Vic Heyliger (VH), Larry Armstrong (LA), and

Alfred Winsor Jr. (AW) respectively, are as follows:

D1 =

RM JY JP RC RB NH VH LA AW



0 0 0 0 0 1 0 0 2 RM

0 0 0 0 0 0 0 0 0 JY

0 0 0 0 0 0 0 0 0 JP

0 0 0 0 0 0 0 0 0 RC

0 0 0 0 0 0 0 0 0 RB

0 0 0 0 0 0 0 0 1 NH

2 0 0 0 0 3 0 1 4 VH

1 0 0 0 0 2 0 0 3 LA

0 0 0 0 0 0 0 0 0 AW

;

D2 =

RM JY JP RC RB NH VH LA AW



0 0 0 0 0 0 0 0 0 RM

1 0 0 0 0 0 0 0 0 JY

2 1 0 0 0 0 0 0 0 JP

3 2 1 0 0 0 0 0 0 RC

4 3 2 1 0 0 0 0 0 RB

0 0 0 0 0 0 0 0 0 NH

0 0 0 0 0 0 0 0 0 VH

0 0 0 0 0 0 0 0 0 LA

0 0 0 0 0 0 0 0 0 AW

.

The fifth step is to aggregate all the votes the coaches cast for one another in all categories. For

this, let Q = [qgh]n×n with qgh =
∑v

t=1 dt,gh; in other words, Q = D1 + D2 + · · · + Dv. In the

previous example, Q = D1 +D2, and so
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Q =

RM JY JP RC RB NH VH LA AW



0 0 0 0 0 1 0 0 2 RM

1 0 0 0 0 0 0 0 0 JY

2 1 0 0 0 0 0 0 0 JP

3 2 1 0 0 0 0 0 0 RC

4 3 2 1 0 0 0 0 0 RB

0 0 0 0 0 0 0 0 1 NH

2 0 0 0 0 3 0 1 4 VH

1 0 0 0 0 2 0 0 3 LA

0 0 0 0 0 0 0 0 0 AW

.

A ranking vector can be teased out from Q, the matrix that contains the sum of votes for each

candidate under consideration, by first normalizing all the rows of Q to form a stochastic or a sub-

stochastic matrix [2]. A sub-stochastic matrix can occur if there is at least one row filled completely

with zeros, that is, if at least one coach is unranked in all categories except for one in which he

is ranked first. A heuristic can be used to deal with a sub-stochastic matrix: assume that each of

the aforementioned coach(es) responsible for the sub-stochastic matrix has a normalized row with

equal probabilities under all columns in a right stochastic matrix; this would happen if he were

to cast one vote in one category for everyone, including himself. This is obviously an exception

to two rules: a coach is not eligible to cast a vote for himself and an unranked coach cannot cast

a vote for others. In order to carry out this fifth step of creating the final stochastic matrix, let

αg =
∑n

h=1 qgh. Then, let the final left stochastic matrix S be the transpose of W = [wef ]n×n, an

n× n right stochastic matrix with

wef =


qef
αe

if αe 6= 0

1

n
if αe = 0.

In the example of Division I men’s ice hockey coaches,

S =

RM JY JP RC RB NH VH LA AW



0 1 0.6 0.5 0.4 0 0.2 0.16 0.1 RM

0 0 0.3 0.3 0.3 0 0 0 0.1 JY

0 0 0 0.16 0.2 0 0 0 0.1 JP

0 0 0 0 0.1 0 0 0 0.1 RC

0 0 0 0 0 0 0 0 0.1 RB

0.3 0 0 0 0 0 0.3 0.3 0.1 NH

0 0 0 0 0 0 0 0 0.1 VH

0 0 0 0 0 0 0.1 0 0.1 LA

0.6 0 0 0 0 1 0.4 0.5 0.1 AW

.

Determining the final rating vector involves solving the eigensystem S~z = ~z to obtain the station-

ary probability vector ~z, the dominant right eigenvector of S—associated with dominant eigenvalue

1—whose vector components sum to one. The Perron–Frobenius theorem guarantees the existence

and uniqueness of such a stationary probability vector [6]. A variation of a metaphor used by

Langville and Meyer [2] explains the intuition behind the usage of stationary probability vector for
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the final ranking of coaches. Suppose a person who is curious about all-time best coaches takes

a random walk on a graph constructed using a Markov chain defined by S, the left stochastic

or transition probability matrix, each element of which represents the probability of transitioning

from the node of its column’s coach to that of its row’s coach. Then, the dominant eigenvector

relating to the chain represents the “long-run proportion of the time [the random walker] spends

in the states of the chain” [2]. Therefore, the overall rankings are obtained by assigning ranks to

the values of ~z in descending order.

For the same example dealing with the two top-5 lists of men’s ice hockey coaches, whose Markov

graph is shown in Figure 1, Winsor is ranked first, Mason second, Harkness third, York fourth,

and Parker fifth, as they tally with the five highest probabilities in the corresponding stationary

probability vector

~z =
RM JY JP RC RB NH VH LA AW( )
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Figure 1. Markov graph for the specified example of men’s ice hockey coaches.

2.3. Assumptions. The first assumption in the methodology is that the number of votes a higher-

ranked coach receives from a lower-ranked coach is equal to the number of places the higher-ranked

coach is ahead of the lower-ranked one in a particular ranking. This assumption is reasonable as

it is ideal to place more weight on higher-ranked coaches in the final stochastic matrix. However,

this heuristic remains an assumption of the model because each ranking is being thought of as a

result of “contests” between the coaches while in reality the coaches in different time periods have

not necessarily “competed” against one another. Also, it is possible that the ratings or data (in the

data-lists) of some coaches are too close to one another to justify the differences in the rankings.

This could occur especially when data such as win percentages are used for ranking. On a related

note, we choose to give each ranked list an equal weight.
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The second assumption is that every coach responsible for a sub-stochastic matrix—that is, every

coach who is unranked in all the categories except for one category in which he is ranked first—has

a “dangling node” [2] that loops back to itself with the same probability that it points toward other

nodes. An example of a dangling node is that of Winsor (AW) in Figure 1. Although creation

of such node(s) fixes a sub-stochastic matrix, the assumption is that the coach would act as if he

cast a vote for everyone, including himself, in one category. This, of course, is a violation of the

rules that a coach cannot cast a vote for himself and that an unranked coach cannot cast a vote

for others. The assumption, therefore, is that this sort of violation of the rules is acceptable when

Q has a row filled with all zeros.

3. Ranking Men’s Ice Hockey Coaches

To rank the top five all-time coaches in men’s ice hockey, we use the college coaching records

data published by the NCAA [4]; similar data is available for all college sports. We first select

lists that rank past and present coaches who have ten or more years of coaching experience. We

choose to consider only the coaches at the Division I level, which is the most competitive level of

college sports. The lists rank the coaches by both their victories and win percentages. The data

regarding years of coaching experience and total games coached are also available for the coaches

on these ranked lists. Since our model strives to show the top five all-time coaches of the past

century, we consider only coaches whose careers include at least one year between 1913 and 2013.

This procedure renders u, the parameter indicating the number of coaches initially considered in

the ranking process, a value of 72.

We first consider a model aggregating two ranked lists, one based on win percentages and another

on victories; in this case, v = 2. The number of victories is the number of wins out of the total

games coached. The NCAA [4] defines win percentage of a coach as the division of the sum of

victories and half the number of ties by the total number of games coached.

Ranking using win percentages is a valuable way to compare coaches who have coached a similar

number of games. However, Alfred Winsor Jr. ranks number one on the win percentages-based

ranked list despite having coached far fewer games than the other coaches on the same list. Figure 2

is a graph of the total number of games (T ) coached by every listed inactive coach plotted against

the last year (L) of his career. The exponentially fitted curve for this data is T = 10−17e0.0229L

with an R2 of 0.7067. This moderately strong coefficient of determination implies that the number

of games coached in one’s career has increased almost exponentially over time.

To balance this bias, we aggregate the win percentages-based ranked list with the victories-

based ranked list. We do this by first creating two top-50 lists, which have m = 50, using the

aforementioned ranked lists. Since Winsor won only a few games during his career (1906–1922)

in comparison with the other coaches, his rank is nullified—that is, his rank is assigned a value

of zero—on the victories-based top-50 list. Then, using the Markov process to combine the two

top-50 lists eliminates much of the bias associated with each ranked list published by the NCAA.

As a consequence, Winsor, Harkness, Mason, Berenson, and York emerge as the top five coaches

in the final ranking. Table 3 shows the ranks on win percentages-based and victories-based top-50

lists, represented by t-50 wi. rank and t-50 vi. rank respectively, along with the overall rank of each

of these top five coaches.
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T = 10–17e0.0229L

R² = 0.7067
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Figure 2. Total games of inactive coaches versus their retirement timings [4].

Coach T-50 wi. rank T-50 vi. rank Overall rank

AW 1 0 1

NH 2 27 2

RM 3 1 3

RB 10 5 4

JY 30 2 5

Table 3. Top five all-time Division I men’s ice hockey coaches determined using

win percentages-based and victories-based top-50 lists.

This aggregated ranking gives Winsor preference because he is the sole coach to appear on only

one of the two lists. Graphically, this result is intuitive. Winsor casts no votes for the others, and

Mason (ranked first in victories) ranks two places below Winsor in win percentage. As a result,

Mason casts two votes for Winsor. Since many votes are cast for Mason, whenever Mason’s node is

reached on the Markov chain, there is a high probability that Winsor’s node is the next destination.

Table 3 also illustrates the inherent power of the Markov method in comparing all coaches pairwise

with one another: although Harkness is ranked twenty seventh on the victories-based ranked list, he

fares better than Mason in the win percentages-based “contest;” this consequently gives Harkness

an edge in the overall rankings.

To diversify preferences in rank aggregation and explore more complex models, we increase v;

this is achieved by manipulating available data and generating more data-lists as a result. We

first increase v to 3 by including a ranked list based on years of coaching experience, presuming

that in general coaches with longer careers are more “experienced” and better than coaches with

shorter terms in Division I. This is a generated list; it is derived from the NCAA-published data [4]

on coaching experience pertaining to the coaches on the two available win percentages-based and

victories-based ranked lists, because the NCAA does not separately publish a complete set of data
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regarding career durations. Furthermore, we observe no significant correlation between L and years

of coaching experience, so incorporating this ranked list into the aggregated model does not induce

any obvious partiality. When career durations are also considered, making v = 3, while m is still

50, Mason, Winsor, York, Harkness, and Parker are ranked first through fifth overall, respectively.

Table 4 displays the t-50 wi. rank, the t-50 vi. rank, and the t-50 ex. rank—the rank on the coaching

experience-based top-50 list—along with the overall rank of each of these top five coaches.

Coach T-50 wi. rank T-50 vi. rank T-50 ex. rank Overall rank

RM 3 1 4 1

AW 1 0 0 2

JY 30 2 1 3

NH 2 27 28 4

JP 19 3 2 5

Table 4. Top five all-time Division I men’s ice hockey coaches determined using

win percentages-based, victories-based, and experience-based top-50 lists.

While coaching experience is a good criterion for ranking, there may be huge differences in the

total games coached among coaches with a similar number of years coached. This is especially true

in the case of men’s ice hockey coaches, as can be seen in Figure 2, which shows that there has

been a tremendous increase in the workload and responsibility for coaches over time. To address

this concern, we increase v to 4 by creating a fourth data-list based on a new measure called “effort

level.” We define effort level as the division of the total number of games coached by the number

of years of coaching experience. This data-list approximates the average number of games coached

per year for each coach. When the data-list containing effort levels is also used in the final ranking

process, making v = 4, while m equals 50, Mason, Berenson, York, Winsor, and Parker are ranked

first through fifth overall, respectively. Figure 3 shows the Markov graph for this process, which

synthesizes win percentages-based, victories-based, coaching experience-based, and effort levels-

based top-50 lists. Table 5 displays the t-50 wi. rank, the t-50 vi. rank, the t-50 ex. rank, and the

t-50 ef. rank—the rank on the effort level-based top-50 list—along with the overall ranking of each

of the top five coaches. Table 6 presents the win percentage (wi.), victories (vi.), years of coaching

experience (ex.), and effort level (ef.) of each of the top five coaches.

Coach T-50 wi. rank T-50 vi. rank T-50 ex. rank T-50 ef. rank Overall rank

RM 3 1 4 20 1

RB 10 5 12 2 2

JY 30 2 1 15 3

AW 1 0 0 0 4

JP 19 3 2 24 5

Table 5. Top five all-time Division I men’s ice hockey coaches determined using win

percentages-, victories-, coaching experience-, and effort levels-based top-50 lists.
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Figure 3. Markov graph related to synthesis of the four top-50 lists based on

holistic criteria for Division I men’s ice hockey coaches.

Overall rank Coach Wi. Vi. Ex. Ef.

1 Ron Mason (1967–2002) 0.6961 924 36 38.53

2 Red Berenson (1985–2012) 0.6693 752 28 42.18

3 Jerry York (1973–2012) 0.6138 913 40 39.10

4 Alfred Winsor Jr. (1906–1922) 0.7611 86 13 8.69

5 Jack Parker (1974–2012) 0.6433 873 39 37.06

Table 6. Statistics [4] of the top five all-time Division I men’s ice hockey coaches

determined using win percentages-, victories-, coaching experience-, and effort levels-

based top-50 lists.

4. Discussion

4.1. Sensitivity Analysis. We test the robustness of our model by varying the parameter m. Ta-

ble 7 shows the top five coaches resulting from Markov chain-based aggregation of win percentages-

based, victories-based, coaching experience-based, and effort levels-based ranked lists relating to

Division I men’s ice hockey coaches for different values of m.
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Rank m = 10 m = 20 m = 30 m = 40 m = 50 m = 60 m = 70

1 RM AW RM RM RM RM RM

2 JY RM AW RB RB RB RB

3 AW RB RB AW JY JY JY

4 JP DW NH JY AW AW JP

5 NH NH DW DW JP JP RC

Table 7. Top five all-time Division I men’s ice hockey coaches determined using win

percentages-based, victories-based, experience-based, and effort levels-based top-m

lists for different values of m. Note that DW refers to Doug Woog.

In Table 7, Mason (RM) is almost always ranked first, and Berenson (RB) is consistently ranked

second for m = 40, 50, 60, 70. York (JY) is also steadily ranked third when top-50, top-60, and

top-70 lists are used. This pattern indicates that the rankings of the top coaches become consistent

as m gets closer to its largest possible value, although there are subtle positional changes elsewhere.

Moreover, even for seven different values of m, the top five positions are always filled by five of the

eight names, namely, AW, DW, JP, JY, RB, RC, RM, and NH. This suggests that there are only

minor changes in the top collection of coaches for different values of m. Therefore, our model is

fairly robust to changes in m.

4.2. Strengths. As evinced in the sensitivity analysis, our model is fairly robust. This model

can easily handle ranked lists of unequal lengths, providing a way to combine partial ranked lists

with computational efficiency [1]. Moreover, the mathematical model is applicable even when a

complete set of raw data is available. Since the NCAA provides limited data regarding coaches in

all college sports, this model has a fair degree of generality. Furthermore, the methodology does not

suggest any gender-specific measures, so this model is applicable in ranking all coaches, regardless

of their genders, of a chosen sport. The model accounts for differences among coaches in their

coaching time-periods by using win percentages along with victories as criteria in rank aggregation.

In addition, incorporating career durations-based and effort levels-based ranked lists into the final

ranking allows for the appreciation of coaches with relatively more coaching experience and those

who coached relatively more games per year, respectively. Thus, our model uses holistic criteria

for ranking.

4.3. Weaknesses. Our model does not take into account the top coaches based purely on years

of experience and on effort levels, because the corresponding lists are generated using the other

ranked lists. As a consequence, we might be excluding some top coaches in the categories of

coaching experience and effort level. In addition, the model disadvantages active coaches, whose

careers are not yet over, as their data does not reflect their future potential. However, this is

acceptable because the aim of the model is to rank the top “all-time” coaches. Consideration of

active coaches in the model could be seen as accounting for the possibility that some of them could

have already outpaced the inactive ones in some categories.
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5. Additional Applications

5.1. Ranking Baseball Coaches. Table 8 presents the the win percentage (wi.), victories (vi.),

years of coaching experience (ex.), and effort level (ef.) of each of the top five all-time Division

I baseball coaches. This list is determined using win percentages-based, victories-based, coaching

experience-based, and effort levels-based top-50 lists obtained from the baseball coaching records

published by the NCAA [3]. Augie Garrido emerges as the best coach.

Overall rank Coach Wi. Vi. Ex. Ef.

1 Augie Garrido (1969–2012) 0.6849 1847 44 61.43

2 John Barry (1921–1960) 0.8071 619 40 19.25

3 Gene Stephenson (1978–2012) 0.7351 1798 35 69.94

4 Mike Martin (1980–2012) 0.7432 1723 33 70.33

5 Cliff Gustafson (1968–1996) 0.7925 1427 29 62.14

Table 8. Statistics [3] of the top five all-time Division I baseball coaches determined

using win percentages-based, victories-based, coaching experience-based, and effort

levels-based top-50 lists.

5.2. Ranking Men’s Soccer Coaches. Table 9 presents the the win percentage (wi.), victories

(vi.), years of coaching experience (ex.), and effort level (ef.) of each of the top five all-time

Division I men’s soccer coaches. This list is determined using win percentages-based, victories-

based, coaching experience-based, and effort levels-based top-50 lists obtained from the men’s

soccer coaching records published by the NCAA [5]. Gus Donoghue comes forth as the top “all-

time” men’s soccer coach.

Overall rank Coach Wi. Vi. Ex. Ef.

1 Gus Donoghue (1946–1960) 0.8707 121 15 9.8

2 Jerry Yeagley (1973–2003) 0.8210 544 31 22.26

3 Stephen Negoesco (1962–2000) 0.7365 540 39 19.95

4 Jack Mackenzie (1969–2011) 0.6518 516 43 19.77

5 Sigi Schmid (1980–1998) 0.8098 322 19 22

Table 9. Statistics [5] of the top five all-time Division I men’s soccer coaches

determined using win percentages-based, victories-based, coaching experience-based,

and effort levels-based top-50 lists.

6. Conclusion

The final results of the model that uses top-50 lists are as follows. The top five NCAA Division

I men’s ice hockey coaches are Ron Mason, Red Berenson, Jerry York, Alfred Winsor Jr., and

Jack Parker. The top five NCAA Division I baseball coaches are Augie Garrido, John Barry, Gene

Stephenson, Mike Martin, and Cliff Gustafson. The top five NCAA Division I men’s soccer coaches

are Gus Donoghue, Jerry Yeagley, Stephen Negoesco, Jack Mackenzie and Sigi Schmid. This model

24



                                                         JAY, KARAPAKULA, AND KRAKOFF

is applicable to coaches of all college sports and both genders. It also accounts for differences

among coaches in their coaching time-periods. Sensitivity analysis reveals that our model, whose

key feature is pairwise comparison and rank aggregation using Markov processes, is fairly robust.

Our model also theoretically extends to account for the possibility that all the ranking criteria

may not be equally important. In the algorithm we suggest, the matrix of aggregated votes, Q,

is simply
∑v

i=1Di, where Di is the matrix of votes based on the top-m list of ranked list i. This

assumes that all the ranking criteria have equal importance. This restriction is relaxed by letting

Q =
∑v

i=1 γiDi, where γ1, γ2, . . . , γv ∈ R+, as an alternative, thus enabling a flexible weighting of

the ranked lists. Further work could explore more generalizations of our model.
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Appendix

Coach Wi. Vi. Wi. rank Vi. rank T-5 wi. rank T-5 vi. rank

Ron Mason 0.6961 924 3 1 3 1

Jerry York 0.6138 913 30 2 0 2

Jack Parker 0.6433 873 19 3 0 3

Rick Comley 0.5557 783 46 4 0 4

Red Berenson 0.6693 752 10 5 0 5

Len Ceglarski 0.6578 672 14 6 0 0

Jeff Sauer 0.5494 655 51 7 0 0

Mike McShane 0.6489 610 16 8 0 0

Don Lucia 0.6331 596 22 9 0 0

George Gwozdecky 0.5951 573 38 10 0 0

John Maclnnes 0.6462 555 17 11 0 0

Jack Riley 0.6099 542 31 12 0 0
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Coach Wi. Vi. Wi. rank Vi. rank T-5 wi. rank T-5 vi. rank

John Kelley 0.6647 501 12 13 0 0

Richard Umile 0.6359 497 21 14 0 0

Joe Marsh 0.5333 482 57 15 0 0

Murray Armstrong 0.6735 460 9 16 0 0

Doug Ross 0.6026 457 34 17 0 0

Bill Wilkinson 0.4838 437 64 18 0 0

Rick Gotkin 0.5800 434 43 19 0 0

Shawn Walsh 0.6786 423 7 20 0 0

John Gasparini 0.5974 407 37 21 0 0

Mike Gilligan 0.5442 407 53 21 0 0

Craig Dahl 0.5029 407 60 21 0 0

Bob Johnson 0.6160 406 28 24 0 0

Doug Woog 0.6634 390 13 25 0 0

Amo Bessone 0.4591 387 71 26 0 0

Ned Harkness 0.7404 380 2 27 2 0

Mike Sertich 0.4867 375 63 28 0 0

Charlie Holt 0.6307 364 23 29 0 0

Tim Taylor 0.4356 354 72 30 0 0

Don Cahoon 0.4684 346 69 31 0 0

Jeff Jackson 0.6767 342 8 32 0 0

Brian Cavanaugh 0.5249 341 58 33 0 0

Rand Pecknold 0.5853 337 41 34 0 0

Bob Daniels 0.4819 334 65 35 0 0

Mike Schafer 0.6300 332 24 36 0 0

Bruce Marshall 0.4741 332 66 36 0 0

Jerry Welsh 0.4654 328 70 38 0 0

William J. Cleary Jr. 0.6143 325 29 39 0 0

Vic Heyliger 0.6859 318 5 40 5 0

Dean Blais 0.6437 317 18 41 0 0

Ralph Weiland 0.6426 316 20 42 0 0

Tim Whitehead 0.5549 315 47 43 0 0

Don Vaughan 0.5007 314 62 44 0 0

Bob Gaudet 0.4720 312 68 45 0 0

Edward J. Jeremiah 0.5538 308 48 46 0 0

Mark Morris 0.6527 306 15 47 0 0

Rob Riley 0.5031 306 59 47 0 0

Frank Serratore 0.4730 304 67 49 0 0

Mark Mazzoleni 0.5861 302 40 50 0 0

Scott Owens 0.6082 299 32 51 0 0

Dick Bertrand 0.6066 292 33 52 0 0

Al Renfrew 0.5017 288 61 53 0 0

Brush Christiansen 0.5531 287 49 54 0 0

Enrico Blasi 0.5985 286 36 55 0 0
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Coach Wi. Vi. Wi. rank Vi. rank T-5 wi. rank T-5 vi. rank

Murray Murdoch 0.5393 278 55 56 0 0

Terry Slater 0.5782 251 44 57 0 0

Lou Lamoriello 0.5716 244 45 58 0 0

Thom Lawler 0.6172 242 27 59 0 0

Brad Buetow 0.5510 239 50 60 0 0

Mike Addesa 0.6013 236 35 61 0 0

Mike Eaves 0.5492 218 52 62 0 0

George Menard 0.5944 204 39 63 0 0

John Mariucci 0.5836 197 42 64 0 0

Tom Serratore 0.5388 195 56 65 0 0

Olav Kollevoll 0.6225 153 26 66 0 0

Cheddy Thompson 0.6689 150 11 67 0 0

Larry Armstrong 0.6882 123 4 68 4 0

Clarence Wanamaker 0.6258 97 25 69 0 0

Joseph Stubbs 0.6806 95 6 70 0 0

J. Howard Starr 0.5394 87 54 71 0 0

Alfred Winsor Jr. 0.7611 86 1 72 1 0

Table 10. Win percentage (wi.), victories (vi.) [4], the ranks on the win

percentages-based and victories-based ranked lists—wi. rank and vi. rank

respectively—and the corresponding ranks on the top-5 lists—t-5 wi. rank and

t-5 vi. rank, respectively—of each of 72 Division I men’s ice hockey coaches.
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