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Abstract

In this paper, we propose and analyze a class of blind source separation (BSS)
methods to recover mixed signals in a noisy environment. Blind source separation
aims at recovering source signals from their mixtures without detailed knowledge
of the mixing process. Motivated by the work presented in [23], we propose a new
optimization method based on second order statistics that considers the impact of
Gaussian noise. By treating the Gaussian noise as a separate source signal and using
an extra measurement of the mixed signals, we formulate the source separation
problem as a global optimization problem that minimizes the cross-correlation of
the recovered signals. In the case when the cross-correlation of the source signals
is exactly zero, we give precise solvability conditions and prove that our global
optimization method gives an exact recovery of the original source signals up to
a scaling and permutation. In the case when the cross-correlation is small but
nonzero, we perform stability and error analysis to show that the global optimization
method still gives an accurate recovery with a small error. We also analyze the
solvability for the two-signal case when the mixing matrix is degenerate. To the
best of our knowledge, this is the first error analysis of BSS methods. The numerical
results using realistic signals confirm our theoretical findings and demonstrate the
robustness and accuracy of our methods.

1 Introduction

Often, in our daily encounters, situations require the need to listen to a particular speaker
in a complex auditory scene consisting of multiple speakers in an environment with
a noisy background. Amazingly, humans have the ability to separate the background
noise (or surrounding speakers’ speech) from that of the targeted speaker. Attempts
to understand this amazing human ability inspire the development of Blind Source
Separation (BSS). This method aims at recovering source signals from their mixtures
without detailed knowledge of the mixing process.
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1.1 A Brief Review

Broadly speaking, there are three approaches used to perform blind source separation
of time-dependent linear mixtures. The first approach uses a time domain method
based on de-correlation or the independence hypothesis of source signals. The idea
is to estimate the de-mixing matrix from the resulting statistical equations involving
moments of mixture signals and their time translations. The source signals are assumed
to be stationary in a short time scale (up to a few hundred milliseconds for sound
signals), and non-stationary in longer time scales. The approach can be formulated for
both instantaneous and convolutive mixtures. We refer to [15, 13] for methods that use
second order statistics and to [5, 6, 3, 1, 8, 22, 10, 23], which use higher order statistics.

The second approach uses a frequency domain method for convolutive mixtures. First,
it takes the discrete Fourier transform to convert the time nonlocal de-mixing problem
into many instantaneous de-mixing problems; then it applies one of the instantaneous
methods; see e.g. [17, 11, 16]. Due to the scaling and permutation uncertainties in the
instantaneous methods, the frequency domain approach has a complication in sorting
de-mixed results from each frequency bin before the inverse Fourier transform can
produce final time domain results. Also, different segments of Fourier transform have
to be glued together nicely to avoid artifacts.

The third approach proceeds in the time-frequency domain where the working
hypothesis is that the different source signals do not overlap (in the time-frequency
domain or time dependent Fourier spectra). The separation is based on feature vectors
and clustering of time-dependent Fourier spectra of the mixtures. The feature vectors
can be geometrically based (related to arrival times and directions of the incoming
sounds) or perceptually based (pitch, timbre, speech onset-offset, amplitude, frequency
modulations, etc. of the source sounds). The direction of arrival-based approach is
also known as the beam-forming method, which is discussed in detail in [18]; see also
[24, 2, 20, 19] for more discussions of related works.

Nearly all methods encounter difficulties with long convolution (strongly reverberant
rooms) or source signals coming from the same direction (e.g. one person standing in
front of the other). The latter problem corresponds to the ill-conditioned mixing cases.
Another difficulty encountered by existing methods is how to effectively separate mixed
signals in a noisy environment, especially when the noise level is large. This is precisely
the main focus of this paper.

1.2 Summary of the Main Contributions

One of the main contributions of our work is to develop and analyze a class of blind
source decomposition methods that can be used to separate mixed signals in a noisy
environment. In view of past research [23], we use second order statistics and a global
optimization approach. Most existing methods (Chapter 5 of [23]) do not explicitly
consider the impact of noise. In fact, direct implementation of the second order statistic
method to mixed signals polluted with noise does not yield a satisfactory recovery of
the source signals. In this paper, we consider Gaussian noise and treat the noise as a
separate source signal. With an extra measurement of the mixed signals, we formulate
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the source separation problem as a global optimization problem that minimizes the
cross-correlation of the recovered signals.

We develop rigorous error and stability analysis of the proposed methods. Our
analysis reveals the desirable properties of the measurements and source signals under
which one can guarantee a stable and accurate recovery of the mixed signals. The
analysis applies to both clean and noisy mixtures with a large signal-to-noise ratio. In
the case when the cross-correlation of the source signals is exactly zero, we give precise
solvability conditions and prove that our global optimization method gives an exact
recovery of the original source signals up to a scaling and permutation. Changing the
scale of the recovered signal corresponds to changing the volume of the signal without
affecting the actual content of the signal. And, multiplication by a permutation matrix
only affects the order of the recovered signals. Thus recovering the original signals up
to a scaling and permutation can be considered as an exact recovery.

The exact recovery of the original signals can be expressed in terms of the sparsity
property of matrix 𝑃 which maps the source signals 𝑠 to the recovered signals 𝑣 by
𝑣 = 𝑃𝑠. If we denote 𝑥 as the given mixture and 𝐴 as the mixing matrix, we have 𝑥 = 𝐴𝑠.
Note that both 𝐴 and 𝑠 are unknown. We would like to construct a demixing matrix
𝐵 that approximates 𝐴−1 in some sense so that 𝑣 = 𝐵𝑥 gives an accurate recovery of
𝑠 up to a scaling and permutation. The matrix 𝑃 can be expressed as 𝑃 = 𝐵𝐴. The
exact recovery of the signals corresponds to requiring that 𝑃 be written as a product of
a permutation matrix and a diagonal matrix, which implies that each column of 𝑃 lies
on one of the Cartesian coordinates. In some sense, the exact recovery of the signals
is equivalent to minimizing the 𝐿0 norm of each column of 𝑃 , which is known to be
extremely difficult. Surprisingly, we prove that minimizing the cross-correlation of the
recovered signals in effect solves this 𝐿0 minimization problem for the columns of 𝑃 .

In practice, the cross-correlation of the source signals is small but not zero. Solving
the global optimization problem numerically also incurs a numerical error. In order to
show that one can still obtain an accurate recovery in this case, we perform stability
analysis of our global optimization method. We can prove that when the cross-correlation
is small but nonzero and there is a small error in the global optimization problem, the
global optimization method still gives an accurate recovery with a small error. We also
analyze the solvability for the two-signal case when the mixing matrix is degenerate.
To the best of our knowledge, this is the first error analysis of BSS methods.

A new difficulty associated with noisy mixtures is that the self-correlation of a
Gaussian noise signal with any non-zero shift is essentially as small as the cross-
correlation, leading to a degenerate recovery problem. Guided by our analysis, we
propose a modified method that includes the cross-correlation with no-shift (𝑛 = 0)
as part of the energy objective functional. With this modification, we can show that
the resulting recovery problem is non-degenerate for noisy mixtures. The new method
works just as effectively for clean and noisy mixtures. Separating noise from real signals
is known to be a challenging problem. Most de-noising methods tend to remove the high
frequency information from the targeted signals, resulting in an unsatisfactory recovery.
Surprisingly, our optimization method based on second order statistics can accurately
separate mixed signals in a noisy environment even with a large signal-to-noise ratio.
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We also study the challenging problem that occurs when the mixed matrix be-
comes degenerate. By carefully estimating the interaction between the degenerate
self-correlation terms and the degenerate cross-correlation terms, we prove that we can
still recover the original source signals essentially independent of the degeneracy of the
measurements. Our theoretical results are confirmed by the numerical experiments.

1.3 Organization of the Paper

The rest of this paper is organized as follows. Section 2 is devoted to the study of
instantaneous models. We begin with the simplified case, where we assume that the cross-
correlation of the signals is exactly zero and that there is no error in the optimization
method. We then transition into the more realistic case, where the cross-correlation of
the signals is small, but not zero and there is an optimization error. Stability analysis
is performed to demonstrate the robustness of the proposed method. We also consider
the recovery of mixed signals in a noisy environment at the end of this section. Section
3 is devoted to convolutive mixtures. By using the Kronecker product, we can develop
a parallel theory for the convolutive case. In Section 4, we consider the instantaneous
two-signal mixture with degenerate measurements. Finally, in Section 5, we present
several numerical results that confirm our theoretical results and demonstrate the
accuracy and robustness of the proposed methods.

2 Recovery of Noisy Mixtures: the Instantaneous Case

In this section, we consider the simpler instantaneous mixture problems with three or
more signals in a noisy environment. This case will help one to gain better understanding
of the main ideas before considering the more complicated convolutive case. The stability
analysis is also more easily done for the instantaneous case than that for the convolutive
case.

2.1 Problem Setting: the Instantaneous Case

Often, our ears perceive multiple different signals mixed together. Whether it be while
walking on the busy city streets or having a conversation with multiple people, we
encounter these mixed signals daily. However, there are times when we desire to hear
only one signal. For example, it may be tough to hear a person’s voice in a busy
restaurant when there is heavy background noise. Cases similar to these produce the
following mathematical problem. Suppose 𝑠𝑖 (𝑖 = 1, 2, 3) are the three original sources,
and 𝑥𝑖 (𝑖 = 1, 2, 3) are the three receivers (linear combinations of the sources), i.e.

𝑥 = 𝐴𝑠. (1)

Our goal is to recover the original sources 𝑠 from the mixture 𝑥. If 𝐴 is known and
nonsingular, then the problem is trivial, leading to the equation 𝑠 = 𝐴−1𝑥. However,
we do not know the exact value of matrix 𝐴. We are only given that it is a constant
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matrix. Therefore, we are going to look for a matrix 𝐵 such that

𝑣 = 𝐵𝑥 (2)

is an accurate recovery of the signals. An accurate recovery is a recovered signal 𝑣
that is equal to the original signal 𝑠 up to a scaling and permutation. This would
be reasonable because the scaling would only vary the volume of the signals, and the
permutation would only interchange the order of the original signals during the recovery.
To find an accurate 𝐵, we need to make reasonable assumptions and design algorithms
correspondingly.

In this paper, we first study the second order de-correlation method, see [21, 13, 15,
23] among others. This method is based on the assumption that the cross-correlations
between original signals are 0, i.e.

Assumption 2.1 (ZeroCorrelation). For a finite number of delay, |𝑛| ≤ 𝑁 and 𝑖 ̸= 𝑗, we
have

E[𝑠𝑖(𝑡)𝑠𝑗(𝑡− 𝑛)] = 0, (3)

where E is expectation, which is approximated by sample average using data in the
frames.

Applying this non-correlation assumption to 𝑣, we may solve for 𝐵. In the case
where we have two signals, the recovery matrix 𝐵 can be constructed analytically, as
was done in chapter 5 of [23]. However, when we have three or more signals to be
separated from their mixtures, we cannot recover 𝐵 analytically. we will formulate the
problem to recover 𝐵 as an optimization problem by minimizing the cross-correlation
of 𝑣. The optimization formulation offers a more flexible approach to handle multiple
signal recoveries, and this is the approach that we will adopt in this paper. And, as long
as the global minimizer gives zero cross-correlation, we can prove that the optimization
method yields an exact recovery under some non-degeneracy assumption on the mixing
matrix 𝐴. However, for practical signals, the ZeroCorrelation assumption is not exactly
satisfied; the cross-correlation is small, but never zero. One cannot get a minimizer that
gives the cross-correlation to be zero because the cross-correlation is not zero and there
will be error from the optimization algorithm. In this case, we can obtain a solution
𝐵 that gives a small cross-correlation. Under several reasonable assumptions, we will
prove that we can still recover the original source signals with good accuracy with an
error depending on the size of the original signals’ cross-correlation and the optimization
algorithm’s error.

2.2 Optimization: the Instantaneous Case

Since the volume of the recovered signals 𝑣 does not matter, we may normalize each
row of 𝐵 to be a unit vector, i.e. for each 𝑖 = 1, 2, 3

3∑︁
𝑗=1

𝑏2𝑖𝑗 = 1. (4)
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Remark 2.2. There are other methods for normalizing 𝐵. For example, row normalization
by 𝐿1 norm has been used in [23] (see page 164). One can also force the diagonal entries
to be 1. Recall that the normalization of 𝐵 must occur on the rows, because normalizing
the rows of 𝐵 is equivalent to rescaling the volume of the recovered signals 𝑣.

We propose to solve the following optimization problem to get an estimate of 𝐵.

minimize 𝐹 (𝐵) :=
∑︁
𝑖̸=𝑗

∑︁
𝑛∈ℐ

(E[𝑣𝑖(𝑡)𝑣𝑗(𝑡− 𝑛)])2

subject to: 𝑣 = 𝐵𝑥,

3∑︁
𝑗=1

𝑏2𝑖𝑗 = 1, 𝑖 = 1, 2, 3,

| det𝐵| ≥ 𝑏0,

(5)

where 𝑏0 is a positive parameter to be specified later. The index set ℐ is the set of shifts
in which one wants to minimize the correlation. Let

ℐ = {0,±1, · · · ,±𝑁}, (6)

where 𝑁 is the maximum shift. The constraint

|det𝐵| ≥ 𝑏0, (7)

is to ensure that 𝐵 is invertible and that the recovered signals are not degenerate.
In this paper, we use the global optimization code “fminsearch” provided by Matlab

to solve the above optimization problem. Since we normalize the rows of matrix 𝐵
by 𝐿2 norm, the parameters in our objective functional have finite range. To take
advantage of this finite range of parameters in our global optimization problem, we use
a slightly modified version of fminsearch provided by John D’Errico 1 in our study. The
only change in D’Errico’s code from fminsearch is a rescaling from finite intervals to
the whole space so that one can call fminsearch which is designed for the whole space.
In our implementation, we first disregard the determinant constraint (7) and solve
the simplified optimization problem. Upon getting the minimizer of 𝐵*, we determine
whether this minimizer is desirable. If it satisfies (7), we accept it; otherwise, we discard
the output and continue to solve the same optimization problem using a different initial
guess until we have obtained a minimizer of 𝐵* that satisfies (7). From our experience,
it does not take more than two trials before an accurate solution is attained.

2.3 Physical Assumptions: the Instantaneous Case

In order to guarantee a successful recovery of the original signals, first, we must
ensure that the original signals 𝑠 and the mixing matrix 𝐴 have some good properties.
Furthermore, the 3 measurements 𝑥 should be independent enough to represent the 3
original signals 𝑠. Mathematically, it is

1http://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd–fminsearchcon
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Assumption 2.3 (Asigma). There exists a positive constant 𝐶𝑐𝑜𝑛𝑑 such that

𝑐𝑜𝑛𝑑(𝐴) :=
𝜎𝑀
𝜎𝑚

≤ 𝐶𝑐𝑜𝑛𝑑, (8)

where 𝜎𝑀 and 𝜎𝑚 are the largest and smallest singular values of 𝐴 respectively.

Secondly, the original signals 𝑠 should have some intrinsic properties. We denote
the second order statistics of a vector signal 𝑥 as:

𝑐𝑥𝑛,𝑖𝑗 := E[𝑥𝑖(𝑡)𝑥𝑗(𝑡− 𝑛)], |𝑛| ≤ 𝑁, 𝑖, 𝑗 ∈ {1, 2, 3} (9)

and the covariance matrix

𝐶𝑥
𝑛 :=

(︀
𝑐𝑥𝑛,𝑖𝑗

)︀
𝑖,𝑗∈{1,2,3}, |𝑛| ≤ 𝑁. (10)

The following intrinsic property of the original signals 𝑠 will play an essential role in
the recovery.

Assumption 2.4 (Cinvertible). There exists three shifts 𝑛1, 𝑛2 and 𝑛3 such that

𝐶𝑠
𝑛1,𝑛2,𝑛3

:=

⎡⎣𝑐𝑠𝑛1,11
𝑐𝑠𝑛1,22

𝑐𝑠𝑛1,33

𝑐𝑠𝑛2,11
𝑐𝑠𝑛2,22

𝑐𝑠𝑛2,33

𝑐𝑠𝑛3,11
𝑐𝑠𝑛3,22

𝑐𝑠𝑛3,33

⎤⎦
3×3

(11)

is invertible.

To prove stability, we need a stronger condition for 𝐶𝑠
𝑛1,𝑛2,𝑛3

.

Assumption 2.5 (Cstable). There exists three shifts 𝑛1, 𝑛2, 𝑛3 and a positive constant 𝐶𝑠

such that 𝐶𝑠
𝑛1,𝑛2,𝑛3

is invertible and

‖(𝐶𝑠
𝑛1,𝑛2,𝑛3

)−1‖𝐿2 ≤ 𝐶𝑠. (12)

The reason why we require these assumptions will become clear later in our analysis.

2.4 Exact Recovery: the Instantaneous Case

In this subsection, we assume that the ZeroCorrelation assumption holds true. In a
sense, the following theorem shows that 𝐴−1 is one of the global minimizers to the
optimization method (5).

Theorem 2.6. Suppose Assumption Asigma (8) holds true and let

𝑏0 =
1

𝐶3
𝑐𝑜𝑛𝑑

. (13)

Then there exists a feasible 𝐵* for the optimization problem (5) and it gives the global
minimum to be 0.
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Proof. First, we construct 𝐵* by normalizing each row of 𝐴−1. Suppose that the matrix
𝐴 has the following singular value decomposition (SVD):

𝐴 = 𝑈Σ𝑉 𝑇 = 𝑈

⎡⎣𝜎1 𝜎2
𝜎3

⎤⎦
3×3

𝑉 𝑇 , (14)

then

𝐴−1 = 𝑉 Σ−1𝑈𝑇 = 𝑉

⎡⎣1/𝜎1 1/𝜎2
1/𝜎3

⎤⎦
3×3

𝑈𝑇 . (15)

Write 𝑉 as

𝑉 =

⎡⎣𝑣1𝑣2
𝑣3

⎤⎦
3×3

,

then

𝐴−1 =

⎡⎣𝑎1𝑎2
𝑎3

⎤⎦
3×3

= 𝑉 Σ−1𝑈𝑇 =

⎡⎣𝑣1Σ−1𝑈𝑇

𝑣2Σ
−1𝑈𝑇

𝑣3Σ
−1𝑈𝑇

⎤⎦
3×3

. (16)

Since 𝑈 and 𝑉 are unitary, we have ‖𝑣𝑖‖2 = 1 and

‖𝑎𝑖‖2 := ‖𝑣𝑖Σ−1𝑈𝑇 ‖2 = ‖𝑣𝑖Σ−1‖2 ≤ ‖Σ−1‖2 = 1/𝜎𝑚, (17)

where 𝜎𝑚 is the smallest singular value of 𝐴.
Define

𝐵* =

⎡⎣𝑎1/‖𝑎1‖2𝑎2/‖𝑎2‖2
𝑎3/‖𝑎3‖2

⎤⎦
3×3

, (18)

then 𝐵* is row-normalized, and the recovery

𝑣 = 𝐵*𝑥 = 𝐵*𝐴𝑠 =

⎡⎣𝑠1/‖𝑎1‖2𝑠2/‖𝑎2‖2
𝑠3/‖𝑎3‖2

⎤⎦
3×3

gives an exact recovery up to a scaling and the objective function value will be 0, which
is the global minimum. Now we only need to show that 𝐵* satisfies the determinant
constraint (7). Specifically, we have

|det𝐵*| = | det𝐴−1|
‖𝑎1‖2‖𝑎2‖2‖𝑎3‖2

=
1

Π3
𝑖=1𝜎𝑖‖𝑎𝑖‖2

.

Using estimate (17), recall that 𝜎𝑀 is the largest singular value of 𝐴. Therefore, we
have

| det𝐵*| ≥ 1

Π3
𝑖=1𝜎𝑀/𝜎𝑚

=
1

𝑐𝑜𝑛𝑑(𝐴)3
≥ 1

𝐶3
𝑐𝑜𝑛𝑑

,
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where Assumption Asigma (8) is used in the last inequality. Combined with condition
(13), we get

|det𝐵*| ≥ 1

𝐶3
𝑐𝑜𝑛𝑑

= 𝑏0,

which proves that 𝐵* satisfies the determinant condition.

The following theorem shows that if 𝐵 is a solution of the optimization method,
then 𝑣 = 𝐵𝑥 will result in an exact recovery up to a scaling and permutation.

Theorem 2.7. Suppose the ZeroCorrelation assumption (3) and the Cinvertible assump-
tion (11) hold true. If there is an invertible matrix 𝑃 such that

𝑣 = 𝑃𝑠, (19)

and for delay |𝑛| ≤ 𝑁 and 𝑖 ̸= 𝑗,

E[𝑣𝑖(𝑡)𝑣𝑗(𝑡− 𝑛)] = 0, (20)

then there exists a 3 by 3 permutation matrix Π and nonzero scalars 𝜆𝑖 (𝑖 = 1, 2, 3) such
that

𝑃 = ΠΛ := Π

⎡⎣𝜆1

𝜆2

𝜆3

⎤⎦
3×3

. (21)

Proof. From the bilinear property of covariance, we know for any shift |𝑛| ≤ 𝑁 , we have

𝐶𝑣
𝑛 = 𝑃𝐶𝑠

𝑛𝑃
𝑇 . (22)

Writing 𝑃 as

𝑃 =
[︀
𝑝1 𝑝2 𝑝3

]︀
3×3

,

we then get

𝐶𝑣
𝑛 =

[︀
𝑝1 𝑝2 𝑝3

]︀
3×3

⎡⎣𝑐𝑠𝑛,11 𝑐𝑠𝑛,12 𝑐𝑠𝑛,13
𝑐𝑠𝑛,21 𝑐𝑠𝑛,22 𝑐𝑠𝑛,23
𝑐𝑠𝑛,31 𝑐𝑠𝑛,32 𝑐𝑠𝑛,33

⎤⎦
3×3

⎡⎣𝑝𝑇1𝑝𝑇2
𝑝𝑇3

⎤⎦
3×3

=
[︀
𝑝1 𝑝2 𝑝3

]︀
3×3

⎡⎣𝑐𝑠𝑛,11 0 0

0 𝑐𝑠𝑛,22 0

0 0 𝑐𝑠𝑛,33

⎤⎦
3×3

⎡⎣𝑝𝑇1𝑝𝑇2
𝑝𝑇3

⎤⎦
3×3

+
[︀
𝑝1 𝑝2 𝑝3

]︀
3×3

⎡⎣ 0 𝑐𝑠𝑛,12 𝑐𝑠𝑛,13
𝑐𝑠𝑛,21 0 𝑐𝑠𝑛,23
𝑐𝑠𝑛,31 𝑐𝑠𝑛,32 0

⎤⎦
3×3

⎡⎣𝑝𝑇1𝑝𝑇2
𝑝𝑇3

⎤⎦
3×3

=

3∑︁
𝑖=1

𝑐𝑠𝑛,𝑖𝑖𝑝𝑖𝑝
𝑇
𝑖 +

∑︁
𝑖̸=𝑗

𝑐𝑠𝑛,𝑖𝑗𝑝𝑖𝑝
𝑇
𝑗 . (23)
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Using the ZeroCorrelation assumption (3), we have

𝐶𝑣
𝑛 =

3∑︁
𝑖=1

𝑐𝑠𝑛,𝑖𝑖𝑝𝑖𝑝
𝑇
𝑖 . (24)

Using the ZeroCorrelation condition (20) of 𝑣, we have

3∑︁
𝑖=1

𝑐𝑠𝑛,𝑖𝑖𝑝𝑖(1)𝑝𝑖(2) = 0, (25)

3∑︁
𝑖=1

𝑐𝑠𝑛,𝑖𝑖𝑝𝑖(1)𝑝𝑖(3) = 0,

3∑︁
𝑖=1

𝑐𝑠𝑛,𝑖𝑖𝑝𝑖(2)𝑝𝑖(3) = 0.

Taking 𝑛 = 𝑛1, 𝑛2, 𝑛3 in the Cinvertible assumption (11), we obtain:

𝐶𝑠
𝑛1,𝑛2,𝑛3

⎡⎣𝑝1(1)𝑝1(2)𝑝2(1)𝑝2(2)
𝑝3(1)𝑝3(2)

⎤⎦
3×1

= 0. (26)

The Cinvertible assumption (11) implies that⎡⎣𝑝1(1)𝑝1(2)𝑝2(1)𝑝2(2)
𝑝3(1)𝑝3(2)

⎤⎦
3×1

= 0. (27)

Similarly, we have ⎡⎣𝑝1(1)𝑝1(3)𝑝2(1)𝑝2(3)
𝑝3(1)𝑝3(3)

⎤⎦
3×1

= 0,

⎡⎣𝑝1(2)𝑝1(3)𝑝2(2)𝑝2(3)
𝑝3(2)𝑝3(3)

⎤⎦
3×1

= 0. (28)

From all the equations involving 𝑝1, we get:[︀
𝑝1(1)𝑝1(2) 𝑝1(1)𝑝1(3) 𝑝1(2)𝑝1(3)

]︀
1×3

= 0. (29)

Therefore, there exist 𝑖1 ∈ {1, 2, 3} and a scalar 𝜆1 such that

𝑝1 = 𝜆1𝑒𝑖1 , (30)

where 𝑒𝑖1 is the unit vector along the 𝑖1’s coordinate. Similarly, we have

𝑝2 = 𝜆2𝑒𝑖2 , 𝑝3 = 𝜆3𝑒𝑖3 . (31)

As a result, we obtain (21), i.e.

𝑃 =
[︀
𝜆1𝑒𝑖1 𝜆2𝑒𝑖2 𝜆3𝑒𝑖3

]︀
3×3

= ΠΛ
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where we denote

Π :=
[︀
𝑒𝑖1 𝑒𝑖2 𝑒𝑖3

]︀
3×3

.

Taking the determinant of 𝑃 , we have

det𝑃 = detΠdetΛ = 𝜖𝑖1,𝑖2,𝑖3Π
3
𝑖=1𝜆𝑖,

where 𝜖𝑖1,𝑖2,𝑖3 is the Levi-Civita symbol, which is defined as follows: 𝜖𝑖𝑗𝑘 = 1 if (𝑖, 𝑗, 𝑘)
is (1, 2, 3), or (2, 3, 1) or (3, 1, 2); 𝜖𝑖𝑗𝑘 = −1 if (𝑖, 𝑗, 𝑘) is (3, 2, 1), or (2, 1, 3) or (1, 3, 2);
𝜖𝑖𝑗𝑘 = 0 if 𝑖 = 𝑗, or 𝑗 = 𝑘, or 𝑘 = 𝑖. By assumption, 𝑃 is invertible. Therefore 𝑖1, 𝑖2 and
𝑖3 cannot repeat and 𝜆𝑖(𝑖 = 1, 2, 3) must be nonzero.

The following corollary guarantees that the solution given from the optimization
method will yield an exact recovery.

Corollary 2.8. Suppose Assumption Asigma (8) holds true. Further, we assume that the
parameter 𝑏0 satisfies condition (13). Then every solution of the optimization method
will yield an accurate recovery. More precisely, if 𝐵 is a global minimizer, and if we
define

𝑃 = 𝐵𝐴, (32)

then there exists nonzero scalars 𝜆𝑖(𝑖 = 1, 2, 3) and a 3 by 3 permutation matrix Π such
that

𝑃 = ΠΛ := Π

⎡⎣𝜆1

𝜆2

𝜆3

⎤⎦
3×3

. (33)

Remark 2.9. Observe that each column of 𝑃 lies on a Cartesian coordinate axis. Thus
exact recovery is equivalent to imposing sparsity on each column of 𝑃 . It is interesting
to note that although we did not impose sparsity on 𝐵 or 𝑃 explicitly in our global
optimization problem, the exact recovery of the source signals up to a scaling and
permutation corresponds to finding 𝐵 that minimizes the 𝐿0 norm of the columns of 𝑃 .

Proof. From Theorem 2.6, we know that the global minimum for the global optimization
problem must be zero. Therefore, if 𝐵 is a global minimizer, then 𝑣 = 𝐵𝑥 will satisfy
equation (20)

E[𝑣𝑖(𝑡)𝑣𝑗(𝑡− 𝑛)] = 0.

The Assumption Asigma (8) and condition (13) imply that 𝐴 and 𝐵 are both invertible.
Thus, this leads to the conclusion that 𝑃 is invertible. Therefore, we can apply Theorem
2.7 to prove our corollary.

2.5 Stability Analysis: the Instantaneous Case

In more realistic circumstances, the cross-correlation is “small,” but the ZeroCorrelation
assumption (3) is not exactly satisfied. Therefore, we need to modify (3) accordingly to
the following “small” cross-correlation assumption.
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Assumption 2.10 (EpsCorrelation). There exists a small number 𝜖 such that for delay
|𝑛| ≤ 𝑁 and 𝑖 ̸= 𝑗

E[𝑠𝑖(𝑡)𝑠𝑗(𝑡− 𝑛)] ≤ 𝜖. (34)

Under Assumption 2.10, we have a theorem similar to Theorem 2.6. However, now
the global minimum is not guaranteed to be zero anymore.

Theorem 2.11. Suppose Assumption 2.10 and Assumption Asigma (8) hold true. If
the parameter 𝑏0 satisfies the condition (13), then there exists a feasible 𝐵* for the
optimization problem (5) and

𝐹 (𝐵*) ≤ 𝐶𝜎4
𝑀 𝜖2, (35)

where 𝜎𝑀 is the largest singular value of 𝐴 and 𝐶 is a constant depending linearly on
𝑁 .

Proof. We construct 𝐵* similar to that in Theorem 2.6. As a result, we will recover the
signals

𝑣 = 𝐵*𝑥 = 𝐵*𝐴𝑠 =

⎡⎣𝑠1/‖𝑎1‖2𝑠2/‖𝑎2‖2
𝑠3/‖𝑎3‖2

⎤⎦
3×3

.

Thus, we get

𝐹 (𝐵*) =
∑︁
𝑖̸=𝑗

∑︁
𝑛∈ℐ

(︂
E[𝑠𝑖(𝑡)𝑠𝑗(𝑡− 𝑛)]

‖𝑎𝑖‖2‖𝑎𝑗‖2

)︂2

.

As in Equation (17), we have

‖𝑎𝑖‖2 := ‖𝑣𝑖Σ−1𝑈𝑇 ‖2 = ‖𝑣𝑖Σ−1‖2 ≥ ‖𝑣𝑖‖2/𝜎𝑀 = 1/𝜎𝑀 . (36)

Therefore, we get:

𝐹 (𝐵*) ≤ 𝜎4
𝑀

∑︁
𝑖̸=𝑗

∑︁
𝑛∈ℐ

𝜖2 ≤ 𝐶𝜎4
𝑀 𝜖2.

In practice, we cannot expect that the recovered signals 𝑣 have zero cross-correlation
(20), so instead, we assume that the objective function 𝐹 (𝐵) is small. We assume
that 𝐵 is a global minimizer of the optimization problem and that there exists a small
positive number 𝛿 such that

𝐹 (𝐵) ≤ 𝛿2. (37)

Equation (37) implies that the recovered signals have small cross-correlation, i.e. for all
|𝑛| ≤ 𝑁 and 𝑖 ̸= 𝑗,

|E[𝑣𝑖(𝑡)𝑣𝑗(𝑡− 𝑛)]| ≤ 𝛿. (38)

Now we want to show that the recovered signals 𝑣 = 𝐵𝑥 = 𝐵𝐴𝑠 := 𝑃𝑠 is an accurate
recovery within an error tolerance depending on 𝜖 and 𝛿. However, before we state
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the theorem, we would like to state the following inequality. We write 𝑃 = 𝐵𝐴 in row
vectors: ⎡⎣𝑝1𝑝2

𝑝3

⎤⎦
3×3

=

⎡⎣𝑏1𝑏2
𝑏3

⎤⎦
3×3

𝐴.

Recall that when we normalize ‖𝑏𝑖‖2 to be 1, we get an estimate of the row vector of 𝑃 :

‖𝑝𝑖‖2 ≤ ‖𝑏𝑖‖2‖𝐴‖2 = 𝜎𝑀 . (39)

The following theorem guarantees that the optimization method is robust with
respect to a slight perturbation of the ZeroCorrelation Assumption (3).

Theorem 2.12. Suppose Assumption 2.10, Assumption Asigma (8) and Assumption
Cstable (12) hold true. Because we have already set the parameter 𝑏0 to satisfy condition
(13), if 𝐵 is a global minimizer of the optimization problem and if there exists a small
positive number 𝛿 such that (37) holds true, then

𝑃 = 𝐵𝐴 = ΠΛ+
√︀
𝐶𝑑𝐶𝑠(𝜎

2
𝑀 𝜖+ 𝛿)1/2, (40)

where 𝐶𝑑 is a constant that only depends on the number of signals 𝑑 (we have 𝑑 = 3)
and 𝐶𝑠 is the constant in Assumption Cstable (12),

Π :=
[︀
𝑒𝑖1 𝑒𝑖2 𝑒𝑖3

]︀
3×3

, 𝑖1, 𝑖2, 𝑖3 ∈ {1, 2, 3}

and

Λ :=

⎡⎣𝜆1

𝜆2

𝜆3

⎤⎦
3×3

.

Moreover, if 𝜖 and 𝛿 are small enough, then Π is a permutation matrix and 𝜆𝑖(𝑖 = 1, 2, 3)
are nonzero scalars.

Proof. From Equation (22) and (23), we have

𝐶𝑣
𝑛 =

[︀
𝑝1 𝑝2 𝑝3

]︀
3×3

⎡⎣𝑐𝑠𝑛,11 0 0

0 𝑐𝑠𝑛,22 0

0 0 𝑐𝑠𝑛,33

⎤⎦
3×3

⎡⎣𝑝𝑇1𝑝𝑇2
𝑝𝑇3

⎤⎦
3×3

+

⎡⎣𝑝1𝑝2
𝑝3

⎤⎦
3×3

⎡⎣ 0 𝑐𝑠𝑛,12 𝑐𝑠𝑛,13
𝑐𝑠𝑛,21 0 𝑐𝑠𝑛,23
𝑐𝑠𝑛,31 𝑐𝑠𝑛,32 0

⎤⎦
3×3

[︀
(𝑝1)𝑇 (𝑝2)𝑇 (𝑝3)𝑇

]︀
3×3

=

3∑︁
𝑖=1

𝑐𝑠𝑛,𝑖𝑖𝑝𝑖𝑝
𝑇
𝑖 +

[︀
𝑝𝑖𝐶𝑜𝑓𝑓 (𝑝𝑗)𝑇

]︀
𝑖,𝑗=1,2,3

, (41)

where

𝐶𝑜𝑓𝑓 :=

⎡⎣ 0 𝑐𝑠𝑛,12 𝑐𝑠𝑛,13
𝑐𝑠𝑛,21 0 𝑐𝑠𝑛,23
𝑐𝑠𝑛,31 𝑐𝑠𝑛,32 0

⎤⎦
3×3

. (42)
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From Assumption 2.10, we get

‖𝐶𝑜𝑓𝑓‖2 ≤ 𝐶𝑑𝜖. (43)

From the Cauchy Schwarz inequality we get for any 𝑖, 𝑗 = 1, 2, 3:

‖𝑝𝑖𝐶𝑜𝑓𝑓 (𝑝𝑗)𝑇 ‖2 ≤ ‖𝑝𝑖‖2‖𝐶𝑜𝑓𝑓 (𝑝𝑗)𝑇 ‖2 ≤ ‖𝑝𝑖‖2‖𝐶𝑜𝑓𝑓‖2‖(𝑝𝑗)𝑇 ‖2.

Using Equations (39) and (43), we have

‖𝑝𝑖𝐶𝑜𝑓𝑓 (𝑝𝑗)𝑇 ‖2 ≤ 𝐶𝑑𝜎
2
𝑀 𝜖. (44)

Using Equations (38) and (44), we obtain

|
3∑︁

𝑖=1

𝑐𝑠𝑛,𝑖𝑖𝑝𝑖(1)𝑝𝑖(2)| ≤ 𝐶𝑑𝜎
2
𝑀 𝜖+ 𝛿, (45)

|
3∑︁

𝑖=1

𝑐𝑠𝑛,𝑖𝑖𝑝𝑖(1)𝑝𝑖(3)| ≤ 𝐶𝑑𝜎
2
𝑀 𝜖+ 𝛿,

|
3∑︁

𝑖=1

𝑐𝑠𝑛,𝑖𝑖𝑝𝑖(2)𝑝𝑖(3)| ≤ 𝐶𝑑𝜎
2
𝑀 𝜖+ 𝛿.

Similar to how we obtain Equation (26), we get the following linear system

𝐶𝑠
𝑛1,𝑛2,𝑛3

⎡⎣𝑝1(1)𝑝1(2)𝑝2(1)𝑝2(2)
𝑝3(1)𝑝3(2)

⎤⎦
3×1

= 𝐶𝑑𝜎
2
𝑀 𝜖+ 𝛿. (46)

Thus, we get ⃦⃦⃦⃦
⃦⃦
⎡⎣𝑝1(1)𝑝1(2)𝑝2(1)𝑝2(2)
𝑝3(1)𝑝3(2)

⎤⎦
3×1

⃦⃦⃦⃦
⃦⃦
2

≤ 𝐶𝑑‖(𝐶𝑠
𝑛1,𝑛2,𝑛3

)−1‖2(𝜎2
𝑀 𝜖+ 𝛿)

≤ 𝐶𝑑𝐶𝑠(𝜎
2
𝑀 𝜖+ 𝛿),

(47)

where we have used Assumption Cstable (12) in the last inequality. Similarly, we obtain

⃦⃦⃦⃦
⃦⃦
⎡⎣𝑝1(1)𝑝1(3)𝑝2(1)𝑝2(3)
𝑝3(1)𝑝3(3)

⎤⎦
3×1

⃦⃦⃦⃦
⃦⃦
2

≤ 𝐶𝑑𝐶𝑠(𝜎
2
𝑀 𝜖+ 𝛿),

⃦⃦⃦⃦
⃦⃦
⎡⎣𝑝1(2)𝑝1(3)𝑝2(2)𝑝2(3)
𝑝3(2)𝑝3(3)

⎤⎦
3×1

⃦⃦⃦⃦
⃦⃦
2

≤ 𝐶𝑑𝐶𝑠(𝜎
2
𝑀 𝜖+ 𝛿). (48)

From all of the above estimates involving 𝑝1, for 𝑖 ̸= 𝑗, we get:[︀
𝑝1(1)𝑝1(2) 𝑝1(1)𝑝1(3) 𝑝1(2)𝑝1(3)

]︀
1×3

= 𝐶𝑑𝐶𝑠(𝜎
2
𝑀 𝜖+ 𝛿). (49)
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Obviously, there cannot be two entries of 𝑝1 whose absolute values are larger than√︁
𝐶𝑑𝐶𝑠(𝜎2

𝑀 𝜖+ 𝛿) at the same time. Therefore, we obtain

𝑝1 = 𝜆1𝑒𝑖1 +
√︀

𝐶𝑑𝐶𝑠(𝜎
2
𝑀 𝜖+ 𝛿)1/2, (50)

where 𝑒𝑖1 is the unit vector along the 𝑖1’s coordinate. Similarly, we have

𝑝2 = 𝜆2𝑒𝑖2 +
√︀

𝐶𝑑𝐶𝑠(𝜎
2
𝑀 𝜖+ 𝛿)1/2,

𝑝3 = 𝜆3𝑒𝑖3 +
√︀

𝐶𝑑𝐶𝑠(𝜎
2
𝑀 𝜖+ 𝛿)1/2.

(51)

As a consequence, we have proved (40)

𝑃 = 𝐵𝐴 = ΠΛ+
√︀
𝐶𝑑𝐶𝑠(𝜎

2
𝑀 𝜖+ 𝛿)1/2.

Taking the determinant of 𝑃 , we have

|det𝑃 | = |det𝐵||det𝐴| ≥ 𝑏0Π
3
𝑖=1𝜎𝑖.

Furthermore, since determinant, det, is a differentiable function, we use Taylor expansion
around ΠΛ and get

|det𝑃 | = |det(ΠΛ) +𝒪((𝜎2
𝑀 𝜖+ 𝛿)1/2)| = |𝜖𝑖1,𝑖2,𝑖3 |Π3

𝑖=1|𝜆𝑖|+𝒪((𝜎2
𝑀 𝜖+ 𝛿)1/2)|.

Therefore, if 𝜖 and 𝛿 are small enough, |𝜖𝑖1,𝑖2,𝑖3 |Π3
𝑖=1|𝜆𝑖| must be nonzero, implying that

Π is a permutation matrix and 𝜆𝑖(𝑖 = 1, 2, 3) are nonzero scalars.

Remark 2.13. In order to ensure a successful recovery of the original signals within an
error of tolerance, we need to prove that

|𝜆𝑖| ≫
√︀
𝐶𝑑𝐶𝑠(𝜎

2
𝑀 𝜖+ 𝛿)1/2. (52)

We can show this by using the fact that singular values are continuously (differ-
entiably) dependent on the matrix entries. In the case when a matrix has different
eigenvalues, all these eigenvalues are smoothly (𝒞∞) dependent on the entries of the
matrix [7].

Consider the matrix

ΠΛ = 𝑃 −
√︀
𝐶𝑑𝐶𝑠(𝜎

2
𝑀 𝜖+ 𝛿)1/2.

We assume that P has three different singular values, 𝜎𝑃
𝑚 being the smallest singular

value of P. Note that the smallest singular value of ΠΛ is min𝑖=1,2,3 |𝜆𝑖|. Using the
theorem above, we get:

min
𝑖=1,2,3

|𝜆𝑖| = 𝜎𝑃
𝑚 +𝒪(𝜎2

𝑀 𝜖+ 𝛿)1/2.

Notice that
𝜎𝑃
𝑚 ≥ 𝜎𝐵

𝑚𝜎𝐴
𝑚 = 𝜎𝐵

𝑚𝜎𝑚.
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From the definition of the matrix 𝐿2 norm, we have

‖𝐵‖2 = sup
𝑥̸=0

‖𝐵𝑥‖2
‖𝑥‖2

= sup
𝑥̸=0

⃦⃦⃦⃦
⃦⃦
⎡⎣𝑏1𝑥𝑏2𝑥
𝑏3𝑥

⎤⎦
3×1

⃦⃦⃦⃦
⃦⃦
2

/‖𝑥‖2

= sup
𝑥̸=0

√︀
(𝑏1𝑥)2 + (𝑏2𝑥)2 + (𝑏3𝑥)2

‖𝑥‖2

(Cauchy Schwarz) ≤ sup
𝑥̸=0

√︀
(‖𝑏1‖2‖𝑥‖2)2 + (‖𝑏2‖2‖𝑥‖2)2 + (‖𝑏3‖2‖𝑥‖2)2

‖𝑥‖2
(use (4)) =

√
3.

Thus 𝜎𝐵
𝑀 ≤

√
3 and we have

𝜎𝐵
𝑚 ≥ Π3

𝑖=1𝜎
𝐵
𝑖

(𝜎𝐵
𝑀 )2

=
|det𝐵|
(𝜎𝐵

𝑀 )2
≥ 𝑏0/3.

Therefore, we get:
min

𝑖=1,2,3
|𝜆𝑖| ≥ 𝑏0𝜎𝑚/3 +𝒪(𝜎2

𝑀 𝜖+ 𝛿)1/2.

We can set 𝑏0 = 1/𝑐𝑜𝑛𝑑(𝐴)3. As long as 𝑐𝑜𝑛𝑑(𝐴) and 𝜎𝑚 are both of order 1, Equation
(52) is satisfied. Consequently, we will have an accurate recovery within an error of
tolerance.

2.6 Separating Mixed Signals in a Noisy Environment

It is not easy to separate a clean signal from Gaussian noise if one only has a single
measurement. One may try to use an adaptive filter, such as wavelet filter to separate
the noise from the signal; however, such filtering tends to damage the high frequency
component of the signal. In this paper, we propose to treat the noise background as a
separate signal. With one extra measurement, we can solve the optimization problem
(5) to separate the noise from the mixed signals. As can be seen from our analysis
above, the key component of this approach is to carefully choose the index set ℐ to
make the Assumption (12) valid. In this section, we will restrict ourselves to the simpler
instantaneous case.

In this paper, we will consider the noise as white noise 𝑊 , which has the following
correlation property:

𝐶𝑊
𝑛 = E[𝑊 (𝑡)𝑊 (𝑡− 𝑛)] =

{︃
‖𝑊‖22 for 𝑛 = 0,

0 otherwise.
(53)

Remark 2.14. For a sample of white noise 𝑊 , if we calculate E[𝑊 (𝑡)𝑊 (𝑡−𝑛)] by average
in time, the self-correlation may not be zero for a nonzero shift as in (53); however,
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the self-correlation with a nonzero shift will definitely be very small. To simplify our
analysis, we will assume that (53) holds true in the following analysis. The case where
the self-correlation is small can be analyzed similarly.

In the case where we have one clean signal with white noise and two different
measurements of its mixtures, it falls in the two-signal instantaneous case. To make
sure that our optimization method can produce an accurate recovery, we require that
the clean signal and noise satisfy the two-dimensional Cstable Assumption, i.e. there
exist two shifts 𝑛1 and 𝑛2 such that⃦⃦⃦⃦

(

[︂
𝑐𝑠𝑛1,11

𝑐𝑠𝑛1,22

𝑐𝑠𝑛2,11
𝑐𝑠𝑛2,22

]︂
)−1

⃦⃦⃦⃦
2

≤ 𝐶𝑠. (54)

Since the second signal is white noise, one of 𝑛1 and 𝑛2 must be zero in order to satisfy
the above condition. Without loss of generality, we make 𝑛2 = 0, then

𝐶𝑠
𝑛1,0 =

[︂
𝑐𝑠𝑛1,11

0,

𝑐𝑠0,11 ‖𝑊‖22.

]︂
. (55)

Based on the stability analysis in Section 4, we conclude the following: for one clean
signal mixed with a white noise signal, if we choose our index set ℐ to contain 0, then
even in cases where the measurement 𝐴 is nearly degenerate, we can still yield an
accurate recovery of the clean signal!

Remark 2.15. For a signal, 𝑐𝑠0 = ‖𝑠‖22 represents its energy or volume. Therefore, if we
assume that the clean signal has order one volume, then 𝑐𝑠0,11 is of order one. For the
other case where 𝑐𝑠𝑛1,11

is too small for every 𝑛1 ̸= 0, the clean signal 𝑠1 degenerates to a
nearly white noise signal, which is not an interesting case for us to consider. Therefore,
for a regular clean signal mixed with white noise, our optimization problem always
produces a satisfactory recovery.

Similarly, for the three-dimensional instantaneous case with 𝑠3 to be white noise,
we must contain shift 0 in our index set ℐ. We will make 𝑛3 = 0. Then we have

𝐶𝑠
𝑛1,𝑛2,0

:=

⎡⎣𝑐𝑠𝑛1,11
𝑐𝑠𝑛1,22

0

𝑐𝑠𝑛2,11
𝑐𝑠𝑛2,22

0

𝑐𝑠𝑛3,11
𝑐𝑠𝑛3,22

‖𝑊‖22

⎤⎦
3×3

. (56)

In this case, the Cinvertible Assumption is reduced to the corresponding two-dimensional
invertible assumption, which requires that there exist two non-zero shifts 𝑛1 and 𝑛2

such that

[︂
𝑐𝑠𝑛1,11

𝑐𝑠𝑛1,22

𝑐𝑠𝑛2,11
𝑐𝑠𝑛2,22

]︂
is invertible. The Cstable Assumption can also be reduced to

stability of the same 2× 2 matrix.
Another interesting case is when the noise for each measurement is independent.

In this case, we cannot recover the original source signals by introducing additional
measurements. In this case, the problem can be formulated as follows:

𝑥 = 𝐴𝑠+ 𝜂, (57)
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where 𝜂 = (𝜂1, 𝜂2, 𝜂3)
𝑇 and 𝜂𝑖 are independent Gaussian noise. Since 𝐴 is assumed to

be invertible, we can write 𝜂 = 𝐴𝜉, where 𝜉 = 𝐴−1𝜂 is also Gaussian. Then we can
reformulate the above problem as

𝑥 = 𝐴𝑠, (58)

where 𝑠 = 𝑠 + 𝜉. If we treat 𝑠 as our new source signals to be recovered from the
measurements 𝑥, then we can consider the above problem as a standard Blind Source
Separation problem with no noise. Our previous analysis can be applied to show that
we can recover 𝑠 accurately using global optimization. The good news of this approach
is that we can still separate different signals from each other. The bad news is that
the recovered signals still contain noise 𝜉. To further reduce the effect of noise in
the recovered signal, one can apply some effective adaptive filtering method to 𝑠 [9].
De-noising 𝑠 is much easier than de-noising the original mixed measurements 𝑥 since
𝑠𝑖 = 𝑠𝑖 + 𝜉𝑖, i.e. 𝑠𝑖 does not contain any other source signal 𝑠𝑗 for 𝑗 ̸= 𝑖.

We have performed numerical experiments to test the above finding, and our
numerical results confirm the above analysis. Indeed, the additional post-processing
filtering further reduces the noise, resulting a cleaner recovery. Additionally, even for
one source signal plus noise, it is hard to eliminate the noise completely. Filtering
tends to damage the high frequency components of the signal. In comparison to other
methods, we found that other existing BSS methods, such as the Info-Max method
[3, 1, 8, 22] and the Jade method [5, 6] (both use higher order statistics), and the
analytical de-correlation method (section 5.2 of [23]) fail to separate the signals from
each other when the mixtures are polluted with independent Gaussian noise for each
measurement.

3 Recovery of Noisy Mixtures: the Convolutive Case

In this section, we will consider the more realistic case: the convolutive case, specifically,
convolutive mixtures in a noisy environment. We will show that the analysis that we
have developed in the previous section can still apply to the convolutive case – however,
just with more complicated, involved algebra manipulation.

3.1 Problem Setting: the Convolutive Case

In an enclosed environment, sound mixing is not instantaneous (or local in time), because
sound tends to reflect from multiple surfaces; therefore, the signals mix non-locally
in time. This leads to a convolutive mixing process and may be viewed as a discrete
version of Green’s formula to acoustic wave equations. The convolutive mixing model
of two sources 𝑠𝑖(𝑖 = 1, 2) with mixtures recorded by two receivers is [23]:

𝑥1(𝑡) =

𝑞∑︁
𝑘=1

𝑎11𝑘 𝑠1(𝑡+ 1− 𝑘) +

𝑞∑︁
𝑘=1

𝑎12𝑘 𝑠2(𝑡+ 1− 𝑘),

𝑥2(𝑡) =

𝑞∑︁
𝑘=1

𝑎21𝑘 𝑠1(𝑡+ 1− 𝑘) +

𝑞∑︁
𝑘=1

𝑎22𝑘 𝑠2(𝑡+ 1− 𝑘).

(59)
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The model is an extension of (1) and can be written as:

𝑥 = 𝐴𝑠 (60)

with

𝐴 =

[︂
𝑎11* 𝑎12*
𝑎21* 𝑎22*

]︂
, (61)

where * is the abbreviation of linear convolution in (59) and 𝑎𝑖𝑗 is extended to the
length of 𝑠𝑖 and 𝑥𝑖 by zero padding. In the following analysis, we will treat the signals
𝑠𝑖 and 𝑥𝑖 as periodic signals and calculate their shifted correlations. Because we will
only use correlations with a small shift relative to their length, the periodically shifted
correlations are nearly the same as the truncated-shifted correlations. 2 The collection of
all the finite sequences forms a semi-group with the binary operation * being associative
and commutative, namely,

(𝑓 * 𝑔) * ℎ = 𝑓 * (𝑔 * ℎ) 𝑓 * 𝑔 = 𝑔 * 𝑓. (62)

Similar to that of the instantaneous case, we would like to find a convolutive recovery
of the form:

𝑣1(𝑡) =

𝑟∑︁
𝑘=1

𝑏11𝑘 𝑥1(𝑡+ 1− 𝑘) +

𝑟∑︁
𝑘=1

𝑏12𝑘 𝑥2(𝑡+ 1− 𝑘),

𝑣2(𝑡) =

𝑟∑︁
𝑘=1

𝑏21𝑘 𝑥1(𝑡+ 1− 𝑘) +

𝑟∑︁
𝑘=1

𝑏22𝑘 𝑥2(𝑡+ 1− 𝑘).

(63)

And, this can be written as:
𝑣 = 𝐵𝑥 (64)

with

𝐵 =

[︂
𝑏11* 𝑏12*
𝑏21* 𝑏22*

]︂
. (65)

If the mechanism of mixing is known, i.e., 𝐴 is known, then one can consider choosing
𝐵 as 𝐴’s adjoint matrix. To this end, let us consider:[︂

𝑣1
𝑣2

]︂
=

[︂
𝑎22* −𝑎12*
−𝑎21* 𝑎11*

]︂[︂
𝑥1
𝑥2

]︂
=

[︂
𝑎22* −𝑎12*
−𝑎21* 𝑎11*

]︂[︂
𝑎11* 𝑎12*
𝑎21* 𝑎22*

]︂[︂
𝑠1
𝑠2

]︂
=

[︂
𝑎22 * 𝑎11 * −𝑎12 * 𝑎21* 𝑎22 * 𝑎12 * −𝑎12 * 𝑎22*
−𝑎21 * 𝑎11 *+𝑎11 * 𝑎21* −𝑎21 * 𝑎12 *+𝑎11 * 𝑎22*

]︂[︂
𝑠1
𝑠2

]︂
=

[︂
𝑎11 * 𝑎22 * −𝑎12 * 𝑎21*

𝑎11 * 𝑎22 * −𝑎12 * 𝑎21*

]︂[︂
𝑠1
𝑠2

]︂
.

(66)

2Periodic shifted correlation and truncated shifted correlation are two ways to calculate the shifted
correlation (9). The former will be used in the following analysis, while the latter is used in [23].
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One can regard this as an accurate recovery because the recovered signal 𝑣𝑖(𝑖 = 1, 2)
only depends on 𝑠𝑖(𝑖 = 1, 2).

However, in realistic problems, 𝐴 is unknown. We look for an accurate recovery
matrix 𝐵 to separate the mixed signals. To quantify the condition of an accurate
recovery, we define:

𝑃 = 𝐵𝐴 =

[︂
𝑏11 * 𝑎11 *+𝑏12 * 𝑎21* 𝑏11 * 𝑎12 *+𝑏12 * 𝑎22*
𝑏21 * 𝑎11 *+𝑏22 * 𝑎21* 𝑏21 * 𝑎12 *+𝑏22 * 𝑎22*

]︂
(67)

and denote it as:

𝑃 :=

[︂
𝑝11* 𝑝12*
𝑝21* 𝑝22*

]︂
. (68)

When either 𝑃 or

[︂
0 1
1 0

]︂
𝑃 is diagonal with nonzero diagonal entries, we call such 𝐵

an accurate recovery matrix. In other words, it indicates that the recovered signal
𝑣𝑖(𝑖 = 1, 2) depends on one of the source signals 𝑠𝑖(𝑖 = 1, 2) only.

Since 𝑝𝑖𝑗 contains at most 𝑞+ 𝑟− 1 nonzero entries, we will make use of this sparsity
property in separating the mixed signals.

3.2 Physical Assumptions and Optimization: the Convolutive Case

For the convolutive mixing model (59), it is natural to assume that the absolute value of
𝑎𝑖𝑗 ’s entries decrease for every pair of (𝑖, 𝑗), since the energy decays after every reflection.
Therefore, for each pair of (𝑖, 𝑗), we set the following condition:

|𝑎𝑖𝑗(𝑘)| ≤ |𝑎𝑖𝑗(1)|, 𝑘 = 1, 2, · · · , 𝑞. (69)

From (66), we know that there will be an accurate recovery 𝐵 which has the same
length 𝑞 and satisfies the same decay condition, i.e. for each pair of (𝑖, 𝑗)

|𝑏𝑖𝑗(𝑘)| ≤ |𝑏𝑖𝑗(1)|, 𝑘 = 1, 2, · · · , 𝑞. (70)

To yield an accurate recovery, we still need an accurate measurement condition like (8).
There are many ways to define a similar condition for the convolutive case. Here, we
will just use the first entry, which contains the most energy. We define it as:

𝑐𝑜𝑛𝑑(𝐴) := 𝑐𝑜𝑛𝑑(𝐴1) =
𝜎𝑀
𝜎𝑚

≤ 𝐶𝑐𝑜𝑛𝑑, (71)

where 𝜎𝑀 and 𝜎𝑚 are respectively the largest and smallest singular values of 𝐴1 =[︂
𝑎111 𝑎121
𝑎211 𝑎221

]︂
.

Similar to that of the instantaneous case, we normalize our variable 𝐵 with 𝐿2 norm,
but only on the first entry, i.e. for each 𝑖 = 1, 2

2∑︁
𝑗=1

(𝑏𝑖𝑗1 )
2 = 1. (72)
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Therefore, we propose the following optimization problem to get an estimate of B.

minimize 𝐹 (𝐵) :=
∑︁
𝑖̸=𝑗

∑︁
𝑛∈ℐ

(E[𝑣𝑖(𝑡)𝑣𝑗(𝑡− 𝑛)])2

subject to: 𝑣 = 𝐵𝑥,

𝐵 =

[︂
𝑏11* 𝑏12*
𝑏21* 𝑏22*

]︂
with length 𝑞,

2∑︁
𝑗=1

(𝑏𝑖𝑗1 )
2 = 1, 𝑖 = 1, 2,

|𝑏𝑖𝑗(𝑘)| ≤ |𝑏𝑖𝑗(1)|, 𝑘 = 1, 2, · · · , 𝑞
| det𝐵1| ≥ 𝑏0,

(73)

where 𝑏0 is a positive parameter to be specified later. The function of the constraint

| det𝐵1| ≥ 𝑏0 (74)

has the same meaning as constraint (7) in the instantaneous case.

3.3 Conditions on 𝐶𝑠: the Convolutive Case

We need to estimate the correlation of 𝑣 given by 𝑣 = 𝑃𝑠, where convolution is involved.
In the optimization problem (69), we specify the length of 𝐵 to be 𝑞, and as a result,
the length of 𝑃 to be 2𝑞 − 1. We denote 𝜏 = 2𝑞 − 1. From the following expression

𝑣1(𝑡) =

𝜏∑︁
𝑘=1

𝑝11𝑘 𝑠1(𝑡+ 1− 𝑘) +

𝜏∑︁
𝑘=1

𝑝12𝑘 𝑠2(𝑡+ 1− 𝑘),

𝑣2(𝑡) =

𝜏∑︁
𝑘=1

𝑝21𝑘 𝑠1(𝑡+ 1− 𝑘) +

𝜏∑︁
𝑘=1

𝑝22𝑘 𝑠2(𝑡+ 1− 𝑘),

(75)

we get:

𝐶𝑣
𝑛,12 = (𝑝11)𝑇𝐶𝑠,𝜏

𝑛,11𝑝
21 + (𝑝12)𝑇𝐶𝑠,𝜏

𝑛,22𝑝
22 + (𝑝12)𝑇𝐶𝑠,𝜏

𝑛,21𝑝
21 + (𝑝11)𝑇𝐶𝑠,𝜏

𝑛,12𝑝
22, (76)

where the 𝜏 × 𝜏 dimensional matrix 𝐶𝑠,𝜏
𝑛,𝑖𝑗 is defined as:

𝐶𝑠,𝜏
𝑛,𝑖𝑗(𝑘1, 𝑘2) = 𝐶𝑠

𝑛+𝑘2−𝑘1,𝑖𝑗 , 𝑘1, 𝑘2 = 1, 2, · · · , 𝜏. (77)

Note that in the two-source case, we have

𝐹 (𝐵) :=
∑︁
𝑛∈ℐ

(E[𝑣1(𝑡)𝑣2(𝑡− 𝑛)])2 =
∑︁
𝑛∈ℐ

(𝐶𝑣
𝑛,12)

2. (78)

If we reshape 𝐶𝑠,𝜏
𝑛,𝑖𝑗 to be a row vector 𝑐𝑠,𝜏𝑛,𝑖𝑗 with dimension 1× 𝜏2, by padding row after

row, (76) can be written as:

𝑐𝑠,𝜏𝑛,11(𝑝
11 ⊗ 𝑝21) + 𝑐𝑠,𝜏𝑛,22(𝑝

12 ⊗ 𝑝22) = 𝐶𝑣
𝑛,12 − (𝑝12)𝑇𝐶𝑠,𝜏

𝑛,21𝑝
21 − (𝑝11)𝑇𝐶𝑠,𝜏

𝑛,12𝑝
22, (79)
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where ⊗ is the standard Kronecker product [4]. In the special case where 𝑎 =
(𝑎1, 𝑎2, ..., 𝑎𝑟) and 𝑏 = (𝑏1, 𝑏2, ..., 𝑏𝑟) are two row vectors of length 𝑟, 𝑎 ⊗ 𝑏 is a row
vector of length 𝑟2 given as follows:

𝑎⊗ 𝑏 = (𝑎1𝑏1, 𝑎1𝑏2, ..., 𝑎1𝑏𝑟, 𝑎2𝑏1, 𝑎2𝑏2, ..., 𝑎2𝑏𝑟, ..., 𝑎𝑟𝑏1, 𝑎𝑟𝑏2, ..., 𝑎𝑟𝑏𝑟).

Because the right hand side of the equation is expected to be small, we can assume
that 𝑝11 ⊗ 𝑝21 and 𝑝12 ⊗ 𝑝22 are nearly zero, implying that the recovery is accurate. To
make this argument valid, we make the following assumption:

Assumption 3.1 (Cinvertible2). There exist 2𝜏2 shifts 𝑛𝑖 such that

𝐶𝑠 :=

⎡⎢⎢⎢⎣
𝑐𝑠,𝜏𝑛1,11

𝑐𝑠,𝜏𝑛1,22

𝑐𝑠,𝜏𝑛2,11
𝑐𝑠,𝜏𝑛2,22

...
...

𝑐𝑠,𝜏𝑛2𝜏2 ,11
𝑐𝑠,𝜏𝑛2𝜏2 ,22

⎤⎥⎥⎥⎦
2𝜏2×2𝜏2

(80)

is invertible.

To prove stability, we need a stronger condition for 𝐶𝑠:

Assumption 3.2 (Cstable2). There exists 2𝜏2 shifts 𝑛𝑖 and a positive constant 𝐶𝑠 such
that 𝐶𝑠 is invertible and

‖(𝐶𝑠)−1‖𝐿2 ≤ 𝐶𝑠. (81)

3.4 Exact Recovery: the Convolutive Case

In this section, we assume that the ZeroCorrelation assumption (3) holds true. Similar
to Theorem 2.6, the following theorem shows that the adjoint matrix of 𝐴 is one of the
global minimizers of our optimization method (73) after normalization.

Theorem 3.3. Suppose Assumption Asigma (71) holds true and let

𝑏0 =
1

𝐶2
𝑐𝑜𝑛𝑑

, (82)

then there exists a feasible 𝐵* for the optimization problem (73) which gives the global
minimum to be 0.

Proof. We first construct 𝐵* from normalizing

[︂
𝑎22* −𝑎12*
−𝑎21* 𝑎11*

]︂
with rule (72). This

proof is the same as the proof of Theorem 2.6, except, in this case, we have two
dimensions.

We can also get the following results that are parallel to those of the instantaneous
case.
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Theorem 3.4. Suppose the ZeroCorrelation assumption (3) and the Cinvertible assump-
tion (80) hold true. If there is a convolutive matrix 𝑃 such that 𝑃1 is invertible,
and

𝑣 = 𝑃𝑠, (83)

and for delay |𝑛| ≤ 𝑁 , and 𝑖 ̸= 𝑗,

E[𝑣𝑖(𝑡)𝑣𝑗(𝑡− 𝑛)] = 0, (84)

then either 𝑃 or

[︂
0 1
1 0

]︂
𝑃 is diagonal with nonzero diagonal entries.

Proof. Under these assumptions, the right hand side of equation (79) is zero. Combined
with the Cinvertible assumption (80), we conclude that 𝑝11 ⊗ 𝑝21 and 𝑝12 ⊗ 𝑝22 must be

zero, which implies that either 𝑃 or

[︂
0 1
1 0

]︂
𝑃 is diagonal.

Since 𝑃1 is invertible, the corresponding diagonal entries are not zero.

The following corollary guarantees that the solution given by our optimization
method will yield an accurate recovery.

Corollary 3.5. Suppose Assumption Asigma (71) holds true and the parameter 𝑏0 satisfies
condition (82). Then, every solution of the optimization method will yield an accurate
recovery. Specifically, if 𝐵 is a global minimizer, and we define

𝑃 = 𝐵𝐴, (85)

then either 𝑃 or

[︂
0 1
1 0

]︂
𝑃 is diagonal with nonzero diagonal entries.

Proof. Making use of the fact 𝑃1 = 𝐵1𝐴1, the rest of the proof is exactly the same as
the proof of Corollary 2.8.

3.5 Stability Analysis: the Convolutive Case

Before we perform the stability analysis, we state an important inequality. Suppose
vector 𝑎𝑖𝑗 and 𝑏𝑖𝑗 enjoy decay properties (69) and (70) respectively; then, we have:

‖𝑏𝑖𝑗 * 𝑎𝑖𝑗‖2 ≤ |𝑎𝑖𝑗(1)||𝑏𝑖𝑗(1)|
√︂

2𝑞3 + 𝑞

3
=: |𝑎𝑖𝑗(1)||𝑏𝑖𝑗(1)|𝐶1,𝑞. (86)

We can prove the above inequality by simply replacing 𝑎𝑖𝑗 and 𝑏𝑖𝑗 with positive constant
vectors.

Under Assumption 2.10, we have a theorem similar to Theorem 3.3. However, now,
the global minimum is no longer guaranteed to be zero.
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Theorem 3.6. Suppose Assumption 2.10 and Assumption Asigma (71) hold true. If the
parameter 𝑏0 satisfies condition (82), then there exists a feasible 𝐵* for our optimization
problem (73) and

𝐹 (𝐵*) ≤ 𝐶𝑞𝜎
4
𝑀 𝜖2, (87)

where 𝜎𝑀 is the largest singular value of 𝐴1, and 𝐶𝑞 is a constant dependent on 𝑞 and
𝑁 .

Proof. We construct 𝐵* by normalizing

[︂
𝑎22* −𝑎12*
−𝑎21* 𝑎11*

]︂
with rule (72). Denoting

�̂� = 𝑎11 * 𝑎22 − 𝑎12 * 𝑎21 and using equation (66), we get:

𝐶𝑣
𝑛,12 =

�̂�𝑇𝐶𝑠,2𝑞−1
𝑛,12 �̂�√︀

(𝑎22(1))2 + (𝑎12(1))2
√︀

(𝑎21(1))2 + (𝑎11(1))2
. (88)

By inequality (86), we get:

‖�̂�‖2 ≤ ‖𝑎11 * 𝑎22‖2 + ‖𝑎12 * 𝑎21‖2
≤ 𝐶1,𝑞(|𝑎11(1)||𝑎22(1)|+ |𝑎12(1)||𝑎21(1)|)

≤ 𝐶1,𝑞

√︀
(𝑎22(1))2 + (𝑎12(1))2

√︀
(𝑎21(1))2 + (𝑎11(1))2.

(89)

Since every entry of 𝐶𝑠,2𝑞−1
𝑛,12 is smaller than 𝜖, there exists a constant 𝐶2,𝑞 dependent on

𝑞 such that
‖𝐶𝑠,2𝑞−1

𝑛,12 ‖2 ≤ 𝜖𝐶2,𝑞. (90)

Then we have

𝐶𝑣
𝑛,12 ≤

‖𝐶𝑠,2𝑞−1
𝑛,12 ‖2‖�̂�‖22√︀

(𝑎22(1))2 + (𝑎12(1))2
√︀
(𝑎21(1))2 + (𝑎11(1))2

≤ 𝜖𝐶2,𝑞𝐶
2
1,𝑞

√︀
(𝑎22(1))2 + (𝑎12(1))2

√︀
(𝑎21(1))2 + (𝑎11(1))2

≤ 𝜖𝐶2,𝑞𝐶
2
1,𝑞𝜎

2
𝑀 ,

(91)

where 𝜎𝑀 is the largest singular value of 𝐴1. In the last inequality, we have used the
fact that the 𝐿2 norm of each column or row of a matrix is not larger than the 𝐿2 norm
of the full matrix.

Summing 𝑛 over the index set ℐ proves the theorem.

The following theorem guarantees that our optimization method is stable with
respect to a small perturbation of the ZeroCorrelation Assumption (3).

Theorem 3.7. Suppose Assumption 2.10, Assumption Asigma (71), and Assumption
Cstable (81) hold true, and the parameter 𝑏0 satisfies condition (82). If 𝐵 is a feasible
minimizer for the optimization problem and there exists a small positive number 𝛿 such
that (37) holds true, then⃦⃦⃦⃦[︂

𝑝11 ⊗ 𝑝21

𝑝12 ⊗ 𝑝22

]︂⃦⃦⃦⃦
2

≤ 𝐶𝑞𝐶𝑠(𝐶2,𝑞𝐶
2
1,𝑞𝜎

2
𝑀 𝜖+ 𝛿), (92)
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where 𝐶𝑞 is a constant that only depends on 𝑞, 𝐶𝑠 is the constant in Assumption Cstable
(12), and 𝐶1,𝑞 and 𝐶2,𝑞 are the constants in Theorem 3.6.

Moreover, if 𝜖 and 𝛿 are small enough, then either 𝑃 or

[︂
0 1
1 0

]︂
𝑃 has 𝒪(1) diagonal

entries and 𝒪(
√︀
𝐶𝑞𝐶𝑠(𝐶2,𝑞𝐶

2
1,𝑞𝜎

2
𝑀 𝜖+ 𝛿)1/2) off-diagonal entries.

Proof. First, we note that

‖𝑝11‖2 ≤ ‖𝑏11 * 𝑎11 + 𝑏12 * 𝑎21‖2
≤ 𝐶1,𝑞(|𝑏11(1)||𝑎11(1)|+ |𝑏12(1)||𝑎21(1)|)

≤ 𝐶1,𝑞

√︀
(𝑏11(1))2 + (𝑏12(1))2

√︀
(𝑎11(1))2 + (𝑎21(1))2

≤ 𝐶1,𝑞𝜎𝑀 ,

(93)

using the normalization in (72). Similarly, we have:

‖𝑝𝑖𝑗‖2 ≤ 𝐶1,𝑞𝜎𝑀 . (94)

Using (79), we get:

|𝑐𝑠,𝜏𝑛,11(𝑝
11 ⊗ 𝑝21) + 𝑐𝑠,𝜏𝑛,22(𝑝

12 ⊗ 𝑝22)| ≤ 𝛿 + 𝐶2,𝑞𝐶
2
1,𝑞𝜎

2
𝑀 𝜖. (95)

Combined with Cstable assumption (81), we obtain (92).
As in the proof of Theorem 2.12 and Remark 2.13, we can perform similar analysis

to the first entry of 𝑃1, making use of 𝑃1 = 𝐵1𝐴1. Then we can get the estimate that

either 𝑃 or

[︂
0 1
1 0

]︂
𝑃 has 𝒪(1) diagonal entries and 𝒪(

√︀
𝐶𝑞𝐶𝑠(𝐶2,𝑞𝐶

2
1,𝑞𝜎

2
𝑀 𝜖 + 𝛿)1/2)

off-diagonal entries.

4 Analysis for Two-Dimensional Degenerate Case

In this section, we consider the two-signal case in the instantaneous setting where
the mixing matrix is degenerate. The analysis that we perform for the three-signal
instantaneous case can be generalized to any finite number of signals. However, for
the simpler case 𝐷 = 2, the problem has a better structure which allows us to obtain
sharper stability estimates.

For the two-signal case, as in [23], we can represent the mixing matrix 𝐴 as follows:

𝐴 =

[︂
sin(𝜙) sin(𝜃)
cos(𝜙) cos(𝜃)

]︂
. (96)

Note: based on this form of 𝐴, the original sources 𝑠1 and 𝑠2 may have different
amplitudes, which may result in failing to satisfy the Cstable Assumption (12).

From our numerical experiments, we found that even when 𝐴 was moderately ill-
conditioned, i.e. 𝜙 and 𝜃 are close to each other, which violates the Asigma Assumption
(8), we can still obtain an accurate recovery. This suggests that our method works
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better than the stability analysis suggests. For the two-signal case, we will provide a
more refined stability analysis to justify that this is indeed correct.

In the two-signal case, we use the 𝐿2 normalization (4) of 𝐵 by writing 𝐵 as follows:

𝐵 =

[︂
cos(𝜃) − sin(𝜃)

− cos(𝜙) sin(𝜙)

]︂
, (97)

and then

𝑃 = 𝐵𝐴 =

[︂
sin(𝜙− 𝜃) sin(𝜃 − 𝜃)
sin(𝜙− 𝜙) sin(𝜙− 𝜃)

]︂
. (98)

Suppose that Assumption 2.10 holds true. We denote 𝛿 = |𝜙− 𝜃|. By choosing 𝜙 = 𝜙
and 𝜃 = 𝜃, we obtain

|E[𝑣𝑖(𝑡)𝑣𝑗(𝑡− 𝑛)]| ≤ sin2(𝜙− 𝜃)𝜖 v 𝒪(𝛿2𝜖), |𝑛| ≤ 𝑁. (99)

Note that the above estimate (99) is much sharper than what we obtained in Theorem
35. This sharp estimate will enable us to prove the following theorem of an accurate
recovery when 𝐴 is ill-conditioned.

Theorem 4.1. Suppose that Assumption 2.10 holds true, and that 𝐴 =

[︂
sin(𝜙) sin(𝜃)
cos(𝜙) cos(𝜃)

]︂
with |𝜙− 𝜃| = 𝛿. If 𝐵 =

[︂
cos(𝜃) − sin(𝜃)

− cos(𝜙) sin(𝜙)

]︂
is a global minimum for our optimization

problem (5) with the shift set ℐ = {𝑛1, 𝑛2} which satisfies the Assumption Cstable (12),
then we have either

|𝜙− 𝜙| = 𝒪(
√
𝜖𝛿),

|𝜃 − 𝜃| = 𝒪(
√
𝜖𝛿),

(100)

or

|𝜙− 𝜃| = 𝒪(
√
𝜖𝛿),

|𝜃 − 𝜙| = 𝒪(
√
𝜖𝛿).

(101)

These two estimates will guarantee an accurate recovery with or without swapping.

Proof. As in the three-signal case, we can get the following linear system from the
off-diagonal part of 𝐶𝑣

𝑛 = 𝑃𝐶𝑠
𝑛𝑃

𝑇 :[︂
𝑐𝑠𝑛1,11

𝑐𝑠𝑛1,22

𝑐𝑠𝑛2,11
𝑐𝑠𝑛2,22

]︂[︂
sin(𝜙− 𝜃) sin(𝜙− 𝜙)

sin(𝜃 − 𝜃) sin(𝜙− 𝜃)

]︂
=

[︂
𝑐𝑣𝑛1,12

𝑐𝑣𝑛2,12

]︂
−
[︂
𝑐𝑠𝑛1,12

𝑐𝑠𝑛1,21

𝑐𝑠𝑛2,12
𝑐𝑠𝑛2,21

]︂[︂
sin(𝜙− 𝜃) sin(𝜙− 𝜃)

sin(𝜃 − 𝜃) sin(𝜙− 𝜙)

]︂
.

(102)
Since 𝐵 is a global minimum, we have from (99) that[︂

𝑐𝑣𝑛1,12

𝑐𝑣𝑛2,12

]︂
v 𝒪(𝛿2𝜖). (103)
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From Assumption 2.10, we have[︂
𝑐𝑠𝑛1,12

𝑐𝑠𝑛1,21

𝑐𝑠𝑛2,12
𝑐𝑠𝑛2,21

]︂
v 𝒪(𝜖). (104)

Combining the above estimate with the Assumption Cstable (12), we have

sin(𝜙− 𝜃) sin(𝜙− 𝜙)

= 𝜖(𝑐11 sin(𝜙− 𝜃) sin(𝜙− 𝜃) + 𝑐12 sin(𝜃 − 𝜃) sin(𝜙− 𝜙)) + 𝑐13𝜖𝛿
2,

(105)

sin(𝜃 − 𝜃) sin(𝜙− 𝜃)

= 𝜖(𝑐21 sin(𝜙− 𝜃) sin(𝜙− 𝜃) + 𝑐22 sin(𝜃 − 𝜃) sin(𝜙− 𝜙)) + 𝑐23𝜖𝛿
2,

(106)

with bounded constants 𝑐𝑖𝑗 depending on 𝐶𝑠 only. We will consider two cases:

Case 1: | sin(𝜙− 𝜃) sin(𝜙− 𝜃)| > | sin(𝜃 − 𝜃) sin(𝜙− 𝜙))|.
From (105), we have

| sin(𝜙− 𝜃) sin(𝜙− 𝜃)| ≤ 𝜖(|𝑐11|+ |𝑐12|)| sin(𝜙− 𝜃) sin(𝜙− 𝜃)|+ 𝑐13𝜖𝛿
2. (107)

If | sin(𝜙− 𝜃)| ≤
√
𝜖𝛿, then we have

|𝜃 − 𝜙| = 𝒪(
√
𝜖𝛿). (108)

If | sin(𝜙− 𝜃)| >
√
𝜖𝛿, then we divide both sides of equation (107) by | sin(𝜙− 𝜃)| to get

| sin(𝜙− 𝜙)| ≤ 𝜖(|𝑐11|+ |𝑐12|)| sin(𝜙− 𝜃)|+𝒪(
√
𝜖𝛿)

≤ (|𝑐11|+ |𝑐12|)𝜖(|𝜙− 𝜙|+ |𝜙− 𝜃|) +𝒪(
√
𝜖𝛿).

(109)

Note: from 2
𝜋 |𝜙− 𝜙| ≤ | sin(𝜙− 𝜙)| and |𝜙− 𝜃| = 𝛿, we have(︂

2

𝜋
− 𝜖(|𝑐11|+ |𝑐12|)

)︂
|𝜙− 𝜙|

≤ 𝜖(|𝑐11|+ |𝑐12|)𝛿 +𝒪(
√
𝜖𝛿).

(110)

Then, we get:
|𝜙− 𝜙| = 𝒪(

√
𝜖𝛿). (111)

Similarly, from (106), we will have either

|𝜙− 𝜃| = 𝒪(
√
𝜖𝛿), (112)

or
|𝜃 − 𝜃| = 𝒪(

√
𝜖𝛿). (113)

Recall that |𝜙− 𝜃| = 𝛿. We can only have the following two combinations among (108),
(111), (112) and (113):

|𝜙− 𝜙| = 𝒪(
√
𝜖𝛿),

|𝜃 − 𝜃| = 𝒪(
√
𝜖𝛿),
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or

|𝜙− 𝜃| = 𝒪(
√
𝜖𝛿),

|𝜃 − 𝜙| = 𝒪(
√
𝜖𝛿).

All other combinations would lead to 𝜙− 𝜃 = 𝑂(
√
𝜖𝛿), which contradicts 𝛿 = |𝜙− 𝜃|.

Case 2: | sin(𝜙 − 𝜃) sin(𝜙 − 𝜃)| ≤ | sin(𝜃 − 𝜃) sin(𝜙 − 𝜙))|. Following the same
argument as above, we will obtain either (100) or (101).

We believe that under some appropriate assumption on the degeneracy of the mixing
matrix 𝐴, we will be able to extend Theorem 4.1 to any finite dimensional case. To
achieve this, we need to obtain a sharper estimate on every term in equation (23) and
take into account all possible cancellations among the degenerate terms. This will be
reported in a future work.

5 Numerical Results

In this section, we present several numerical results to demonstrate the accuracy and
robustness of our method. As our stability analysis suggests, it is important to select an
appropriate index set so the conditions listed in our stability analysis are satisfied. Since
we use an optimization approach, we can take a larger shift index set for the shifts than
the minimum number of shifts that is required by our stability analysis. Thus, even
though the stability constant in our stability theorem may be large for minimum shift
index set (e.g. 𝑁 = 𝑑 for the 𝑑-signal instantaneous case), one can still get a reasonably
accurate recovery. In our numerical implementation, we choose a shift index set to be
ℐ = {𝑛 | 0 ≤ 𝑛 ≤ 10} in the instantaneous case and ℐ = {𝑛 | − 200 ≤ 𝑛 ≤ 200} in the
convolutive case with 𝑞 = 5 and 𝜏 = 9.

We also compare the performance of our method with that of the analytical method
(section 5.2 of [23]) based on second order statistics, as well as with the Info-Max method
that uses information of speech probability distribution. We do not compare our method
with the Jade method [5, 6] since this method is limited to the instantaneous mixtures
only. This comparison shows that our method can indeed give better performance
than that of the analytical de-correlation method (section 5.2, [23]) and the Info-Max
method, especially when the mixing matrix is degenerate. The Info-Max method has
been proposed and investigated by several authors, see, e.g., [3, 1, 8, 22]. The code that
we use for the comparison is based on the work of [22]. Our numerical results confirm
our theoretical findings. We consider both the instantaneous model and the convolutive
model. In the instantaneous case, we consider both the 2-signal case and the 3-signal
case. Of particular interest is the case when the mixing matrix is degenerate. In each of
the following examples, we mix together sound signals, specifically that of speech. We
use diverse speech signals to ensure that our method can accommodate with all types
of signals.

In each test example, the output results include SIRI, which measures the signal-to-
interference ratio improvement (see page 145 of [23] for its definition), and the matrix
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𝑃 , which confirms Theorem 2.7 and demonstrates the relative accuracy of the recovered
signals through the relationship between 𝑣 and 𝑠. A larger SIRI indicates greater
improvement in the signal. Furthermore, we introduce a quantity 𝑠𝑖𝑔𝑚𝑎𝑃 that measures
the relative error between 𝑃 (or its permutation) and the diagonal matrix – a bigger
𝑠𝑖𝑔𝑚𝑎𝑃 translates to a better recovery. Roughly speaking, 𝑠𝑖𝑔𝑚𝑎𝑃 = min𝑖 𝑠𝑖𝑔𝑚𝑎𝑃𝑖,
where 𝑠𝑖𝑔𝑚𝑎𝑃𝑖 is defined as the ratio between the largest element in absolute value and
the second largest element in absolute value of the 𝑖th row of 𝑃 . In all examples, the
signal-to-noise ratio 𝑆𝑁𝑅 =

𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
is about 𝑆𝑁𝑅 = 2.

Example 1. In the first example, we consider the mixtures of one speech signal
with Gaussian noise in the instantaneous case. The results obtained by our optimization
method are presented in Figure 1. The top row of Figure 1 plots the two mixed signals
that are generated using the following mixing matrix

𝐴 =

[︂
0.1191 0.8377
0.9929 0.5461

]︂
. (114)

The recovered signals are plotted in the second row, while the original source signals
are plotted in the third row of Figure 1. In our optimization method, the shift of 𝑛 is
taken from 0 to 10. Our method gives SIRI = 52.2411, which indicates that our method
gives significant enhancement over the original mixed signals. This is also confirmed by
the large value of 𝑠𝑖𝑔𝑚𝑎𝑃 = 382.9470. Finally, the fact that matrix

𝑃 =

[︂
−0.6877 −0.0016
−0.0018 −0.6879

]︂
(115)

is nearly diagonal gives another confirmation that our optimization method gives an
excellent recovery of the original mixed signals without swapping.

We also compare the performance of our method with that of the analytical de-
correlation method presented in section 5.2 of [23] (page 142-143). As we mentioned
earlier, this method of [23] with 𝑛 = 1, 2 does not take into account explicitly the impact
of noise. Although the analytical method in [23] still gives a reasonable enhancement of
the mixed signals with SIRI = 18.8522, one can still hear the background noise from
the recovered signal. This can be explained by the 𝑃 matrix:

𝑃 =

[︂
1.0000 0.0916
0.0000 0.9438

]︂
. (116)

One can see that the second component of the first row of 𝑃 is not small, about 9.16%,
indicating that 9.16% of the noise is contained in the recovered speech signal. The
value, 𝑠𝑖𝑔𝑚𝑎𝑃 = 10.3055, also confirms this finding. In comparison, our optimization
method gives a significantly larger 𝑠𝑖𝑔𝑚𝑎𝑃 , 382.9470.

Finally, we compare our optimization method with the Info-Max method, which
approximates the speech probability distribution function. Using higher order statistics,
we observe a considerable improvement over the analytical method of [23] that uses
second order statistics. In particular, the Info-Max method gives SIRI = 19.4455,
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𝑠𝑖𝑔𝑚𝑎𝑃 = 160.31, and

𝑃 =

[︂
−0.0048 0.7695
0.9149 −0.0027

]︂
. (117)

It is interesting to note that the SIRI value does not give an adequate description of
the improvement of the Info-Max method over the second order analytical method [23].
The 𝑠𝑖𝑔𝑚𝑎𝑃 value seems to be a better indicator. Note that our optimization method
still outperforms the Info-Max method in this case by a factor of 2.4.

Example 2. In this example, we consider the 3-signal mixtures in the instantaneous
case. We use two speech signals mixed with a Gaussian noise signal. The mixing matrix
𝐴 is given by

𝐴 =

⎡⎣2.0795 −1.2925 −0.3978
0.2554 −0.5062 1.1136
−0.953 1.8890 −0.2922

⎤⎦. (118)

We compare the performance of our optimization method with that of the Info-Max
method. The results obtained by our optimization method are given in Figure 2. Again,
we plot the mixtures in the first row, the recovered signals in the second row, and the
original source signals in the third row; which are in Figure 2. Our method gives SIRI
= 20.6428, 𝑠𝑖𝑔𝑚𝑎𝑃 = 43.4990, and

𝑃 =

⎡⎣ 0.9825 0.0226 −0.0054
−0.0125 1.0119 −0.0011
−0.0037 0.0073 0.9979

⎤⎦. (119)

Although the results are not as accurate as those of the 2-signal case, the recovered
signals still have reasonable accuracy.

We tend to believe that a main factor in the decrease of accuracy of the 3-signal
case as well as the convolutive case is due to the performance of the global optimization
algorithm in the Matlab code. In the 3-signal instantaneous case and the convolutive
case, the number of unknowns increases significantly, making it extremely difficult
to find the global minimum of our nonconvex energy functional. In many cases, the
algorithm only returns a local minimum instead of a global minimum. The ability
to design an even more effective global optimization method will be the key to our
proposed approach, a subject that we will investigate in the future.

We have also compared this method with the Info-Max method using the same mixing
matrix and data. The Info-Max method gives SIRI = 17.4613, 𝑠𝑖𝑔𝑚𝑎𝑃 = 23.9777, and

𝑃 =

⎡⎣1.3979 0.0583 −0.0008
0.0003 0.0092 1.0318
0.0143 1.1425 0.0083

⎤⎦. (120)

As in the two-signal case, we can see that our optimization method still outperforms
the Info-Max method for the 3-signal case by about a factor of 2 if we compare the
values of 𝑠𝑖𝑔𝑚𝑎𝑃 obtained by the two approaches.

This numerical experiment demonstrates that our global optimization method can,
with reasonable accuracy, recover the two source signals mixed with noise. Not only do
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Figure 1: This is the instantaneous case where we have a regular signal and a signal
composed of random noise. The computation is performed using our optimization
method with shifts 𝑛 taken from 0 to 10. Our method gives SIRI = 52.2411 and 𝑠𝑖𝑔𝑚𝑎𝑃
= 382.9470.

our results show an excellent recovery of generic sound signals, but we also demonstrate
that we can handle the impact of Gaussian noise. The small values of the off-diagonals
in the 𝑃 matrix solidify our claims that our three-signal global optimization method
can accurately recover source signals.
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Figure 2: This is the instantaneous case where we explore the 3-signal case, where two
sources are regular speech signals and one source is a random noise signal. To recover
the signals, we use our global optimization method. Our method gives SIRI = 20.6428
and 𝑠𝑖𝑔𝑚𝑎𝑃 = 43.4990.

Example 3. Next, we consider the two-signal instantaneous case with a degenerate
mixing matrix 𝐴. Again, we consider the case where we have one regular speech signal
mixed with random noise. Our numerical results will confirm the theoretical results
obtained in Section 4 – that we can still obtain accurate recovery of the mixed signals
even when the mixing matrix 𝐴 is degenerate.

In Figure 3, we plot the results obtained by our our optimization method. The
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layout is exactly the same as that of Figure 1. The degenerate matrix 𝐴 is given by

𝐴 =

[︂
0.7071 0.7078
0.7071 0.7064

]︂
. (121)

The degree of degeneracy can be measured by its determinant, 𝑑𝑒𝑡(𝐴) = 0.00607406.
Our optimization method gives SIRI = 22.1174, 𝑠𝑖𝑔𝑚𝑎𝑃 = 41.1483, and

𝑃 =

[︂
1.0031 0.0179
−0.0031 0.9821

]︂
. (122)

Given the nature of the degenerate measurement, these results are quite impressive.
We compare our optimization method with the analytical method of [23] with shift

𝑛 taken from 1 to 2. This method of [23] gives SIRI = 10.3856, 𝑠𝑖𝑔𝑚𝑎𝑃 = 9.9176, and

𝑃 =

[︂
1.0000 0.0916
0.0000 0.9084

]︂
. (123)

As one can infer from matrix 𝑃 , there is about 9.16% of mixture of the noise background
in the first recovered source signal. When we play the recovered signal, the effect of the
noise is quite noticeable.

We also apply the Info-Max method to this degenerate measurement case. The
Info-Max method gives SIRI = 5.2362, 𝑠𝑖𝑔𝑚𝑎𝑃 = 3.9571, and

𝑃 =

[︂
0.2530 −0.0202
0.1096 0.4337

]︂
. (124)

As we can see from matrix 𝑃 , about 23% of the first source signal is still mixed with
the second source signal in the recovered second signal. When we play the recovered
signals, the mixing of the two signals is quite strong. We have also applied the Info-Max
method to many other signals with a degenerate measurement. We found that the
Info-Max method always gives very poor recovery when 𝐴 is degenerate.

Example 4. Finally, we test the performance of our optimization method for the more
realistic convolutive case. We use the same signals and their mixtures as those used in
[23]. The results obtained by our global optimization method are presented in Figure 4.
The layout is the same as before. Again, the mixed signals are plotted in the first row,
the recovered signals in the second row, and the original source signals in the third row.
Because of complications in calculating the SIRI for the convolutive case, we use the 𝑃
matrix to determine the accuracy of our signal recoveries for convolutive cases.

Our method gives 𝑠𝑖𝑔𝑚𝑎𝑃 = 24.7826, which is calculated by averaging the relative
error of each component (or its permutation) of 𝑃 to the diagonal matrix. In particular,
the first component of 𝑃 , denoted as 𝑃1, contains the largest energy. To illustrate the
effectiveness of our recovery, we present 𝑃1 below.

𝑃1 =

[︂
1.0000 0.0007
−0.0063 1.0000

]︂
. (125)
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Figure 3: This is the instantaneous case where the A matrix is degenerate. We have one
regular signal mixed with random noise in the instantaneous setting. Our optimization
method gives SIRI = 22.1174 and 𝑠𝑖𝑔𝑚𝑎𝑃 = 41.1483.

As we can see, this first component of 𝑃 is very close to a diagonal matrix.

We also compare the performance of our global optimization method with that of
the convolutive decorrelation method [13] (see section 5.5 of [23], pp. 160-164) which
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gives 𝑠𝑖𝑔𝑚𝑎𝑃 = 8.1993 with

𝑃1 =

[︂
0.1199 0.0036
0.0011 0.1533

]︂
. (126)

Both 𝑠𝑖𝑔𝑚𝑎𝑃 and the 𝑃1 matrix indicate that even in the convolutive cases, we are
still able to recover the signals. Using our global optimization method, we observe that
our global optimization method gives a better recovery than that of the de-correlation
method of [13, 23], which seeks a local minimum in its optimization step. Both 𝑃1

matrices’ off-diagonals and measurements of 𝑠𝑖𝑔𝑚𝑎𝑃 further confirm our conclusion. In
particular, the 𝑠𝑖𝑔𝑚𝑎𝑃 value for our global optimization method is 3 times that of a
local minimum from the de-correlation method of [13, 23].
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