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.

Abstract. Given observed data, the fundamental task of statistical inference is to understand
the underlying data-generating mechanism. This task usually entails several steps, including
determining a good family of probability distributions that could have given rise to the observed
data, and identifying the specific distribution from that family that best fits the data. The
second step is usually called parameter estimation, where the parameters are what determines
the specific distribution. In many instances, however, estimating parameters of a statistical
model poses a significant challenge for statistical inference. Currently, there are many standard
optimization methods used for estimating parameters, including numerical approximations such
as the Newton-Raphson method. However, they may fail to find a correct set of maximum values
of the function and draw incorrect conclusions, since their performance depends on both the
geometry of the function and location of the starting point for the approximation. An alternative
approach, used in the field of algebraic statistics, involves numerical approximations of the roots
of the critical equations by the method of numerical algebraic geometry. This method is used
to find all critical points of a function, before choosing the maximum value(s). In this paper,
we focus on estimating correlation coe�cients for multivariate normal random vectors when
the mean is known. The bivariate case was solved in 2000 by Small, Wang and Yang, who
emphasize the problem of multiple critical points of the likelihood function. The goal of this
paper is to consider the first generalization of their work to the trivariate case, and o↵er a
computational study using both numerical approaches to find the global maximum value of the
likelihood function.

1. Introduction

The multivariate Gaussian distribution, also known as the multivariate normal distribution,
is a probability distribution whose shape depends on two quantities: the mean vector and
the correlation matrix. The entries of the correlation matrix, called the correlation coe�cients,
measure a dependence between the random variables. The mean of each random variable and the
correlation coe�cients are called parameters, and a specific choice of parameter values identifies
one particular Gaussian distribution. Allowing the parameter values to vary produces an entire
family of probability distributions, jointly called the multivariate Gaussian model. Thus, a
statistical model is a set of probability distributions of similar form, and each distribution from
the family is specified by a particular value of model parameters.

In statistics, one observes some data and then asks for the ‘explanation’ of those data. To
even attempt to answer this question, one assumes that data form a random sample, that is,
that they were produced by a data-generating mechanism from some (fixed) statistical model.
In this context, finding a ‘best explanation’ of the data means finding the parameter values
so that the resulting distribution makes the data most likely to have been observed, among
all the distributions from that model. Formally, we write this as follows: the observed data
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x1, . . . , xn are assumed to be independent and identically distributed from some probability
density function f(x|✓); here, ✓ is the fixed but unknown parameter vector, while the notation
x|✓ indicates that f is a function of the sample x given the fixed value ✓. To determine the ‘best’
value of the parameters, statisticians write the likelihood function L(✓|x), which essentially
equals this probability function of the given data sample, but it is considered as a function of
the parameters. In other words, L(✓|x) = f(x|✓). For simplicity, L(✓|x) is often just written as
L(✓). The goal of statistical inference is then to solve the optimization problem of finding the
vector(s) ✓ that maximize the likelihood function L(✓) of the observed sample. Any solution of
this optimization problem argmaxL(✓) is called a maximum likelihood estimator (or an MLE)
for the given model. A closed-form expression for the MLE can be easily obtained for simple
examples, as in calculus, by solving the likelihood equations @

@✓

logL(✓) = 0 symbolically.
In this paper, the statistical model in question is the family of multivariate Gaussian distri-

butions for which the mean vector is assumed to be known. The case when mean is unknown
is a standard, well-known case; but fixing the mean vector results in a constrained optimization
problem that has only been solved in the two-dimensional case [SWY]. Thus we study the
problem argmaxL(✓), or, equivalently, argmax logL(✓), for the likelihood function arising from
the restricted model of multivariate Gaussians where the entries of the parameters vector ✓ are
correlation coe�cients. Unfortunately, this likelihood function is challenging to work with and
explicit (symbolic) solutions of the likelihood equations are di�cult to obtain. Therefore, we
rely on other approaches and use two numerical methods, Newton-Raphson and the polynomial
homotopy continuation methods, as optimization strategies. Specifically, we show that the work
of [SWY] in two dimensions does not directly generalize to the three-dimensional case.

The organization of this article is as follows. In section 2, we introduce several fundamental
concepts including the multivariate normal distribution and correlation coe�cients. In section
3, we present two numerical approaches used in determination of critical points of the log-
likelihood function logL(✓). In addition, we describe algorithms specified for Newton-Raphson
and PHCpack, the execution of which gives approximations for critical points of the given func-
tion. In section 4, we apply the two methods to analyze simulated data, while in section 5, we
bring up another possibility: using sample correlation. Previous work in estimating correlation
coe�cients by using sample correlation coe�cients in the two-dimensional case was done by
Shevlykov and Smirnov [SS]. We test the validity of the use of the sample correlation coef-
ficients in both two- and three-dimensional cases, and compare these sample estimators with
the critical points computed by PHCpack [V99]. In addition, we discuss the behavior of the
likelihood-function on the boundary for both two- and three-dimensional cases. We finish the
analysis of the log-likelihood l(✓) with a conclusion section 6, comparing the solutions of the two
methods.

2. Problem Set-up

In statistics, the multivariate Gaussian distribution (or the multivariate normal distribution)
generalizes the one-dimensional (univariate) normal distribution to several random variables, or,
as is customary to say, a random vector. The multivariate normal distribution of a k-dimensional
random vector is usually denoted by the following notation: X ⇠ N

k

(µ,⌃), where µ represents
the k-dimensional mean vector and ⌃ stands for the k ⇥ k covariance matrix. We focus on
the three-dimensional case, that is k = 3, and use the correlation matrix instead, noting that
correlation is just a scaled version of covariance. Thus we let X ⇠ N3(0, R), where R is the
correlation matrix with the variances restricted to 1. By definition, the matrix R is a symmetric
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positive definite matrix with 1’s on the diagonal:

(1) R :=

2

64
1 r12 r13

r12 1 r23

r13 r23 1

3

75 .

Here the data are three-dimensional column vectors X = [x1, x2, x3]. The entries r12, r13 and
r23 are correlation coe�cients of x1 and x2, x1 and x3, x2 and x3, respectively. These are the
three parameters that we are going to estimate.

For a random sample X1, ..., Xn

from X, the likelihood function for the Gaussian model is

L(R) =
nY

i=1

f(X
i

) =
nY

i=1

(2⇡)�p/2det(R)�1/2exp(�1

2
XT

i

R�1X
i

)

= (2⇡)�np/2det(R)�n/2exp(�1

2

nX

i=1

XT

i

R�1X
i

).

(2)

Observe that
nX

i=1

XT

i

R�1X
i

=
nX

i=1

tr(X
i

XT

i

R�1) = tr(
nX

i=1

X
i

XT

i

R�1),

thus the expression (2) can be rewritten using the simple matrix trace formulas, as in [E]:

(3) L(R) = (2⇡)�np/2det(R)�n/2exp(�1

2
trAR�1),

where

(4) A :=
nX

i=1

X
i

XT

i

.

As outlined in the Introduction, to estimate the values of the correlation coe�cients r12,
r13 and r23, one can - as in calculus - maximize the likelihood function L(R) of the observed
sample by finding all critical points of the three likelihood equations @

@rij
L(r12, r13, r23) = 0.

In our example, however, the closed-form expression for the maximum likelihood estimator is
di�cult to compute explicitly. Next, we introduce two numerical techniques called the Newton-
Raphson and the polynomial homotopy continuation methods. We will be using these two as the
optimization strategies to numerically solve the optimization problem of computing the MLE of
the vector (r12, r13, r23).

3. Numerical Approximation of Critical Points

This section is an introduction to two numerical approximations of critical points of a mul-
tivariate function. The first method, Newton-Raphson, is used to find one critical point, while
the second method, polynomial homotopy continuation, finds all critical points of the function.

3.1. Newton-Raphson Method. Newton-Raphson iteration is a frequently used numerical
technique that reckons successively better approximation to a root of a nonlinear real-valued
function f . The method involves linearizing the function, that is, replacing f with the first two
terms in its Taylor series.

To illustrate the application of the Newton-Rapson for finding one of the critical points of
a function f(x, y, z), consider the following example ([KC]). Let f1(x, y, z), f2(x, y, z), and
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f3(x, y, z) be a system of partial derivatives of the function f with respect to x, y, and z re-
spectively, such that

(5)

8
><

>:

0 = f1(x, y, z)

0 = f2(x, y, z)

0 = f3(x, y, z)

.

Now suppose that the point (x, y, z) is an estimated solution of (5) with computed correction
h, k, and l such that (x+ h, y + k, z + l) is a successively better approximation of the solution.
Then by using only the linear terms (the first two terms) of the Taylor series expansion of f1, f2,
and f3 in three variables, we get that the system

(6)

8
><

>:

0 = f1(x+ h, y + k, z + l)

0 = f2(x+ h, y + k, z + l)

0 = f3(x+ h, y + k, z + l)

is approximated by

(7)

8
>>>><

>>>>:

0 ⇡ f1(x, y, z) + h@f1
@x

���
x,y,z

+ k @f1
@y

���
x,y,z

+ l @f1
@z

���
x,y,z

0 ⇡ f2(x, y, z) + h@f2
@x

���
x,y,z

+ k @f2
@y

���
x,y,z

+ l @f2
@z

���
x,y,z

0 ⇡ f3(x, y, z) + h@f3
@x

���
x,y,z

+ k @f3
@y

���
x,y,z

+ l @f3
@z

���
x,y,z

.

We try to solve equation (7) for h, k, and l. It is a system of three linear equations. The
coe�cient matrix is the Jacobian matrix of f1, f2, and f3:

J =

2

64

@f1
@x

@f1
@y

@f1
@z

@f2
@x

@f2
@y

@f2
@z

@f3
@x

@f3
@y

@f3
@z

3

75 .

If the matrix J is not singular the solution to (7) exists and is as follows
2

4
h
k
l

3

5 = �J�1

2

4
f1(x, y, z)
f2(x, y, z)
f3(x, y, z)

3

5 .

Therefore, the Newton-Raphson method uses the following approximation to solutions of the
three nonlinear equations (5):

2

4
x(j+1)

y(j+1)

z(j+1)

3

5 =

2

4
x(j)

y(j)

z(j)

3

5+

2

4
h(j)

k(j)

l(j)

3

5 ,

where [h(j), k(j), l(j)] is the solution to the jth Jacobian linear system

J

2

4
h(j)

k(j)

l(j)

3

5 = �

2

4
f1(x(j), y(j), z(j))
f2(x(j), y(j), z(j))
f3(x(j), y(j), z(j))

3

5 .

The following algorithm shows how Taylor’s approximation is used to search for a (local)
maximum of a multivariate function.

Algorithm: K-dimensional Newton-Raphson
Input: A function f(x) and a starting point x0

Output: A value x̂ of x that maximizes f(x)

i 0
while ||rf 0(xi)||> tolerance do
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i i+ 1
xi  xi�1 � (D2f(xi�1))�1rf(x

i�1)
end while
x̂ xi.

Remark 1. We use a simple function f(x) = x3 � 5
2x

2 � 6x+ 3 in one variable to demonstrate
how the Newton-Raphson method obtains one of its critical points. Choosing the starting point
close to x = 5, the algorithm will return the desired value as the final approximation. However,
if the initial point is far from the global maximum, say x = �2, the outcome of the algorithm
will return a di↵erent result than that for x = 5. From this simple example, it should be evident
that the success of Newton-Raphson method strongly depends on the initial point chosen in the
analysis.

Figure 1. Example of a Function f(x) (left) and the Newton-Raphson Method
Estimating Critical Points of the Derivative of the given Function (right).

3.2. Polynomial Homotopy Continuation. Polynomial homotopy continuation is a numer-
ical method that approximates solutions to a system of equations G(x). The method first
establishes a start system F (x) that is easy to solve and has at least as many solutions as the
target system G(x). Such a start system is generated based on the structure and the upper
bound on the number of solutions of the target system G(x). The method then traces a finite
number of solution paths from the start polynomial system to the target system, whose solutions
we want to estimate. A subsequent step in the process is to define a homotopy space H(x, t) with
embedded paths between the two systems. For this purpose, we use a step function defined on
the interval [0, 1] that traces paths from function F (x) to G(x). This path-tracking is illustrated
in Figure 2.

Definition 1. Let X, Y be topological spaces, and f, g: X ! Y continuos maps. A homotopy
from f to g is a continuos function H: X ⇥ [0,1] ! Y satisfying

(8) H(x, 0) = f(x) and H(x, 1) = g(x), for all x 2 X.

If such a homotopy exists, we say that f is homotopic to g, and denote this by f ' g. A
standard reference is [W].

Remark 2. Definition 1 states that a homotopy is a deformation space containing paths from
known solutions of an easy function to the unknown solution set of the target function. In a
homotopy example illustrated in Figure 2, paths traced from a solution set of function F (x) lead
to an approximation for the solutions of G(x); see [L] for a more detailed background on this
numerical procedure.

300



G

Figure 2. Determination of zeros (roots) of a target system G(x). In our ap-
plication, G(x) is the system of partial derivatives of the log-likelihood function.

Suppose the polynomial system H(x, t) denoting the homotopy is defined as:

(9) H(x, t) = cG(x)t+ (1� t)F (x) t 2 [0, 1], c 2 C
where x = {x1, x2, ..., xn} is a complex n-tuple. Based on Eq.(9), it should be clear that
H(x, 0) = F (x) and H(x, 1) = cG(x).

The final step in the process involves estimating solutions for the target system by employing
a predictor-corrector method [V99] that is built into the software PHCpack. This approach uses
a step size control that eliminates all divergent and path-crossing solutions when tracing the
paths between two systems. It then follows independent solutions paths by small increments t
and approximates solutions to the critical points of the target function (for more details, see
[V99], [LM]).

4. Comparison of the Two Numerical Methods

The log-likelihood function for the trivariate normal model defined in Section 2 is written in
the expanded form as follows:

l(r12, r23, r13) = �
3

2
n log(2⇡)� 1

2
n log(1� r212 � r213 � r223 + 2r12r13r23)

� 1

2(1� r212 � r213 � r223 + 2r12r13r23)

⇣
a11(1� r223) + a22(1� r213) + a33(1� r212)

+ 2a23(r12r13 � r23) + 2a13(r12r23 � r13) + 2a12(r23r13 � r12)
⌘
,

(10)

where r12, r13 and r23 are correlation coe�cients that we are trying to estimate and a11, a12,
a13, a22, a23, and a33 are entries of the matrix A computed from the data sample.

The approach for testing the two numerical methods from Section 3 is outlined as follows.
First, we simulate a random set of data from X1, . . . , Xn

; here, n is the sample size. That
sample is then used to generate a positive definite symmetric matrix A satisfying restrictions
defined in Equation (4), i.e. A :=

P
n

i=1Xi

XT

i

. (R code for generating these matrices can be
found in Appendix 7.1.) Having generated A, we can now define the log-likelihood function in
Equation (10) as a function of three parameters, r12, r13, and r23. Note that the domain of the
function is the open cube (�1, 1)3, ensuring that there are no zero denominators. Finally, we
estimate r12, r13, and r23 by maximizing the log-likelihood function, and compare the estimated
values to the true values of the parameters.
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In the remainder of this section, we explain this procedure in detail and illustrate what
happens when the two numerical methods are used to estimate the parameters r12, r13, and r23.

4.1. Steps needed to estimate a local maximum using the Newton-Raphson method.
To compute one of the critical points for the given log-likelihood function using the Newton-
Raphson method, we use a maxLik package included in the statistical software R. The input
provided to R consists of the entries of a sample-based positive definite symmetric matrix and
the equation of the log-likelihood function l. We then call the maxLik solver specifying the
function for which the roots need to be found, the initial point of the iteration, and the method
that we want to use, in our case the Newton-Raphson. The command to do this in R is:

mle<-maxLik(l,start=c(-0.993,-0.993,0.993),method="NR")

and the output is stored in the variable mle. In this example, we used the point (�0.993,�0.993, 0.993)
as the initial point of the iteration.

We ran the algorithm for various starting points and several data sets. The algorithm above
found only a single root for each one of the sample-based positive definite matrices we simu-
lated. The results are both consistent with the analysis of the function’s concavity illustrated
in Figure 3, as well as the conjectured geometry of the log-likelihood generated function based
on the 2 ⇥ 2 correlation matrix R from [SWY]. However, at this point, we have not verified
whether the unique critical point discovered by maxLik corresponds to the global maximum of
the function. In order do that, we need to find all critical points.

4.2. Steps needed to approximate all critical points using the polynomial homotopy
continuation method. To find all critical points for the log-likelihood function, we use the
PHCpack interface with the Macaulay2 package [GPV] as a black-box polynomial system solver.
The input provided to PHCpack is the sample size n, the entries of a sample-based positive
definite symmetric matrix, and the equations of the partial derivatives of the log-likelihood
function l. In order to manipulate polynomials, we first define a polynomial ring of the critical
equations by using the standard Macaulay2 command R = CC[r12, r23, r13]. This allows us to
define the equations of the first partial derivatives for the log-likelihood l as polynomials in the
three variables r

ij

. We name these three critical equations (i.e., partial derivatives) f1, f2, and
f3. In the following, we list and solve a system of three derivative equations f1 = 0, f2 = 0
and f3 = 0 to obtain approximations for the critical points of the given log-likelihood. This is
done using solveSystem command which calls the black-box PHCpack solver. The solutions are
stored in list called sols.

list={f1,f2,f3}

sols=solveSystem (list)

By default, the software computes complex solutions of the input system. Thus we need to use
the realPoints command to extract only those critical points whose entries r12, r23 and r13 are
all real. This is done with a simple command:

realpts=realPoints(sols)

The algorithm above generated roughly 22 real solutions for each one of sample-based positive
define symmetric matrices we simulated; there were 22 most of the time, and sometimes a few
less. However, in each case, there was only one critical point that was statistically relevant,
meaning that it lies in the open cube (�1, 1)3. The results are consistent with the analysis of
the function’s concavity illustrated in Figure 3.

4.3. Performance analysis and comparison of the results. The ultimate goal is to test
how well the two methods actually estimate the true r12, r13, r23. For this, we use the standard
statistics trick: we fix a correlation matrix R, which we will call the ground truth in our
simulations. Then, we sample data from the distribution X ⇠ N3(0, R). Finally, we use the
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data X to estimate the entries of the matrix R, as if we did not know what they were. To fix the
ground truth R, we use the function rcorrmatrix in package clusterGeneration to generate
the random correlation matrix for each sample size n. The entries of this matrix R are the model
parameters, thus a good approximation of the MLE should be close to these parameter values.

The code needed to generate the sample-based matrices A is shown in Section 7.2. We used
three di↵erent ground-truth matricesR, and for each, we generated data samples of sizes n = 100,
n = 1000, and n = 10000. The following three tables summarize the output of both methods
on these 9 data sets. The tables show the following information: the ground truth r12, r23, r13,
the corresponding A matrices generated using code form Section 7.2, the statistically relevant
critical points out of all critical points computed by PHCpack with code from Section 4.2, and
the estimated values using maxLik with code from Section 4.1.

Table 1. Computational results for (r12, r23, r13) = (�0.04, 0.17, 0.54)

n The Matrix A Critical Point
(PHCpack)

Estimated Max
(maxLik)

100
a11=83.99, a12=39.91, a13=2.66,
a22=70.46, a23=-28.02, a33=84.40 um

(0.37, -0.08, 0.75) (0.96, 0.90, -0.01)

1000
a11=1064.31, a12=664.34, a13=-56.65,
a22=1046.01, a23=-374.37, a33=1014.02

(0.32, -0.15, 0.69) (1.00, 0.59, 0.74)

10000
a11=10211.43, a12=6450.77, a13=-639.90,
a22=10207.43, a23=-3581.70, a33=10037.0

(0.31, -0.16, 0.68) (0.60, -0.97, 1.00)

Table 2. Computational results for (r12, r23, r13) = (�0.28, 0.39,�0.58)

n The Matrix A Critical Point
(PHCpack)

Estimated Max
(maxLik)

100
a11=121.06, a12=77.21, a13=-18.45,
a22=104.54, a23=-37.06, a33=87.23

(0.32, -0.19, 0.62) (1.00, 0.51, 0.60)

1000
a11=1107.01, a12=729.04, a13=-23.55,
a22=1058.10, a23=-277.14, a33=924.09

(0.25, -0.21, 0.68) (1.0, 0.49, 0.70)

10000
a11=10097.48, a12=6332.98, a13=-657.10,
a22=10323.37, a23=-3703.83, a33=10272.4

(0.31, -0.15, 0.68) (1.0, 0.59, 0.73)

Table 3. Computational results for (r12, r23, r13) = (�0.47,�0.48,�0.14)

n The Matrix A Critical Point
PHCpack

Estimated Max
(maxLik)

100
a11=106.45, a12=52.56, a13=19.55,
a22=74.70, a23=-22.25, a33=108.49

(0.27, -0.21, 0.71) (1.00, 0.83, 1.00)

1000
a11=990.01, a12=645.61, a13=-62.66,
a22=645.61, a23=1022.90, a33=1011.59

(0.31, -0.16, 0.70) (1.00, 0.54, 0.74)

10000
a11=10133.35, a12=6273.80, a13=-623.43,
a22=10219.34, a23=-3655.68, a33=10036.5

(0.32, -0.14, 0.69) (0.33, -0.16, 0.97)

The above results reveal a significant discrepancy in the final approximation of critical points
generated by maxLik. Simply, the maxima estimated using maxLik do not converge to a certain
point, unlike the critical points approximated using PHCpack. That indicates that the Newton-
Raphson method is not reliable for computing the maxima or minima in the cases when there
is a possibility of multiple critical points. Due to this inconsistency, we study the geometry of
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the problem more closely. In particular. we examine the behavior of the log-likelihood function
by plotting it using Mathematica.

One way of plotting the function in three variables in Mathematica is to use Manipulate and
plot3D. In this way, we create a 3-dimensional plot treating one variable, say, r13, as a parameter.
The Mathematica code generating the three-dimensional plot of the four-dimensional trivariate
log-likelihood function l(r12, r13, r23) is:

Manipulate[Plot3D[l[r12, r13, r23], {r12, -0.99999, 0.99999},

{r13, -0.99999, 0.99999}], {r23, -0.99999, 0.99999}]

Figure 3. Graph of the Log-Likelihood Function l(r12, r13, r23)

The correlation coe�cients r12, r23 and r13 are restricted by the model to lie inside the open
cube (�1, 1)3. Therefore, for the purpose of the graphical representation in Mathematica, we
replace the actual endpoints -1 and 1 by close approximations: -0.99999 and 0.99999. That
let us observe the change in the behavior of the function that depended on the change in the
value of r13. Since the value of r13 was allowed to vary between -1 and 1, the function’s value
changed accordingly. Figure 3, which was generated for a fixed value of r13 = �.23, shows
that the function is bounded above with a vertical asymptote around the entire boundary of
the function. That indicates a concave down behavior, implying that the only critical point
found by PHCpack inside (�1, 1) is the global maximum. Perhaps one of the reasons why the
Newton-Raphson method fails to produce reasonable outputs is that it cannot converge on the
boundary.

Remark 3. A discussion on the computational approach is in order. Namely, one of the
di�culties with this example stems from the fact that the closed-form formula for critical points
is di�cult to obtain. We discovered that there exists another parameterization of the log-
likelihood, provided in the Appendix, Section 7.3, that simplifies the computation of the partial
derivatives. However, as a result, the function `(r12, r23, r13) becomes unbounded for all sample-
based matrices A! This poses a significant challenge for the Newton-Raphson method in that it
fails to find any critical points.

Thus, in our problem, we used the straightforward parameterization given in Equation (7).
However, even with the optimal parameterization, the Newton-Raphson method fails to produce
results close to those computed by PHCpack. One of the reasons why the method fails is because
r12, r23 and r13 all belong to (�1, 1), which is an open interval. The function may increase
towards infinity on boundary, and it is well known that the Newton-Raphson method cannot
converge on the boundary in such cases.
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5. Can Correlation Coefficients be Estimated Well?

In the previous section we described the shortcomings of the Newton-Raphson and the PHC
methods in estimating critical points of the log-likelihood function l(r12, r13, r23). While the
Newton-Raphson was simply failing to converge, PHC was able to find the only critical point,
however, this method also failed to approximate the critical point correctly. This could be due to
the model symmetry; i.e., changing the sign of a critical point computed may result in the same
value of the likelihood function (this is a common issue related to parameter non-identifiability,
but it is beyond the scope of this paper).

With the failure of both methods, we search for another solution. A natural question arises:
why not use the sample correlation coe�cient method to estimate the correlation coe�cients?
After all, sample correlations can be used to estimate correlation coe�cient in the well-studied
unconstrained optimization problem case (i.e., when the means are not fixed to zero). In this
section, several simulations show that the sample correlation coe�cient cannot be used as an
MLE because it does not correspond to a solution of the likelihood equations. Nevertheless,
practitioners may wish to still use it, because it has other good properties such as small mean
square error.

To illustrate our point, it is su�cient to reconsider the bivariate case. In a bivariate normal
distribution, there is one o↵-diagonal entry in the correlation matrix, namely ⇢ = r12. A classical
estimator of the correlation coe�cient ⇢ is given by the sample correlation coe�cient r: [SS]

(11) r =

nP
i=1

(x
i

� x̄)(y
i

� ȳ)

nP
i=1

[(x
i

� x̄1)2(yi � ȳ)2]1/2
,

where x
i

and y
i

are the entires of the ith data vector X
i

= [x
i

, y
i

]. It is also the maximum
likelihood estimator of ⇢ for the bivariate normal distribution density. However, it is only true
when the mean and variances are unknown because in the event that variances are known, the
likelihood function is conditioned on the knowledge that µ = 0 and the diagonal entires of
the matrix ⌃ are equal to 1. Indeed [FR] say we lose crucial information by using the sample
correlation coe�cient. In fact, let us verify that the sample correlation coe�cient is not a
solution of the likelihood equation @lnL

@⇢

= 0. When means of both x and y are zero and the

diagonal entries of the correlation matrix are both 1, the likelihood equation @lnL

@⇢

= 0 becomes

([SWY])

(12) ⇢(1� ⇢2) + (1 + ⇢2)

P
xy

n
� ⇢[

P
(x2 + y2)

n
] = 0.

By the Fundamental Theorem of Algebra, it follows that Equation (12) has three solutions in the
set of complex numbers, where at least one of the roots is real. We, however, are only interested
in the solutions of ⇢ on the open interval (�1, 1). To check if the sample correlation coe�cient
r is one of the three roots of (12), and thus appropriate to use as an MLE, we simulate data
X1, . . . , Xn

and compute. Solving Equation (11) and (12) shows that the sample correlation
coe�cient is 0.186 and the roots of (12) are ⇢ = 1, 32 , 5. So, since none of the roots of ⇢ are even
close to 0.186 and all of them are outside of the interval of interest, we conclude that the sample
correlation coe�cient should not be used as an MLE.

In the three dimensional case, we do not have one equation such as (12), instead, we have a
system of three critical equations. Having lost hope in using the sample correlation coe�cient
as an MLE, we test if it is a suitable estimator at all. We simulate several data samples and

compute their sample correlation coe�cients. Below is the summary of the comparison of sample.
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correlation coe�cient and the true correlation coe�cient used in the simulations. We compared
them using the standard method of the mean square error.

Table 4. Comparison of the Simulated and Approximated Sample Correlation
Coe�cients using the Mean Square Error Method.

n True Correlation Coe�cients Sample Correlation Coe�cients Mean Square Error
10 (0.61, -0.35, -0.05) (0.76, -0.44, -0.24) 0.08
20 (-0.85, 0.45, -0.51) (-0.90, 0.45, -0.47) 0.02
50 (-0.31, -0.02, -0.44) (-0.34 ,0.15, -0.47) 0.02
100 (0.32 ,0.68, 0.53) (0.19, 0.60, 0.46) 0.01
200 (0.10, 0.50, -0.77) (0.05, 0.48, -0.81) 0.0037

From the above table we see that the mean square error gets smaller as the sample size
increases. It indicates that the sample correlation might be a good estimator, because it has a
decreasing mean-square error (MSE). However, low MSE may not be the only good property
one desires an estimator to have; for example, e�ciency or asymptotic normality [CB], which
are properties that a maximum likelihood estimator (MLE) is guaranteed to have. Even though
sample correlation is not the MLE for this constrained optimization problem (when means and
variances are known), we can nevertheless use it as a relatively good simple estimator.

6. Conclusion

The motivation for this paper is maximization of the log-likelihood function for a standardized
trivariate normal distribution with means 0 and variances 1. In the bivariate case, [SWY] show
that the sole critical equation (i.e., the partial derivative of the log-likelihood function) reduces
to a degree-three polynomial equation in one variable, which has three roots, and at least one
real root in the interval (�1, 1). [SWY] also suggest that the multiple root problem (i.e., multiple
critical point problem) can be ‘eliminated’ in higher dimensions as well.

In this paper, we tested this claim computationally, and found out several interesting things.
First, even in three dimensions, it is already not at all obvious that there will be only one
statistically relevant critical point of the likelihood function. For example, the choice of the
parametrization of the likelihood function can change the geometry of the problem completely.
In the Appendix Section 7.3, we provide an alternative parametrization of the log-likelihood
function found in the literature. For this parametrization, there are several statistically signifi-
cant critical points; the numerical homotopy method can detect them, but the Newton-Rhapson
method fails to converge for every data sample we generated. Plotting this alternate parametriza-
tion, we discovered that the likelihood function was sometimes bounded and sometimes not; in
particular, it was unbounded whenever the positive semidefinite matrices A used as input to the
function were generated using real data samples. In contrast, [ZUR] recently (concurrently with
our analysis) proved a general result which implies that the log-likelihood is to be bounded for
our problem. Therefore, we realized that the parametrization did not preserve convexity of the
function. Thus, we chose to work with the natural parametrization proposed by Small, Wang
and Yang, because, even though it is more complicated, it captures the correct geometry of the
problem.

Second, we tested two of the commonly used numerical methods to estimate correlation
coe�cients, and compared their performance against the ground truth we used to generated
our data. Both of the methods failed to locate the true correlations; however, the numerical
homotopy continuation method was at least able to detect that there exists exactly one critical
point in the statistical domain of the function, namely, the open cube (�1, 1)3, and it converged
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to some value that we may declare the MLE of the parameters. The Newton-Raphson method
failed to converge altogether, and provided, as usual, no guarantee that the value it output is
anywhere close to the critical point we are looking for. Given this situation, we also considered
simply using the sample correlation coe�cients as estimators. We showed that this simple point
estimator is not a maximum likelihood estimator, however, it does have another nice property
which is that its mean square error decreases with sample size. We thus conclude it is a very
reasonable estimator after all.
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7. Appendix

7.1. Computing sample-based positive definite matrix A from the data. Here we pro-
vide statistical software R code that can be used to 1) generate a random sample x1, . . . , xn from
the trivariate normal distribution, and 2) compute the matrices A using that data sample.

> # initialize a 3x3 zero matrix:

A <-matrix(c(rep(0,9)),nrow=3,ncol=3)

> x<-list()

> xtrans <-list()

> prod <-list()

> for(i in 1:100){

+ #Generate one sample matrix from multivariate normal distribution:

+ x[[i]]<-mvrnorm(n=1,rep(0,3),Sigma)

+ #Calculate the transpose of the above matrix:

307



+ xtrans[[i]] <-t(x[[i]])

+ #Calculate the product of these two matrices:

+ prod[[i]] <- x[[i]] %*% xtrans[[i]]

+ #Sum up these products according to equation (4)"

+ A <- A + prod[[i]] }

7.2. Obtaining a correlation matrix. In order to test the methods, as explained in Section 4,
we need to obtain a correlation matrix that we will use as ‘ground truth’. We can use the
following code in statistical software R to obtain one such matrix R:

> library("MASS")

> library("clusterGeneration")

> R<-rcorrmatrix(3)

Now, instead of generating the data samples as in Section 7.1 above, we would like to use
the ground-truth matrix R. From standard statistical theory (see, e.g., [CB]), we know that
matrices A follow a distribution called Wishart. Thus we can generate a sample-based positive
definite matrix A from the distribution N3(0, R) as follows:

> n=100

> k=30

> A<-rWishart(k,n,R)

Here, R denotes a ground-truth correlation matrix, n the sample size, and k the number of
matrices A that we want to generate.

7.3. An alternative parametrization of the log-likelihood function for bivariate Gaus-
sians. Here we provide the parametrization of the log-likelihood function for our problem bor-
rowed from [SGPR].

(13)

l(r12, r23, r123) = �3 log(2⇡)n� n(log(1� r212) + log(1� r223) + log(1� r2132))

� a11
(1� r212)⇥ (1� r2132)

� a22(1 +
(r12 � r23)2

(1� r212)(1� r223)(1� r2132)
� 2r12r23r132p

(1� r212)(1� r223)(1� r2132)
)

� a33
(1� r223)(1� r2132)

� 2a12(
�r12

(1� r212)⇥ (1� r2132)
+

r23r132p
(1� r212)(1� r223)(1� r2132)

)

� 2a23(
�r23

(1� r223)(1� r2132)
+

r132p
(1� r212)(1� r223)(1� r2132)

)

+
2a13r132p

(1� r212)(1� r223)(1� r2132)

This parametrization is nice in the sense that one can derive the partial derivatives explicitly
and use them for computing an MLE. Unfortunately, it produces a function that is unbounded
above; this means in particular the parameter substations used in deriving the function destroyed
the geometry of the model.
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