
! !

Insights into the Computation for π
By

Neal C. Gallagher III, Maura F. Gallagher, Joshua C. Fair, Nicolas M. Fair,
Jason Cannon-Silber, Brandon W. Mayle, Samuel J. Konkol

Math Club
Socrates Preparatory School

www.socprep.org
josh.fair@socprep.org

Sponsor: Neal C. Gallagher, Ph.D, Socrates Preparatory School, 3955 Red Bug Lake Rd., Casselberry, FL
32707, neal.gallagher@socprep.com

Abstract

Searching for new ways to compute the number π leads us to an analysis of the geometric
approach of Archimedes and the recursive Calculus approach of Newton-Raphson.

Archimedes estimates π by inscribing a circle with a regular polygon and calculates the
circumference of the circle using the perimeter of the polygon. Unlike Archimedes, we
propose a method using irregular polygons. When the computations are performed with
an equal number of sides, the irregular polygon method produces a more accurate value
for π than does the regular polygon method.

The Newton-Raphson analysis leads to several interesting results. First, we find a rapidly
converging recursive formula that computes π to eight decimal places after only three
iterations. Second, the analysis leads to a Fourier series expansion for g(x) =
arcsin(sin(x)). This Fourier series results in several numerical series that can be used to
compute π.

1. Introduction
A number of paramount importance in mathematics, science, statistics and engineering, π
is commonly defined in plane geometry as the ratio between the circumference and
diameter of any circle:

.
Often π appears in expressions that have no obvious relation to circles. For example, the
most important distribution in statistics, the Normal distribution, contains π:

.
Being both an irrational and transcendental number (that is, not the root of a polynomial
with rational coefficients), π has been the subject of much study over the millenia, and
was the first such number to be studied.[1] Some try to find mystical meaning in π [2],
while others search for new ways to compute π as a novelty and, in the past, as a
practicality.

One of the earliest efforts to compute π was made by Archimedes of Syracuse, who
applied known principles of Euclidean geometry and the Pythagorean theorem. In his
book The Measurement of a Circle, he stated three theorems about the circle, the third of
which is as follows [3]:

€

π =
C
d

€

f (x) =
1
2π

−
x2

2σ 2e

269

bmh
Text Box
 Copyright © SIAM
 Unauthorized reproduction of this article is prohibited

! !

The ratio of the circumference of any circle to its diameter is less than 22/7, but greater
than 223/71.

The history of mathematics is filled with interesting work on the computation of π, much
of it by influential mathematicians. For example, Leibniz, Gauss and Euler (who may
have been the most prolific) have all worked on the computation of π. This work and that
of others is found in the comprehensive book Pi Unleashed.[4] Even with this vast
history of work, we have been fortunate to develop new and interesting results about the
computation of π. In this paper we discuss several original methods for computing π. One
is a variation on Archimedes’ approach and another is an iteration developed after first
investigating the Newton-Raphson method.[5] Section 2 covers the method of
Archimedes, while Section 3 is our variation on this method. In Section 4, beginning with
Newton’s method, we find a new iterative approach and a corresponding proof of
convergence. In Section 5 methods using Fourier series are explored that yield both
previously known results and new insights.[6]

2. Archimedes’ Method
Archimedes used a method of inscribed polygons. As seen in Heath’s translation [3], few
details remain of this. As such, we cannot be sure of his exact method. However, like
Archimedes, we use inscribed polygons, the perimeter of which approximates a circle’s
circumference. As seen in Figure 1, we begin with the simple fact that a regular hexagon
of side length one can be inscribed within a circle of radius one. This can be visualized by
realizing that this hexagon can be constructed by piecing together six equilateral triangles
of side length one that all share a common vertex. The common vertex serves as a circle
center in which to inscribe the hexagon. From there, the perimeter of a twelve-sided
inscribed polygon (dodecagon) is computed by doubling the number of sides of the
hexagon. The length of the dodecagon’s side is determined using Figure 1. Right triangle
OAB has hypotenuse OB of length 1 and side BA of length ½. By use of the Pythagorean
Theorem, the length of side OA, c1, is

 . (1)

This means that d1 = 1 - c1 = 1 - √3/2. Using the Pythagorean Theorem again for
triangle BAC, one finds the side length s2 for the dodecagon is given as

 . (2)
For an n-sided polygon, the value of π is estimated by (n/2)*(length of one side). For a
dodecagon the estimate is

.

€

c1 = r2 − (
s1
2
)2 =

3
4

€

s2 = (s1
2
)2 + (d1)

2 = 2 − 3

€

π ≅ 6 2 − 3 = 3.106

270

! !

Figure 1: Archimedes’ polygon method. (Only the top portion of circle is shown.)

The method may now be expressed as a recursion over n, where the length of the side for
a regular polygon is computed by repeatedly doubling the number of sides:

,

 ,

.

In Table 1, we present estimates for π computed in a Java program by using regular
polygons, doubling the number of sides, beginning with a hexagon. The Java code is
contained in Listing 1 found in the Appendix. The source of the error in the computation
for π arises primarily from using a chord of a circle to estimate a segment of arc. For
example the chord BC in Figure 1 is used as an estimate for the arclength connecting the
same two points B and C.

Number of sides 6 12 96 1,572,864
Estimate for π 3.0000 3.1058 3.1410 3.141592653588
Error 0.141592654 0.035764112 5.607026E-4 2.08855155E-12

Table 1: Archimedes’ estimate for π based on the number of polygon sides. For

comparison purposes, an accurate estimate to 17 decimal places for π is
3.14159265358979385.

€

cn = 1− (sn
2
)2

€

dn =1− cn

€

sn+1 = (sn
2
)2 + dn

2

271

! !

Figure 2: Irregular polygon approximation of circumference.

3. Modified Archimedes’ Method
Archimedes’ approximation uses a regular polygon. A modification of this approach is to
inscribe the circle using a polygon where the vertices have equally spaced x-coordinates
as illustrated in Figure 2, but the polygon sides form chords of unequal length. The length
of the circle’s arc over one quadrant is π/2. This arc is approximated by summing the
chords connecting the vertices of the irregular polygon. If two adjacent vertices have
coordinates (xn-1, yn-1) and (xn, yn), then Pythagoras tells us the length of the chord
connecting these points is

 . (3)

The estimate of the quadrant’s arc length is found by summing the length of all the
chords. Along the x-axis, the values xn are computed as:

€

xn = n /N,n = 0,...N ,

and the values yn are computed also using the Pythagorean Theorem as:

.

Alternately, using the law of cosines and the following formula:

,

€

dn = (yn − yn−1)
2 + (xn − xn−1)

2

€

yn = 1− xn
2

€

cos(a −b) = cos(a)cos(b)+ sin(a)sin(b)

272

! !

the value dn can also be computed as:

.

An examination of Figure 2 reveals the entire circumference is approximated using an
irregular polygon with 4N sides. In order to make a fair comparison between our method
and Archimedes’, we should compare polygons having the same numbers of sides. For
example, using Archimedes’ approximation with a regular 96-sided polygon should be
compared to our method using a value of N = 24.

Number of

Sides
12

(N=3)
24

(N=6)
48

(N=12)
96

(N=24)
Estimate for π 3.0843 3.1215 3.1345 3.1391

Error 0.057340 0.020122 0.007092 0.002504

Table 2: Estimated π values for irregular polygon method. Java code is found in Listing 2
in the Appendix and computed as the variable ‘sum’.

Comparing Archimedes’ 96 sided regular polygon method in Table 1 with our irregular
polygon method in Table 2, Archimedes consistantly computes a slightly more accurate
value for π. It might be asked if any advantage can be gained by the use of irregular
polygons. Answering this question requires a closer examination of our geometry as seen
in Figure 3, where the x-axis is divided into two equal segments of length ½. It is further
divided into the same number of intervals for each of the two halves. For example, in
Figure 2 each half is itself divided into two equal segments. This means that in Figure 3,
arc length AB and arc length BC are each spanned by the same number of polygon sides.
However, arc BC is twice as long as arc AB as revealed by some simple geometry: Right
triangle ODB has a side of length ½ and a hypotenous of 1, making angle BOD equal to
π/3 radians. Consequently, angle AOB is π/6 radians, leading to the result that arc BC is
twice as long as arc AB. Because each arc is approximated by the same number of chords
(see Figure 3), the approximation is more accurate for the shorter chords of arc AB.

This can be illustrated using an example. If the entire irregular polygon has 96 sides, each
of arcs AB and BC of Figure 3 has 12 sides. Therefore a 12-chord approximation for arcs
BC and AB estimates angles of size π/3 and π/6 respectively. These yield the respective
estimates for π to be 3.1380 and 3.1413, as computed using the Java code in Appendix
Listing 2. These compare to Archimedes’ result of 3.1410, showing that our estimate
using the arc for π/6 is better than Archimedes’.

€

dn = 2(1− (xnxn−1 + 1− xn
2 1− xn−1

2))

273

! !

Figure 3: Relationships between x-segments OD and DC and arc lengths AB and BC,
respectively. Both arcs have chords labeled l, m ,n, p.

4. Calculus and Newton’s method
Now we discuss the problem of numerically finding the zero of a function, satisfying
f(π) = 0, using Newton’s method. Consider the plot of f(x) = sin(x) in Figure 4, noting
sin(π) = 0. Suppose there are two points on the curve, A and B, the x-coordinates of
which are (π-δ) and (π+δ), respectively, and the respective y-coordinates are sin(π-δ) and
sin(π+δ). Note that, without already knowing the value of π, it is impossible to
numerically identify two such points. However, using simple algebra to find the equation
of the line connecting two points, and the unknown value δ, the equation for the line
connecting points A and B can be determined. Finding the slope and the x-intercept, as
shown in Figure 4, the dashed line connecting points A and B therefore has the equation:

 . (4)

For this line, the x-intercept is at x = π, and the slope is -sin(δ)/(δ). Were the value of δ
known, the value for π would be trivial to compute as being midway between A and B.
Significantly, as δ becomes smaller, the slope more and more closely estimates -1. Our
purpose is to estimate the value for π by finding a zero of f(x) = sin(x) using iterations via
Newton’s method. This proceeds as follows[5]:

1. Select an initial value for x, called x0.
2. Compute successive approximations by using

 , (5)

€

y = −
sin(δ)
δ

(x −π)

€

xn+1 = xn −
f (xn)
f '(xn)

274

! !

where f’(x) = the derivative of f(x).

3. Continue the iteration until an acceptably accurate solution is found.

Figure 4: Estimate the value for π by finding a zero of f(x) = sin(x).

Apply Newton’s method to f(x) = sin(x) as illustrated in Figure 5. The initial guess for π
is x0 = π – δ = 2. The value δ is the difference between x0 and the true value of π. Draw
the tangent line to f(x) at point A. Point A represents f(x0). As seen in Figure 5, this
tangent line has a slope of f’(x0) = cos(x0) = -cos(δ). It is at the point where this tangent
intersects the x-axis, that provides Newton’s next estimate for π at about 4.185.

Figure 5: Geometry for Newton’s method and modified Newton’s method. Initial value

x0 = 2.

A modification of Newton’s method improves the process. First, make an initial guess for
the value of π such that x0 = π – δ. The y-coordinate is f(x0) = sin(π - δ) = sin(δ),
specifying the point A on the sinusoid with coordinates ((π - δ), sin(δ)). This point is
graphed in both Figure 4 and Figure 5. Note the line segment AC is also in both figures.

275

! !

Point C has coordinates (π, 0) and line segment AC has slope –sin(δ)/δ as specified in Eq.
(4). Notice, with an initial guess of x0 = 2, δ becomes 1.1416, and the slope is –sin(δ)/δ =
-0.8.

If we could draw line segment AC from point A to the x – axis, it would intersect the axis
exactly at x = π, thus solving the problem. To do this we would need to know the value δ.
As the value of δ becomes small, the slope for AC quickly approaches the value -1, which
is the slope of line segment AD. This means triangle ABD is isosceles. If the length of
line segment AB is sin(δ), then the length of line segment BD must also be sin(δ).
Looking at Figure 5, if the first guess for the value π is x0, the next guess is the value at
point D, which is x1 = x0 + sin(δ). Even though we don’t yet know the value for δ, we
know the value of sin(δ) = sin(x0), making the modified Newton recursion:

 . (6)

x0 = 2.0 x1 = 2.90929743 x2 = 3.13950913 x3 = 3.14159265

Table 3: Rapid convergence for modified Newton’s method values. See Java Listing 4 in
the Appendix .

Another interesting feature of this recursion is that, no matter the starting value x0, it
almost always converges to a some odd multiple of π. This expression is found to be an
unusually effective way to compute π.

5. Fourier Series
If the value is known for sin(δ) = sin(x0) by use of Figure 5, it is possible to compute the
value for the error δ by using δ = arcsin(sin(x0)) giving the actual value of π as:

€

π = x0 +δ = x0 + arcsin(sin(x0)), (7)

provided . Here are a few examples using a calculator:

choose x = 2
sin(x) = 0.909297
arcsin(0.909297) = 1.141593
2 + 1.141593 = π

choose x = 3
sin(x) = 0.14112
arcsin(0.14112) = 0.141593
3 + 0.141593 = π

choose x = 1.765
sin(x) = 0.981202
arcsin(0.981202) = 1.376593
1.765 + 1.376593 = π

Table 4: Example calculations using π = x0 + arcsin(sin(x0)).

Figure 6 compares the graphs of g(x) = arcsin(sin(x)) and f(x) = sin(x). A difficulty with
using Eq. (7) as a method to compute π is that the power series computation for
arcsin(sin(x)) is cumbersome, but using the power series for arcsin(z) we can write [7]:

€

xn+1 = xn + sin(xn)

€

π
2
≤ x0 ≤

3π
2

€

arcsin(z) = z+ (1
2
) z

3

3
+ (1• 3
2 • 4

) z
5

5
+ (1• 3 • 5
2 • 4 • 6

) z
7

7
...= (n

2n)z2n+1

4n (2n+1)n=0

∞

∑ ; | z |≤1

276

! !

where z = sin(x0). Notice that if arcsin(z) is replaced by the first term in its power series
above, then term sin(x0) replaces term arcsin(sin(x0)) in Eq. (7) and it resembles Eq. (6).
Also in the power series, by setting x0 = π/2, z becomes equal to 1, and the series
simplifies to a slowly convergent series for π/2, first computed by Ramanujan.[9]

 (8)

As seen in Eq (9) the Fourier series offers a different solution [10].

€

g(x) =
4
π
(sin(x)− sin(3x)

9
+
sin(5x)
25

− ... sin((2n+1)x)
(2n+1)2

+ (9)

Figure 6: Comparison of functions f(x) = sin(x), and g(x) = arcsin(sin(x)).

As illustrated in Figure 6, because g(π/2)=π/2, sin(π/2) = 1, sin(3π/2) = -1, and so on.
Equation (9) may be rewritten as:

 , (10)

which can be used to compute π2/8, and thereby the value for π. This series was first
computed by Euler in 1748.[11] Using the series in Eq. (9), yet another series for π can be
developed. Because we know the derivative g’(x) = -1 when π/2 < x0 < 3π/2, Eq. (9) can
be used to compute the value of π as follows:

€

−
π
4

= cos(x)−
cos(3x)
3

+
cos(5x)
5

− ...+ (−1)n+1 cos((2n −1)x)
2n −1

+ ...

Picking x = π, gives the following simple series for π:

 (11)

This series, sometimes called the Leibniz series, converges very slowly. [12]

Suppose we integrate both sides of Eq. (9):

€

arcsin(1) =
π
2

=1+ (
1
2
)
1
3

+ (
1• 3
2 • 4

)
1
5

+ (
1• 3 • 5
2 • 4 • 6

)
1
7
...=

(n
2n)

4n (2n+1)n=0

∞

∑ .

€

π
2

=
4
π
(1+

1
9

+
1
25

+ ...+ 1
(2n+1)2

+ ...)

€

π = 4(1− 1
3

+
1
5
−
1
7

+ ...+ (−1)
n+1

2n −1
− ...)

277

!

.

Resulting in a rapidly converging series also computed by Euler: [13]

 (12)

Additional convergent series may be revealed by further manipulation of the function
g(x) in Eq. (9).

Summary
By our observation, methods for computing π fall into three categories: geometric,
recursive, and series summation. These categories are not mutually exclusive in that it is
possible to have a method be of more than one type. For example, the method proposed
by Archimedes is both geometric and recursive.

Our effort has been to identify new variations on methods for computing π in the hope of
expanding our insight into both the methods and the number π itself. Archimedes’
method approximates a circle using a process that recursively doubles the number of
sides for a regular polygon. In contrast, our method uses an irregular polygon the vertices
of which have equally spaced x-coordinates. The analysis indicates that under certain
conditions, irregular polygons provide a better approximation of the value of π.

Using Calculus directly, Newton-Raphson uses iterations to search for the x-intercept of
the function f(x) = sin(x). Discovering that a modified version of this method seems to
work better than a simple application of Newton’s formula, we propose the substitute
iteration xn+1 = xn+sin(xn). Instead of trying to make a recursive set of polygons converge
to a whole circle, the modified Newton’s method uses a sequence of numbers that
converge to the estimate of the single number π based on the fact that sin(δ) converges to
the value δ as δ becomes small.

The analysis of Newton-Raphson leads to another geometric approach that provides a
Fourier series approximation for the sawtooth function g(x) = arcsin(sin(x)), the slope of
which is almost always ±1. This special feature, when combined with a Fourier series
expansion for the sawtooth, leads to several classical series that when summed produce
estimates for π. It may be possible that other similar converging series may be generated
using this function g(x).

We point to four results that we have not seen mentioned in other literature on π. These
are:

1. The irregular polygon method for estimating π,
2. Explanation of the convergence of xn+1 = xn+sin(xn),
3. Use of the power series for arcsin() to produce a convergent series,

€

xdx
0

π /2
∫ =

π 2

8
=
4
π

[sin(x)−
0

π /2
∫ sin(3x)

9
+ ... sin((2n+1)x)

(2n+1)2
+ ...]dx

€

π 3

32
=1− 1

27
+
1
125

− ...+ (−1)n

(2n+1)3
+ ...

278

! !

4. The use of the Fourier series for the sawtooth function g(x) = arcsin(sin(x)), to
produce multiple convergent series for π.

The final conclusion is that the modified Newton’s method of Eq. (6) converges with
breath-taking speed and is the clear winner in our studies for quickly and easily
computing an estimate for π .

Acknowledgement
The reviewers offered suggestions that substantually improved the readability of this
work. We are sincerely grateful.

References
[1] D. Wells, Penguin dictionary of curious and interesting numbers, revised edition.
Penguin Group, p 31, 1997.

[2] J. Taylor, Great pyramid: why was it built? And who built it, Cambridge Univ. Press
1859, reprinted in 2014.

[3] Heath, T.L., The works of Archimedes (Dover edition), pp 93-98, 1953.

[4] J. Arndt and H. Christoph, Pi Unleashed, Springer-Verlag, Berlin Heidelberg, 2001.

[5] G.B. Thomas, Calculus and Analytic Geometry, Addison-Wesley, p 451, Reading,
1960.

[6] A. Papoulis, The Fourier Integral and It’s Applications, McGraw-Hill, New York,
1962.

[7] M. R. Spiegel, Mathematical Handbook of Formulas and Tables, Schaum's Outline
Series, Schaum Publishing Co 1st.ed., pp 111, New York, 1968.

[9] J. Arndt and H. Christoph, Pi Unleashed, p 226 eq.16.47, Springer-Verlag, Berlin
Heidelberg, 2001.

[10] M. R. Spiegel, Mathematical Handbook of Formulas and Tables, Schaum's Outline
Series, Schaum Publishing Co 1st.ed., pp 132, New York, 1968.

[11] J. Arndt and H. Christoph, Pi Unleashed, p 225 eq.16.29, Springer-Verlag, Berlin
Heidelberg, 2001.

[12] Ibid, p 70.

[13] Ibid, p 225 eq 16.31.

279

! !

Appendix

Java code used in computations
Listing 1:
This program listing computes values for π using the Archimedes polygon
approximation approach.
class PiArchimedes{
 public static void main(String args[]){
 // computes the value for pi using inscribed regular
 // polygons like Archimedes
 double s = 1;// hexagon of side lenght 1 inscribed in a circle of
 // radius 1
 int N = 96;// N limits the size of the largest polygon to 2*N
 int n = 6; // n = 6 begins with a hexagon
 double E;
 while(n <= N){
 double c = c(s);
 double d = d(c);
 s = new_s(s,d);// computes s for a 2n sided polygon
 // pi for dodecagon is 6*s - in general pi = n*s
 double pi = n*s;// pi estimate is computed as
 //(number of sides)/2 * (length of each side)
 E = Math.PI - pi;//E is the computation error

 System.out.println("number of sides is "+2*n);
 System.out.println("c = "+c+" d = "+d+" s2 = "+s+" Pi = "+pi);
 System.out.println("Error in calculation = "+E);
 n *= 2;
 }
 }
 // the parameter s2 is for the next polygon with 2*n sides
 static double new_s(double s1,double d){
 double s2=Math.sqrt((s1/2)*(s1/2)+(d*d));
 return s2;
 }
 //Compute the parameter c1 from s1
 static double c(double s1){
 double c1 = Math.sqrt(1-(s1/2)*(s1/2));
 return c1;
 }
 //Compute the parameter d using c.
 static double d(double c){
 double d = 1.0 - c;
 return d;
 }
}

280

! !

Listing 2:
This contains code for our alternate method for the computation of π by use of
irregular polygons. The variables sum and sum1 compute our full quadrant
irregular polygon estimate. sum and sum1 are the same estimate computed using
slightly different methods as a check on one another. sum3 is the estimate computed
using the π/3 included angle, while sum4 is the estimate computed using the π/6
included angle.
// three sets of computations for irregular polygons - sum and sum1
// are computations for the entire quadrant - sum2 is for the included
// angle of pi/3 - sum3 is for the included angle pi/6
 class Pi2_4{
 public static void main(String args[]){
 int N = 24;// equivalent to a 4N sided Archimedes polygon
 // estimate depending on method
 double x, y, sum = 0.0, sum1 = 0.0;
// estimates the sum for a irregular polygon about the first quandrant
// pi = 2*sum = 2*sum1
 double x0 = 0.0,y0 = 1.0;
 for(int i = 1; i < N+1; i++){
 x = i*1.0/N;
 y = Math.sqrt(1 - (x*x));
// estimates pi using irregular polygon about first quadrant
// total number of polygon sides circumscribing the circle is 4N
// sum computes the length of the polygon sides using the
// formula that computes the distance between points (x,y) and (x0,y0)
 sum += Math.sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0));
// sum1 computes the same distance using the law of cosines formula
// both sum and sum1 estimate the value for pi/2
 sum1 += Math.sqrt(2*(1-(x*x0 + Math.sqrt(1-x*x)*Math.sqrt(1-x0*x0))));
 x0 = x;
 y0 = y;
 }
// estimates pi over the angle of size pi/3 over the x-range
// circumscribed polygon has 8N sides
// 0.5 <= x <= 1.0
 N = N/2;// N is divided by because we are only using
 x0 = 0.5;// half of the region 0<x<1. Equivalent now to a
 y0 = Math.sqrt(1.0 - x0*x0);// 8*N sided Archimedes polygon
 double sum2 = 0.0;
 for(int i = 1; i < N+1; i++){
 x = x0 + 0.5/N;
 if(x>1.0) x = 1.0;
 y = Math.sqrt(1 - (x*x));
 // sum2 estimates pi/3
 sum2 += Math.sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0));

281

! !

 x0 = x;
 y0 = y;
 }
// estimates pi over the angle of size pi/6 over the x-range
// 0 <= x <= 0.5
// circumscribed polygon has 8N sides
 x0 = 0.0;
 y0 = Math.sqrt(1.0 - x0*x0);
 double sum3 = 0.0;
 for(int i = 1; i < N+1; i++){
 x = x0 + 0.5/N;
 if(x>1.0) x = 1.0;
 y = Math.sqrt(1 - (x*x));
// sum3 estimates pi/6
 sum3 += Math.sqrt((x-x0)*(x-x0)+(y-y0)*(y-y0));
 x0 = x;
 y0 = y;
 }
 System.out.println("Irregular "+(4*N)+" sided polygon about first quandrant
estimates Pi as " + 2*sum+"\n error is "+ (Math.PI-2*sum));
 System.out.println("Same irregular polygon using law of cosines distance
computation Pi as "+2*sum1+"\n error is "+ (Math.PI-2*sum1));
 System.out.println("Pi/3 estimate for Pi using "+(8*N)+" sides is
"+ 3*sum2+"\n error is "+ (Math.PI-3*sum2));
 System.out.println("Pi/6 estimate for Pi using "+(8*N)+" sides is
" + 6*sum3+"\n error is "+ (Math.PI-6*sum3));
 System.out.println("True Pi = "+ Math.PI);

 }
} System.out.println("Pi/3 estimate for Pi using "+(8*N)+" sides is
"+ 3*sum2+"\n error is "+ (Math.PI-3*sum2));
 System.out.println("Pi/6 estimate for Pi using "+(8*N)+" sides is
" + 6*sum3+"\n error is "+ (Math.PI-6*sum3));
 System.out.println("True Pi = "+ Math.PI);

 }
}
__
Listing 3:
Our article contains several series that sum to π. This listing contains the code that
sums several of these series as noted in the comments. We mention that sum2 is a
very slowly converging series and the program can take quite a while to perform
this calculation.
 class PIsimplesum{
 public static void main(String Args[]){
 // outputs the number of terms it takes for each series

282

! !

 // to compute pi to within the value of error.
 //
 double error = .00003;
 simpleSum(error);
 simpleSum2(error);
 simpleSum3(error);
 simpleSum4(error);
 }
 static void simpleSum(double error){
 // This computes the series for equation(11).
 double term = 1;
 double sum = 0.0;
 double pi = 0.0;
 long n = 1;
 int sign = -1;
 while (Math.abs((Math.PI-pi)) > error){
 sign = - sign;
 term = sign*1.0/(2*n-1);
 sum = sum + term;
 pi = 4.0*sum;
 n++;
 }
 System.out.println("pi1 is "+pi+" n is "+n);
 }
 static void simpleSum2(double error){
 // This computes the series for equation(8).
 double a = 1.0;
 double b = 1.0;
 double sum = 1.0;
 double pi = 0.0;
 long n = 1;
 while (Math.abs(Math.PI-pi) > error){
 a = a*(2*n-1.0)/(2*n);
 b = a/(2*n+1);
 sum = sum + b;
 pi = 2.0*sum;
 n++;
 }
 System.out.println(" pi2 is "+pi+" n is "+n);
 }
 static void simpleSum3(double error){
 //This computes the series in equation(10).
 double sum = 1.0;
 double term = 1.0;
 int n = 1;
 double pi = 0.0;

283

! !

 while (Math.abs(Math.PI-pi) > error){
 term = 1.0/((2*n+1.0)*(2*n+1.0));
 sum = sum + term;
 pi = Math.sqrt(8.0*sum);
 n++;
 }
 System.out.println(" pi3 is "+pi+" n is "+n);
 }
 static void simpleSum4(double error){
 //This computes the series in equation(12).
 double sum = 1.0;
 double term = 1.0;
 int n = 1;
 int sign = -1;
 double pi = 0.0;
 while (Math.abs(Math.PI-pi) > error){
 term = sign/((2.*n+1)*(2.*n+1)*(2.*n+1));
 sum = sum + term;
 sign = -sign;
 pi = Math.pow(32*sum,1.0/3.0);
 n++;
 }
 System.out.println(" pi4 is "+pi+" n is "+n);
 }
}
Listing 4:
This Java listing implements the rapidly converging iteration of Equation (6).
// implements the modified Newton's method of Eq.(6)
import java.util.*;
class PiNewton{
 public static void main(String Args[]){
 Scanner in = new Scanner(System.in);
 System.out.println("input minimum error in Pi computation - for example .0001");
 double error = in.nextDouble();
 double x0 = 2.0;// intial guess is x0 = 2.0
 double x1 = x0 + sinusoid(x0);
 //Modified Newton iteration is here in the main method
 while (Math.abs((x1-x0)) > error){
 x0 = x1;
 x1 = x0 + sinusoid(x0);
 System.out.println("xo is "+x0+", x1 is "+x1+" Error is "+Math.abs((x1-Math.PI)));
 }
 }

 static double sinusoid(double x1){// this method computes the function sin(x)
 double sin = x1;

284

! !

 double term = x1;
 for(int n = 3; n < 50; n += 2){
 term *= (-1) * (x1/n)*(x1/(n-1));
 sin += term;
 if(Math.abs(term) < 0.00000000000001) break;//compute the value of sin accurately
as may be needed
 }
 return sin;
 }
}

!

285

