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ABSTRACT 

The purpose of this research is to provide a solution to regulate environmental diseases when the spread of the 
disease is partly based on how susceptible different groups of individuals are. This study will monitor the 
effects a disease has on a population with groups of different susceptibility through the administration of 
vaccines: a point vaccination scheme (PVS) and an interval vaccination scheme (IVS). A PVS entails the 
instantaneous vaccination of individuals by selectively distributing vaccinations at one point in time, while an 
IVS is a more realistic vaccination method administered over an interval of time. Both schemes are exclusively 
administered to individuals classified as having the highest susceptibility to disease. The disease itself will be 
explored through the use of an 𝑆𝐼𝑅 model of 𝑛 susceptibility classes, a model which studies a disease in relation 
to susceptible, infected, and removed individuals. 

To further study the disease, this same model will be modified through the incorporation of differential delay 
equations, denoting a regaining of susceptibility. These incorporations surface as a reflection of reality: in 
several diseases, it has been observed that vaccinated individuals or individuals with immunity to the original 
strain of a disease can regain susceptibility to a mutated strain, such as the common flu whose strains undergo 
constant mutation. Modification of the disease allows for recovering individuals to contract a viral variant.  

INTRODUCTION 

Out of the many that arise from environmental sources, infectious diseases are one of the leading causes of 
human deaths. Some of the deadliest infectious diseases include respiratory infections, malaria, HIV/AIDS, 
diarrheal diseases, tuberculosis, and neglected tropical diseases – such as rabies and leprosy [10]. In any given 
population, there are certain aspects of each age group that can dictate vulnerability: children with an 
underdeveloped immune system may be highly susceptible to certain disease, adults may begin to express 
inherited traits that interfere with their health, and the elderly may have a deteriorated capacity for health. 
Independent of age, hygienic habits may also contribute to an individual’s susceptibility to disease; say, if 
someone hardly ever washes his/her hands.  Also, others may be more susceptible to certain diseases because 
of malnutrition or the medications they may take.   

To study the behavior of an epidemic as it affects individuals of different susceptibilities, an 𝑆𝐼𝑅 model of 𝑛 
susceptibility classes will be used.  The overall goal of this study is to see what would happen to a disease if 
resources were limited, and only the most highly susceptible individuals could receive a vaccine against the 
disease.  Ideally, this would limit the disease spread so much that it would eventually stop altogether, even 
though not everyone received the vaccine; we will investigate the conditions for when this occurs. 

It is important to note that the terms “groups” and “classes” will be used interchangeably throughout the paper. 

AN 𝑺𝑰𝑹 MODEL OF 𝒏 SUSCEPTIBILITY CLASSES 

The standard 𝑆𝐼𝑅 model presented by Kermack and McKendrick in 1927 [1], as shown below, denotes dynamic 
populations of susceptible, infected, and removed individuals with the corresponding differential equations, 
where 𝑆, 𝐼, and 𝑅 represent the susceptible, infected, and removed individuals, respectively: 

𝑆′ = −𝑏𝑆𝐼, 

𝐼′ = 𝑏𝑆𝐼 − 𝛼𝐼,     (1) 

𝑅′ = 𝛼𝐼. 

Susceptible individuals are those individuals who are not currently sick but can become sick; infected 
individuals are those who are currently sick and can infect susceptibles; removed individuals are those who 
have been taken out from the infective class because they can no longer become sick due to acquired immunity, 
quarantine, or death.  

This model defines both the rate of infection that transmutes susceptible individuals into infectious ones and 
the rate of recovery that rejuvenates the infected individuals and – consequentially – places them in the 
removed group. The infection rate and recovery rate are respectively notated by 𝑏𝑆𝐼 and 𝛼𝐼. 𝑏 is a combination 
of the contact rate between the susceptibility and infectious classes and the probability of a susceptible 
individual getting infected when such a contact occurs.  𝛼 represents how quickly infected individuals develop 
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immunity, become quarantined, or die from the disease. Note here that 1/𝛼 is the average length of time an 
infected individual is infective, and, by definition, both 𝑏 and 𝛼 are positive. 

By modifying Kermack and McKendrick’s model (1), an 𝑆𝐼𝑅 model of 𝑛 susceptibility classes can be derived: 

𝑆1
′ = −𝑏1𝑆1𝐼 + 𝑝1𝛽 − 𝜇𝑆1, 

𝑆2
′ = −𝑏2𝑆2𝐼 + 𝑝2𝛽 − 𝜇𝑆2, 

𝑆3
′ = −𝑏3𝑆3𝐼 + 𝑝3𝛽 − 𝜇𝑆3, 

… (2) 

𝑆𝑛
′ = −𝑏𝑛𝑆𝑛𝐼 + 𝑝𝑛𝛽 − 𝜇𝑆𝑛 , 

𝐼′ = (∑ 𝑏𝑘𝑆𝑘 − 𝛼 − 𝜇

𝑛

𝑘=1

) 𝐼, 

𝑅′ = 𝛼𝐼 + 𝑝𝑅𝛽 − 𝜇𝑅. 

Due to the inclusion of a modified infection rate constant, 𝑏i, an 𝑆𝐼𝑅 model of 𝑛 susceptibility classes gives the 
freedom to include differing levels of susceptibility.  We denote the different susceptibility groups as 𝑆1 (the 
highest susceptibility), 𝑆2, and so on to 𝑆𝑛 (the lowest susceptibility).  𝐼 will remain the infected group and 𝑅 
will remain as the removed group. As the individuals in the 𝑆1 class suffer the highest susceptibility, 𝑏𝑖 > 𝑏𝑗  

when 𝑖 < 𝑗. Hence, 𝑏1 is the largest infection rate constant while 𝑏n is the smallest.  As before, each 𝑏𝑖  is positive. 

To ensure that the model represents a more realistic population, notice that it now has a birth rate constant, 𝛽, 
and a per-capita death rate constant, 𝜇, with the following proportions of births going into each respective class:  

𝑝1, 𝑝2 , 𝑝3 , … , 𝑝𝑛 , and 𝑝𝑅, 

(𝑝𝑅will refer to the proportion of individuals born into the removed class and – thus – have immunity).  

It is important to consider that 𝜇 affects all population groups equally; this is because it represents deaths not 
due to the disease (all disease-related deaths simply become part of the removed group). Note here that 1/𝜇 
signifies the average lifespan of healthy individuals in the population [5] and that the sum of all the proportions 
of births going into each class is one: 

∑ 𝑝𝑘 + 𝑝𝑅 = 1.

𝑛

𝑘=1

 

Features of an 𝑺𝑰𝑹 Model of 𝒏 Susceptibility Classes 

The total population size, which we will call 𝐾, is the summation of the individuals in the different susceptibility 
classes, the infectious class, and the removed class, giving the total dynamic population as: 

𝐾′ = 𝑆1
′ + 𝑆2

′ + 𝑆3
′ + ⋯+ 𝑆𝑛

′ + 𝐼′ + 𝑅′, 

which simplifies to 

𝐾′ = 𝛽 − 𝜇𝐾. 

This differential equation yields the following solution 𝐾(𝑡), of which the limit can be taken as time goes to 
infinity, giving the approached population size, 𝛽 𝜇⁄ : 

lim
𝑡→∞

𝐾(𝑡) = lim
𝑡→∞

(
𝛽

𝜇
+ 𝐶𝑒−𝜇𝑡) =

𝛽

𝜇
. 

Here,  𝐶 =  𝐾0 –  𝛽/𝜇 , where K0 is the initial population size.  

Another feature of an 𝑆𝐼𝑅  model of 𝑛  susceptibility classes is that the model has two biologically-relevant 
equilibria: a disease-free equilibrium and an endemic equilibrium. A disease-free equilibrium denotes a state 
in which the number of infected individuals approaches zero, indicating that there is no disease present in the 
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population of study [5]. The disease-free equilibrium for this model is found by setting all of the derivatives 
and 𝐼 equal to zero and solving for the remaining variables, producing the following equilibrium: 

(𝑆1, 𝑆2, 𝑆3, … 𝑆𝑛 , 𝐼, 𝑅) = (
𝛽𝑝1

𝜇
,
𝛽𝑝2

𝜇
,
𝛽𝑝3

𝜇
,…

𝛽𝑝𝑛

𝜇
, 0,

𝛽𝑝𝑅

𝜇
). (3) 

The endemic equilibrium, on the other hand, represents a state in which the infections are persistent, but not 
persistent enough to cause an epidemic [5].  However, to determine if the disease will die out or not, we only 
need to determine if the number of infections, 𝐼, will approach 0, or, equivalently, if the disease-free equilibrium 
is asymptotically stable.  This is done by deriving what is known as the basic reproductive number of the disease, 
or 𝑅0 for short.  For an epidemic model, 𝑅0 “represents the average number of secondary infections caused by 
each infective over the course of the infection” [1, pg. 290]. Theoretically,  𝑅0 is representative of the threshold 
value between a disease-free state and an endemic state. If 𝑅0 is less than one, then the disease-free equilibrium 
is stable; whereas if 𝑅0 is greater than one, then the disease-free equilibrium is unstable, leading to an endemic 
disease.  Determining which of these cases occurs can be done using the following theorem: 

Theorem 1. The threshold value between a disease-free and an endemic state in (2) is described by: 

R0 =
β

μ
(
∑ 𝑏𝑘𝑝𝑘

𝑛
𝑘=1

μ + α
). 

If 𝑅0 > 1 , then the disease will become endemic in the population; otherwise, if 𝑅0 < 1, then the population 
will eventually become disease-free. 

The proof of this theorem is presented in the Appendix (section 1).  

It is important to note here that this theorem, and the theorems mentioned later in this manuscript, prove local 
stability of the equilibria, but the simulations suggest global stability.  

AN SIR MODEL OF THREE SUSCEPTIBILITY CLASSES 

In nature, the number of susceptibility classes varies from one population to the next and are dependent on the 
type of disease, but for the purpose of illustrating the behavior of the model, an 𝑆𝐼𝑅  model of three 
susceptibility classes will be used: 

𝑆1
′ = −𝑏1𝑆1𝐼 + 𝑝1𝛽 − 𝜇𝑆1 

𝑆2
′ = −𝑏2𝑆2𝐼 + 𝑝2𝛽 − 𝜇𝑆2 

𝑆3
′ = −𝑏3𝑆3𝐼 + 𝑝3𝛽 − 𝜇𝑆3 

𝐼′ = (∑ 𝑏𝑘𝑆𝑘 − 𝛼 − 𝜇

3

𝑘=1

) 𝐼 
(4) 

𝑅′ = 𝛼𝐼 + 𝑝𝑅𝛽 − 𝜇𝑅. 

This model was originally intended to serve as a method of studying the behavior of influenza, which has a 
recovery period of a few days to two weeks [8]. Hence, 𝛼 = 1  week for our simulations. 𝛽  and 𝜇  are also 
assigned specific values with the units of per week per 1000 people: 𝛽 = 0.2415 [6], and 𝜇 = 0.0001421 [3].  
The remaining parameter values were selected through simulation work; namely, what appeared to be the 
most feasible cases for a realistic disease spread.  

VACCINATIONS 

With a limited number of available vaccinations, the individuals with the highest susceptibility to infection 
should be vaccinated first because highly susceptible individuals hold the most potential to contract and spread 
a disease. As a result of vaccination efforts, these individuals are taken out from the highest susceptibility class 
and placed into the removed group, revoking their role as active agents of disease spread. Such efforts will 
greatly reduce the impact of a disease by either diminishing the outbreak numbers or avoiding an outbreak 
outright. 

This paper considers two possible methods of vaccination: point and interval vaccination. 
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Point Vaccination Scheme 

A point vaccination scheme (PVS) is administered at exactly time 𝜏 and in a single distribution cycle. This means 
that all the individuals suffering from the highest susceptibility to disease will be vaccinated in an instant, 
ideally preventing further spread of the disease by placing such individuals into the removed class. The model 
of such a scheme is the same as the SIR model of n susceptibility classes; however, at time , the conditions of 
𝑆1(𝑡) and 𝑅(𝑡) will be reset as follows: 

𝑆1(𝜏) = 0  

𝑅(𝜏) = lim
𝑡→ 𝜏−

(𝑆1(𝑡) + 𝑅(𝑡)). (5) 

This reset occurs to satisfy the spontaneous nature of PVS. It affirms that with the administration of the vaccine 
at time , all of the highly susceptible individuals will be classified as removed individuals. 

From a public health standpoint, one may be curious as to the best time to administer such a vaccine.  Ideally, 
it is administered when 𝑆1 is at its highest.  In many cases, this means the vaccine should be administered as 
early as possible, as illustrated by the following theorem:  

Theorem 2. The optimal vaccination time for PVS occurs at time zero, given biologically realistic parameters. 

The proof of this theorem is presented in the Appendix (section 2).  
 

Using the model in (4), and an initial population of 1000, the disease spikes when no vaccine is administered 
and 𝑅0 > 1; and the disease does not spike when a vaccine is administered and is effective in removing enough 
susceptible individuals to inhibit the disease spread. When the vaccine is effective, it entails that the disease 
has been successfully suppressed (Figure 1).    

Figure 1. The Effectiveness of PVS. 

Parameters: 𝛼 = 1, 𝛽 = 0.2415, 𝜇 = 0.0001421, 𝑏1 = 0.010, 𝑏2 = 0.007, 𝑏3 = 0.005, 𝑝1 = 0.85, 𝑝2 = 0.07, 𝑝3 = 0.07, 𝑝𝑅 = 0.01 
Note 1: From this figure and onwards, the legend will be located vertically on the right of the graphs. 

However, the disease is not necessarily eliminated from the population if any new births are placed in S1, since 
the vaccine is administered only once.  This allows the disease to potentially rebound and still become endemic, 
but it may take a long time before doing so, depending on how fast S1 is replenished.  

Because Theorem 2 only holds for biologically realistic parameter values, one may find that 𝑆1(𝑡) may be 
maximized at some other 𝑡 value besides zero if non-realistic parameter values are used. In Figure 2, 𝑆1  is 
maximized elsewhere other than at time zero. This is because, while all the other parameters values have 
realistic values assigned to them, the birth constant, 𝛽 , is set at 2000 births per week. Since the initial 
population size is 1000, 2000 births per week boasts a 200% increase in the initial population in the first week. 
Obviously, this does not reflect biological realism because such a population swell is not realistic, as humans 
do not reproduce at such a high rate. This is why it is emphasized that Theorem 2 only works under practical 
conditions.  
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Figure 2. The Ineffectiveness of PVS. 

Parameters: 𝛼 = 1, 𝛽 = 2000, 𝜇 = 0.0001421, 𝑏1 = 0.050, 𝑏2 = 0.0006, 𝑏3 = 0.0005, 𝑝1 = 0.33, 𝑝2 = 0.33, 𝑝3 = 0.33, 𝑝𝑅 = 0.01 
Note 2: The smaller, zoomed in graphs are presented for illustration purposes to demonstrate that 𝑆1 is maximized elsewhere. The time range 
for these graphs is set to 1 week for this purpose. 

Interval Vaccination Scheme 

An interval vaccination scheme (IVS) is a vaccine that is administered starting at time 𝜏 and is re-administered 
over an interval of length 𝐻. Like a PVS, an IVS is also administered in one distribution cycle. Similarly, the 
model of IVS is that of the SIR model of n susceptibility classes; however, the equations for 𝑆′

1(𝑡) and 𝑅′(t) are 
reset between the time interval [𝜏, 𝜏 + 𝐻] as follows: 

𝑆1
′(𝑡) = −𝑏1𝑆1𝐼 + 𝑝1𝛽 − 𝜇𝑆1 − min (

1

𝐻
𝑆1(𝜏), 𝑆1(𝑡)) 

𝑅′(𝑡) = 𝛼𝐼 + 𝑝𝑅𝛽 − 𝜇𝑅 + min (
1

𝐻
𝑆1(𝜏), 𝑆1(𝑡)). 

(6) 

 

Here, H represents the length of the vaccination time interval; in an IVS, the vaccines are administered 
uniformly over the entire interval. The reset asserts that within the time interval [𝜏, 𝜏 + 𝐻] , a constant 
proportion of the highly susceptible individuals will be vaccinated at each instant, allowing IVS to offer more 
realism in its distribution because not all the highly susceptible individuals can be vaccinated at a single point 
in time. Meanwhile, the remaining highly susceptible individuals may eventually become infected or may 
remain susceptible, given that there is a continuous flow of births during the vaccination interval and not 
everyone is vaccinated at once. Otherwise, everyone that is available to be vaccinated at the beginning of the 
interval either will be vaccinated or will get infected.  Once the reset has progressed beyond the time interval 
[𝜏, 𝜏 + 𝐻], the system will revert back to following the standard SIR model of n susceptibility classes.

Using biologically realistic parameters, it turns out that an IVS can work in reducing the number of infected to 
zero over a timescale of 10 weeks (Figure 3). Again, it seems that vaccinating these individuals can result in a 
disease-free state, if studied over a short time scale; if the system is studied over a longer time scale, 𝑅0 is the 
determining factor for the stability of the disease-free equilibrium.  

The key properties of an IVS are that the highly susceptible individuals are marked for vaccination at time 𝜏, 
and only these individuals have the chance of being vaccinated. Referring back to Figure 3, it is noticeable that 
the largest pool of highly susceptible individuals occurs at time zero in most cases, as proven in Theorem 2, 
and, since that is the case, then – logically – an IVS is also best distributed at time zero.  This leads to the 
following conjecture (it has not yet been proven, but logical and simulation evidence suggest it will be true in 
most cases): 
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Figure 3. The Effectiveness of IVS. 

Parameters: 𝛼 = 1, 𝛽 = 0.2415, 𝜇 = 0.0001421, 𝑏1 = 0.010, 𝑏2 = 0.007, 𝑏3 = 0.005, 𝑝1 = 0.85, 𝑝2 = 0.07, 𝑝3 = 0.07, 𝑝𝑅 = 0.0

Conjecture 1. The IVS is most effective when vaccines are distributed starting at time zero, given biologically 
realistic parameters. 

The evidence of this conjecture is provided in the Appendix (section 3). 

REGAINING SUSCEPTIBLITY 

There have been incidents reported in which an administered vaccine offers little aid in the prevention of 
disease. This is because some vaccines lack the necessary potential to prevent an outbreak, leaving those 
already vaccinated susceptible to primary and recurring infection. For instance, individuals who receive 
Bacillus Calmette-Guérin vaccines at a young age are not always protected from tuberculosis [4]. 

Similarly, in the case of the flu, an individual who has received vaccination or has gained immunity may regain 
susceptibility. The flu is an infection of the respiratory tract caused by different influenza viruses, defining the 
flu as a class of viruses that similarly affect the human body. There is no singular and definable “flu virus,” and 
the class of related viruses possess a variable genetic makeup. Because of the different strains of viruses, 
individuals who previously received flu vaccines can become infected with a different strain of the flu - behavior 
that would appear as a “recurring [epidemic]”  [1, pg. 298]. It is important to note that these individuals never 
receive the same virus twice; it is always a mutated strain of virus that caused a previous infection or a virus 
from a different strain. 

Almost every year, 5-20% of the population in the United States is infected with the seasonal flu [11]. The virus 
that causes seasonal flu changes a little bit each year, but the changes are small and people have some resistance 
to the virus [9]. In some years, the flu virus changes drastically and results in another epidemic, in which the 
individuals who have been previously vaccinated for the seasonal flu become susceptible to this new strain.  
 
Another strain similar to the one described above is the H1N1 strain. In 2009, the H1N1 strain infected 22 
million people in the United States, causing an estimate of 98,000 H1N1-related hospitalizations and 3,900 
H1N1-related deaths [12]. Because both the seasonal flu strain and H1N1 flu strain originated from an ancestor 
virus, the latent period of both influenza strains coincide. This collision results in individuals who are highly 
susceptible to both strains. Additionally, although an individual may be more immune to one flu virus over 
another, he or she can come down with the flu again, disguised by a difference in strain. 
 
Average Rate Model 
 
To illustrate an instance of regained susceptibility, the initial SIR model of 𝑛 susceptibility classes in (2) is 
modified through the addition of a portion of removed individuals into the highest susceptibility class as 
follows: 
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𝑆1
′ = −𝑏1𝑆1𝐼 + 𝑝1𝛽 − 𝜇𝑆1 + 𝑐𝑅 

𝑆2
′ = −𝑏2𝑆2𝐼 + 𝑝2𝛽 − 𝜇𝑆2 

𝑆3
′ = −𝑏3𝑆3𝐼 + 𝑝3𝛽 − 𝜇𝑆3 

… 

𝑆𝑛
′ = −𝑏𝑛𝑆𝑛𝐼 + 𝑝𝑛𝛽 − 𝜇𝑆𝑛 (7) 

𝐼′ = (∑ 𝑏𝑘𝑆𝑘 − 𝛼 − 𝜇

𝑛

𝑘=1

) 𝐼 

𝑅′ = 𝛼𝐼 + 𝑝𝑅𝛽 − 𝜇𝑅 − 𝑐𝑅. 

Here, 𝑐 represents the rate at which an individual regains susceptibility on average, where 1 𝑐⁄  denotes the 
average length of time an individual remains immune before regaining susceptibility to infection.  c is assumed 
positive for this model. 

As seen with an 𝑆𝐼𝑅 model of 𝑛 susceptibility classes in (2), there are both disease-free and endemic equilibria, 
with the stability of the disease-free equilibrium determined by a basic reproductive number. For this model, 
the disease-free equilibrium is:  

(𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑛 , 𝐼, 𝑅) = (
𝛽𝑝1 + 𝑐𝑅∗

𝜇
,
𝛽𝑝2

𝜇
,
𝛽𝑝3

𝜇
,… ,

𝛽𝑝𝑛

𝜇
, 0, 𝑅∗) (8) 

where 𝑅∗ =
𝛽𝑝𝑅

𝜇+𝑐
. 

The 𝑅0  value can be found using the same Jacobian technique used in the proof of Theorem 1 (see the 
Appendix, Section 1). The basic reproductive number for this model is denoted as: 

𝑅0 =
𝛽

𝜇
(
∑ 𝑏𝑘𝑝𝑘

𝑛
𝑘=1

𝜇 + 𝛼
+

𝑏1𝑝1𝑐

(𝜇 + 𝛼)(𝜇 + 𝑐)
). (9) 

This 𝑅0  value is extremely similar to the one derived in Theorem 1, except for the addition of the term 
𝑏1𝑝1𝑐

(𝜇+𝛼)(𝜇+𝑐)
.  Notice that 

𝑏1𝑝1𝑐

(𝜇+𝛼)(𝜇+𝑐)
 is bound to be small and will minimally impact the basic reproductive number 

as consequence. This finding was made through running numerous simulations for various values of the 
parameters in the additional term; it was found that the only impact on 𝑅0 that would be significant is if that 
term was large enough to cause 𝑅0 to go above the threshold value of one, pending it was less than one with 
respect to the original model in (2).  This could happen if 𝑐 was large, in conjunction with a high 𝑏1 and a high 
𝑝1, and the original value of 𝑅0 in (2) was already fairly close to one. On the other hand, if these parameters are 
low, then the term involving 𝑐 will also be small, entailing that the impact of regaining susceptibility will be 
negligible. Thus, depending on a system’s reproductive number when immunity is effectively permanent, the 
introduction of possible susceptibility rehash can hold little or great sway on the end state of a disease. 

Fixed Rate Model 

The representation of 𝑐 as an average is problematic, as 𝑐 is derived from an exponential distribution [1]. On 
average, individuals are taken from the removed class around time 𝑐 and are then subsequently placed into the 
highest susceptibility group. But, an average is not all telling. There is potential for an individual to be removed 
at a time far displaced from that of time 𝑐, since that time for immunity can vary anywhere from zero to infinity. 
For example, if 𝑐 = 0.1 , then – on average – a removed individual is taken out from the removed class 
approximately after 10 weeks. Realistically, such an individual cannot be taken out from the removed class at 
a time that extends beyond that individual’s lifetime. However, since – in an average rate model - the time for 
immunity can range anywhere from zero to an infinite period, it is possible that an individual will regain 
susceptibility past his or her lifetime. An applicable solution to this issue is a model of fixed rate, where 
individuals regain susceptibility after a known, fixed amount of time: 

219



 

 𝑆1
′ = −𝑏1𝑆1𝐼 + 𝑝1𝛽 − 𝜇𝑆1 + (𝛼𝐼(𝑡 − 𝑐) + 𝑝𝑅𝛽 − 𝜇𝑅(𝑡 − 𝑐)) 

𝑆2
′ = −𝑏2𝑆2𝐼 + 𝑝2𝛽 − 𝜇𝑆2 

𝑆3
′ = −𝑏3𝑆3𝐼 + 𝑝3𝛽 − 𝜇𝑆3 

… (10) 

𝑆𝑛
′ = −𝑏𝑛𝑆𝑛𝐼 + 𝑝𝑛𝛽 − 𝜇𝑆𝑛 

𝐼′ = (∑ 𝑏𝑘𝑆𝑘 − 𝛼 − 𝜇

𝑛

𝑘=1

) 𝐼 

𝑅′ = 𝛼𝐼 + 𝑝𝑅𝛽 − 𝜇𝑅 − (𝛼𝐼(𝑡 − 𝑐) + 𝑝𝑅𝛽 − 𝜇𝑅(𝑡 − 𝑐)), 

where 𝑐 represents the exact time an individual maintains immunity. 

Again, our goal for this system will be to analyze the stability of the disease-free equilibrium, which is the same 
as for the original model (2).  It turns out that, unlike in (7), where the rate c has some impact on the spread of 
the disease, c does not impact the stability of the disease-free state at all in this model, as the following theorem 
states: 

Theorem 3. The threshold value between a disease-free and an endemic state in (10) is described by: 

R0 =
β

μ
(
∑ 𝑏𝑘𝑝𝑘

𝑛
𝑘=1

μ + α
). 

The proof for this theorem is in the Appendix (section 4). 

The basic reproductive number for the fixed rate model is identical to the basic reproductive number found for 
an 𝑆𝐼𝑅  model of 𝑛  susceptibility classes (8). This denotes that the delay terms do not affect the basic 
reproductive number of a fixed rate model.   

Comparison of Average Rate Model and Fixed Rate Model 

Recall that in both models of regained susceptibility, the parameter, 𝑐, represents the rate at which a removed 
individual regains susceptibility. For the analysis of both models, a 4 week immunity period will be studied. 
This equates to 𝑐 being valued at 0.25 and 4.0 for the average rate and fixed rate models, respectively. As done 
previously, we will assume three susceptibility classes are present (4).  

Interestingly, both models have almost the same end behavior at 52 weeks, suggesting that the two approach 
the same endemic equilibrium (Figure 4A). Dissimilarly, though, the average rate model approaches a fixed 
endemic equilibrium, whereas the fixed rate model suffers continued oscillations in the class populations. 
Further inspection of the numerical data in Table 1 provides different end behavior for the two models. Thus, 
to fully determine the end behavior , the models need to be studied over a longer time.   

At 100 weeks, both models again seem to have the same end behavior, once more suggesting that they approach 
the same endemic equilibrium (Figure 4B). However, the model depicting the average rate still approaches a 
fixed endemic equilibrium, while the model depicting a fixed rate experiences less severe oscillations and 
apparently approaches an equilibrium close to that of the average rate model (Table 1). 

At 1000 weeks, the end behavior of the two models is almost, but not exactly, the same (Figure 4C and Table 
1). 
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Figure 4. Average Rate Model and Fixed Rate Model at Various Lengths of Time. 

 

 

 

 

 

 

 

Parameters: 𝛼 = 1, 𝛽 = 0.2415, 𝜇 = 0.0001421, 𝑏1 = 0.004, 𝑏2 = 0.002, 𝑏3 = 0.001, 𝑝1 = 0.38, 𝑝2 = 0.32, 𝑝3 = 0.25, 𝑝𝑅 = 0.01
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Table 1. Average Rate and Fixed rate at Various Lengths of Time. 

T (Weeks) Model Type 𝐒𝟏 𝐒𝟐 𝐒𝟑 I R Population Size 

52 
Average Rate 249.8085 0.2559 0.5365 151.0435 603.5054 1005.1 

Fixed rate 256.6548 0.2754 0.6089 149.0352 598.9700 1005.5 

100 
Average Rate 249.8414 0.2542 0.3973 151.9975 607.3793 1009.9 

Fixed rate 250.0352 0.2723 0.4253 140.4167 619.1121 1010.3 

1000 
Average Rate 249.8570 0.2292 0.3581 168.5654 673.6510 1092.7 

Fixed Rate 249.8458 0.2436 0.3806 158.6008 683.9347 1093.0 

 
Parameters:𝛼 = 1, 𝛽 = 0.2415, 𝜇 = 0.0001421, 𝑏1 = 0.004, 𝑏2 = 0.002, 𝑏3 = 0.001, 𝑝1 = 0.38, 𝑝2 = 0.32, 𝑝3 = 0.25, 𝑝𝑅 = 0.01

Both models exhibit the same end behavior, and since there is insignificant difference in the behavior of these 
curves, the long term behavior of a disease can be studied using either of the two models. However if a disease 
is to be studied over a shorter time scale, both models will have to be analyzed as they both exhibit different 
behaviors in the beginning. 

CONCLUSION 

In addition to the presentation of an 𝑆𝐼𝑅  model of 𝑛 susceptibility classes, this research most conclusively 
provides arguments attesting to the merit of early vaccination distribution. Such theorems hold that both the 
point and interval vaccination schemes are best distributed at time zero, as the pools of susceptible individuals 
are largest then. Distributing vaccinations to only individuals of the highest susceptibility class ensures the 
most efficient allocation of resources and the most marginal reduction in the spread of disease, especially if the 
number of people in this group is high. Thus, to quell a disease, if vaccines are to be exclusively applied to 
individuals of the highest susceptibility, vaccination efforts are to be expended as early as possible in order for 
the efforts to be most substantial in disease prevention. 

To enhance the study of a disease spread, two additional models introduce the possibility of regained 
susceptibility:  using an average time or a fixed time of regaining susceptibility. Such models allow for removed 
individuals to re-cycle into a susceptibility class, either as a result of ineffective vaccines or of genetic variants 
in a strand of a disease.  The impact of doing so appears to be minimal at best, and nonexistent in the case of 
fixed time, but it is important to consider this effect if the basic reproductive number, without considering a 
regaining of susceptibility, is very close to 1 in the case of average time. 

Overall, a much more thorough understanding of disease spread has been gained and may be utilized in 
controlling environmental diseases with resources limited to the highly susceptible individuals. In the future, 
we will work on proving Conjecture 1, which our numerical and graphical evidence suggests is true. 
Furthermore, a mortality delay model will be developed, a model whose purpose will be to remove infected 
individuals from the infectious class, indicating a disease-related death. Such a model will further enhance the 
study of disease spread.  
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APPENDIX 

Section 1 

Proof of Theorem 1: As stated earlier, to determine a formula for 𝑅0 for (2), we need to study the stability of the 
disease-free equilibrium.  This involves a standard Jacobian analysis. The Jacobian matrix of an 𝑆𝐼𝑅 model of  𝑛 
susceptibility classes at the point of the disease-free equilibrium is as follows: 

[
 
 
 
 
 
 
 
 
 
 
 
 
 −𝜇 0 0 0 0 −

𝑏1𝑝1𝛽

𝜇
0

0 −𝜇 0 0 0 −
𝑏2𝑝2𝛽

𝜇
0

0 0 −𝜇 0 0 −
𝑏3𝑝3𝛽

𝜇
0

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯

0 0 0 0 −𝜇 −
𝑏𝑛𝑝𝑛𝛽

𝜇
0

0 0 0 0 0
𝛽

𝜇
(∑ 𝑏𝑘𝑝𝑘

𝑛

𝑘=1

) − 𝛼 − 𝜇 0

0 0 0 0 0 𝛼 −𝜇]
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Through simple row operations, the general Jacobian matrix of this model is triangular, meaning its eigenvalues 
can just be read off of the diagonal. Thus, the eigenvalues of the above matrix are: 

1 =
𝛽

𝜇
(∑ 𝑏𝑘𝑝𝑘

𝑛

𝑘=1

) − 𝛼 − 𝜇

and
2 = −𝜇.

   

Since -µ is guaranteed to be negative, we only need to check the other eigenvalue for stability of the disease-
free equilibrium: 

𝛽

𝜇
(∑ 𝑏𝑘𝑝𝑘

𝑛

𝑘=1

) − 𝛼 − 𝜇. 

This quantity must be negative for the system to be asymptotically stable in its disease-free state. Thus through 
algebraic manipulation, the following inequality surfaces: 

𝑅0 =
𝛽

𝜇
(
∑ 𝑏𝑘𝑝𝑘

𝑛
𝑘=1

𝜇 + 𝛼
) < 1. 

If the prior inequality holds true, then the disease-free equilibrium is asymptotically stable; otherwise, if the 
inequality is false, then the disease-free equilibrium is unstable, meaning the disease will be endemic in the 
population [2]. This expression is representative of the threshold between a disease-free and an endemic state. 

This completes the proof of Theorem 1. 

 Section 2 

Proof of Theorem 2 : To prove this theorem, two related lemmas will be established. 

Lemma 1. 𝑆1 is decreasing at time zero under biologically realistic parameters. 

Proof of Lemma 1: From the model in (2), it is known that 𝑆1
′ = −𝑏1𝑆1𝐼 + 𝑝1𝛽 − 𝜇𝑆1. All of the terms in 𝑆1

′  are 
negative except for 𝑝1𝛽. Since 𝑝1 is bounded by one and multiplied by 𝛽, the term 𝑝1𝛽 is the only term that has 
the potential to make 𝑆1

′  positive and, thus, change the behavior of 𝑆1(𝑡) from decreasing to increasing. If it can 
be proven that 𝑆1(𝑡) is decreasing at time zero, then it can be assumed that 𝑡 = 0 is a local maximum of 𝑆1(𝑡), 
as no points before 𝑡 = 0 are of consequence and the function is known to be decreasing immediately after time 
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zero. In proving this, it is important to note that the initial conditions of the system set 𝐼(0) = 1 and 𝑆1(0) =
𝑝1𝐾0 − 1. Plugging these values into 𝑆1

′  gives 

𝑆1
′(0) = −𝑏1(𝑝1𝐾0 − 1)(1) + 𝑝1𝛽 − 𝜇(𝑝1𝐾0 − 1). 

In order for 𝑆1(𝑡) to be decreasing at time zero, the following inequality must hold: 

𝑝1𝛽

𝑏1 + 𝜇
< 𝑝1𝐾0 − 1, 

which arranges to 

𝑝1𝛽

𝑝1 + 𝜇
< 𝑆1(0).  

In a population inflicted by disease, we do not expect births to occur incessantly, nor do we expect the births to 
greatly contribute to the highly susceptible class. Thus, so long as the birth rate and/or the proportion of births 
that are highly susceptible are sufficiently small, then this inequality will be satisfied. Therefore, 𝑆1 decreases 
at time zero, given biologically realistic parameter values. 

Lemma 2. The absolute maximum value of 𝑆1 occurs at 𝑡 = 0 given biologically realistic parameters. 

Proof of Lemma 2: From knowledge of calculus and the first derivative test, any critical point of a function occurs 
when its derivative is zero. So, should any other value of 𝑆1 exceed that of 𝑆1(0), it would be at a point where 

𝑆1
′(𝑡) = −𝑏1𝑆1𝐼 + 𝑝1𝛽 − 𝜇𝑆1 = 0, 

which simplifies through algebraic manipulation to 

𝑆1 =
𝑝1𝛽

𝑝1𝐼 + 𝜇
. 

This is to be recognized as similar to the inequality above, denoting the conditions under which 𝑆1(𝑡)  is 
decreasing at time zero. In order for the value of 𝑆1(0) to remain above the value of 𝑆1(𝑡) at a local maximum, 
then it must hold that 

𝑝1𝐾0 − 1 >
𝑝1𝛽

𝑏1𝐼 + 𝜇
. 

Solving for 𝐼, the above inequality yields 

𝐼 >
𝑝1𝛽

𝑏1(𝑝1𝐾0 − 1)
−

𝜇

𝑏1

, 

which condenses to 

𝐼 >
𝑝1𝛽 − 𝜇(𝑝1𝐾0 − 1)

𝑏1(𝑝1𝐾0 − 1)
, 

and rearranges to 

𝐼 >
𝑝1(𝛽 − 𝜇𝐾0) + 𝜇)

𝑏1(𝑝1𝐾0 − 1)
. (11) 

When the resulting inequality surfaces whenever 𝑆1 has a critical point, then the absolute maximum of 𝑆1(𝑡) 
will be at time zero. In addition, if the expression 𝑝1𝐾0 − 1 is not greater than zero, the population in study will 
be too small to actually be relevant, so it is assumed that  

𝑝1𝐾0 − 1 > 0. 

 

One way to satisfy the inequality is to make the right side negative.  For this to occur, 𝑝1(𝛽 − 𝜇𝐾0) + 𝜇 in (11) 
has to be less than zero, which simplifies to 
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1

𝑝1

< 𝐾0 −
𝛽

𝜇
. 

Recall that 𝐾0  is the initial population size and 𝛽 𝜇⁄  is the approached population size. Since 𝛽 𝜇⁄  > 𝐾0  if the 

initial population is increasing over time, the inequality, 
1

𝑝1
< 𝐾0 −

𝛽

𝜇
, is proven false.  However, if the population 

is decreasing, and 𝑝1  is not very small, then the inequality will be true. That being said, if 𝑆1(𝑡) is initially 
decreasing, then 𝑆1(𝑡) will be less than its initial amount at any time. 

The original inequality in (11) can also be satisfied pending that 𝛽 − 𝜇𝐾0 is positive, meaning the population 
size is increasing over time, and 𝑝1 and 𝜇 are small, positive numbers, assuming that the population does not 
grow too much over its initial size. If  𝜇 is not small, it will not just affect the highest susceptibility class, but 
there will also be many more deaths in the overall population, since 𝜇 is present in all the groups.  Inclusively, 
this will lead to a slower spread of the infection, which could result in a rebound of 𝑆1.  Similarly, if 𝑝1 is very 
large (that is, close to 1), then that means there will be too many individuals in the highest susceptibility class, 
and the initial population in the highly susceptible class can potentially be replaced with numerous fresh births 
after a wave of infections if 𝛽 is high enough, again allowing 𝑆1 to rebound. Realistically, we do not expect a 
fast-growing population during a disease spread, nor do we expect a high natural death rate or birth rate.  Thus, 
given biologically reasonable conditions, the absolute maximum of 𝑆1(𝑡) should occur at 𝑡 = 0.  

Since Lemma 2 implies that the most available highly susceptible individuals in 𝑆1 will be at 𝑡 = 0, thus, a PVS 
is best administered at time zero.   

This completes the proof of Theorem 2. 

Section 3 

Evidence of Conjecture: If the highest susceptibility class is vaccinated at a time other than zero, such as when 
𝜏 = 0.1 or 𝜏 = 0.01, it means that a smaller pool of the most susceptible individuals will be vaccinated than if 
the vaccines were administered at 𝜏 = 0 by Lemma 1 (Appendix, Section 2). Lemma 1 also guarantees that the 
largest number of susceptibles will occur at time 0, so starting vaccines at any other time will mean that a 
smaller pool is present. Thus, 𝜏 = 0 should still be the most effective time for vaccination distribution.  
 
Table 2. Testing the Effectiveness of τ when τ ≠ 0 and H = 0.30. 

Τ (Weeks) T (Weeks) 𝑺𝟏 𝑺𝟐 𝑺𝟑 I R # of Vaccinated Individuals 

0.00 
10 0.3601 0.3717 0.5223 0.0514 999.6710 

248.9255 
52 2.8855 2.8971 3.0469 0.0000 996.3035 

0.02 
10 0.3610 0.3726 0.5229 0.0506 999.6694 

248.7378 
52 2.8864 2.8980 3.0475 0.0000 996.3011 

0.06 
10 0.3628 0.3744 0.5236 0.0491 999.6665 

248.1382 
52 2.8882 2.8998 3.0482 0.0000 996.2967 

0.08 
10 0.3637 0.3753 0.5236 0.0484 999.6654 

247.6710 
52 2.8891 2.9007 3.0483 0.0000 996.2949 

0.10 
10 0.3646 0.3762 0.5233 0.0477 999.6646 

247.0391 
52 2.8900 2.9016 3.0480 0.0000 996.2934 

0.20 
10 0.3686 0.3801 0.5130 0.0446 999.6701 

238.6380 
52 2.8940 2.9055 3.0377 0.0000 996.2957 
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Parameters: 𝛼 = 1, 𝛽 = 0.2415, 𝜇 = 0.0001421, 𝑏1 = 0.030, 𝑏2 = 0.025, 𝑏3 = 0.015, 𝑝1 = 0.25, 𝑝2 = 0.25, 𝑝3 = 0.25, 𝑝𝑅 = 0.25

 
In Table 2, the effectiveness of an IVS is monitored over the course of both 10 week and 52 week periods, and 
it seems that starting vaccinations at a time slightly after time zero is still effective in suppressing the disease. 
However, as 𝜏 increases, the number of effectively vaccinated individuals decreases and further diverges from 
the simulation beginning.  
 
Recall the purpose of the vaccination schemes: to reduce the number of highly susceptible individuals and – as 
consequence – the number of infected individuals and to increase the number of individuals in the removed 
class. Now, if an IVS is administered to the highest susceptibility class at a time other than zero, then the 
maximum number of the individuals in the infective class will increase, more individuals will remain in the 
highest susceptibility class, and fewer individuals will be removed from susceptibility (Table 2).  
 
Figure 5. Testing the Effectiveness of an IVS when τ ≠ 0. 

 
Parameters: 𝛼 = 1, 𝛽 = 0.2415, 𝜇 = 0.0001421, 𝑏1 = 0.030, 𝑏2 = 0.025, 𝑏3 = 0.015, 𝑝1 = 0.25, 𝑝2 = 0.25, 𝑝3 = 0.25, 𝑝𝑅 = 0.25 
Note 3: The smaller, zoomed in graphs are presented for illustrations purposes to demonstrate disease distribution near time zero. The time 
range for these graphs is set to 1 week for this purpose. 

That said, it is to be recognized that the IVS should be effective so long as the vaccine is distributed reasonably 
close to the start of the outbreak. Furthermore, with a limited quantity of vaccinations, it is more pragmatic to 
begin vaccine distribution at the time of initial outbreak, thus maximizing the potential help of the inoculations 

0.30 
10 0.3701 0.3812 0.4724 0.0434 999.7089 

205.3457 
52 2.8955 2.9067 2.9978 0.0000 996.3330 

0.40 
10 0.3648 0.3758 0.4221 0.0471 999.7666 

118.6004 
52 2.8902 2.9012 2.9474 0.0000 996.3941 
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(Figure 5). Therefore, the graphical and numerical evidence presented strongly suggests our conjecture is 
correct, and other simulation work done also seems to confirm this conjecture. 

This completes the evidence of the Conjecture. 
 
Section 4 
 
Proof of Theorem 3: Since the fixed rate model (10) has delay terms, 𝜇𝑅(𝑡 − 𝑐)  and 𝛼𝐼(𝑡 − 𝑐) , we need to 
account for this when linearizing the system [7]. 
 
According to the following characteristic equation [7], solving for lambda yields the eigenvalues for this system: 

|𝐽0 + 𝑒−𝜆𝜏1𝐽𝜏1
− 𝜆𝐈| = 0. (12) 

In this equation, 𝐽0 is the Jacobian matrix from the Appendix (section 1) while 𝐽𝜏1
 is the Jacobian matrix found 

with respect to the differential delay equations.  This is done by setting all non-delay terms equal to 0 and 
computing the relevant partial derivatives with respect to the delay terms. Note that 𝐈 in the characteristic 
equation is the identity matrix.  

By substituting the disease-free equilibrium (3) into each matrix and setting the characteristic expression for 
the fixed rate model equal to zero, lambda is solved for to obtain the following eigenvalue as the determining 
factor for stability for the disease-free state (all other eigenvalues are negative): 

𝜆 = −
∑ −𝑏𝑘𝑝𝑘𝛽

𝑛
𝑘=1 + 𝛼𝜇 + 𝜇2

𝜇
. (13) 

As before, we require all eigenvalues to be negative to ensure the disease-free state is asymptotically stable. 

After setting this eigenvalue equal to zero and rearranging it, the following basic reproductive number is 
obtained as well as a condition for stability: 

𝑅0 =
𝛽

𝜇

∑ 𝑏𝑘𝑝𝑘
𝑛
𝑘=1

𝜇 + 𝛼
< 1. (14) 

We recognize this as the same 𝑅0 as that of the original model (2). 
 
This completes the proof of Theorem 3.
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