
A Coordinate Descent Method for Robust
Matrix Factorization and Applications

Spencer Sheen ∗

Abstract

Matrix factorization methods are widely used for extracting latent
factors for low rank matrix completion and rating prediction problems
arising in recommender systems of on-line retailers. Most of the exist-
ing models are based on L2 fidelity (quadratic functions of factorization
error). In this work, a coordinate descent (CD) method is developed for
matrix factorization under L1 fidelity so that the related minimization
is done one variable at a time and the factorization error is sparsely dis-
tributed. In low rank random matrix completion and rating prediction
of MovieLens-100k datasets, the CDL1 method shows remarkable stabil-
ity and accuracy under gross corruption of training (observation) data
while the L2 fidelity based methods rapidly deteriorate. A closed form
analytical solution is found for the one-dimensional L1-fidelity subprob-
lem, and is used as a building block of CDL1 algorithm whose conver-
gence is analyzed. The connection with the well-known convex method,
the robust principal component analysis (RPCA), is made. A compari-
son with RPCA on recovering low rank Gaussian matrices under sparse
and independent Gaussian noise shows that CDL1 maintains accuracy
at much lower sampling ratios (from much fewer observed entries) than
that for RPCA.

Keywords. L1 fidelity, coordinate descent, regularized
weighted median, closed form solution, convergence,
robust matrix factorization.

AMS subject classifications: 49M27, 65K10, 90C26, 90C30.

∗Woodbridge High School, 2 Meadowbrook, Irvine, CA 92604, USA.
Email: spsheen97@gmail.com. Mentor: Prof. Hongkai Zhao, Department of Mathematics,
University of California, Irvine, CA, 92697, USA. E-mail: zhao@math.uci.edu.

1

bmh
Text Box
 Copyright © SIAM Unauthorized reproduction of this article is prohibited

1 Introduction

On-line shopping has been part of our daily lives in the digital age. In constrast
to traditional shopping in a store (a limited physical environment), on-line
shoppers can be easily inundated in a sea of choices. Matching products with
shoppers’ tastes and preferences arises as a key issue for enhancing market
efficiency and customer satisfaction. So there is a natural need for a recom-
mender system to anticipate a buyer’s next move and make recommendations
based on the past preference or rating data [7]. E-commerce giants Amazon,
Netflix, Spotify among many others, have embedded recommender systems in
their websites. The available data from the past (also called training data)
can be tabulated as a matrix (utility matrix) with row numbers representing
the user/buyer identification (IDs) and the column number representing the
item/product IDs. The value of the (i, j)-th entry is the rating of the i-th user
to the j-th item.

The utility matrix is however incomplete since almost no users rate all items
and no items receive ratings from all users. On the other hand, there are many
people with similar tastes, and many items with similar attributes (e.g. genres,
casts, popularities of movies). So there is a lot of redundancy in the ratings.
If we categorize users and movies into classes, the number of classes is in the
range of 20’s to 100 while the size of the utility matrix can be over thousands.
Mathematically, one can form a few groups of rows or columns. Inside each
group, the rows or columns are nearly aligned (or approximately rank-1). In
between the groups, there is clear distinction. This pattern leads to the low
rank property of the utility matrix, see [10] and its Fig. 2 for an illustration
of the low rank phenomenon. The first research problem is to complete the
utility matrix as a low rank matrix, the so called matrix completion which also
comes up in other applications such as face recognition and video restoration
[3] where occlusions and defects occur. The second research problem is to
predict future ratings based on the training data, or find a low rank matrix to
capture the essential features of users and items and serve as a predictor.

In this paper, we shall study and compare optimization based matrix fac-
torization methods for both types of problems above. Linear algebra tells us
that a size m×n low rank matrix is a product of an m× r matrix and a r×n
matrix, with r � m(n) or a sum of r rank-1 matrices. The new phenomenon
here is that the factorization is to be approximately found and computed under
the constraint that the utility matrix (denoted by A) is low rank and incom-
plete. Matrix factorization techniques have been found successful for large
scale recommendation systems of NetFlix and Spotify in recent years [10]. Let

2

each user u (item i) be associated with a row vector pu ∈ Rr (a column vector
qi ∈ Rr). The dot product pu · qi models the interaction/preference of item
i with/to user u. The basic idea is to find these so called latent factors (or
computer’s way to categorize the users and items) so that A(u, i) ≈ pu · qi. To
avoid overfitting, especially in prediction problems, it is standard to use the
L2 regularization (penalty) to formulate a matrix factorization optimization
problem [10]:

min
pu,qi

∑
(u,i)∈Ω

(A(u, i)− pu · qi)2 + λ (
m∑
u=1

‖pu‖2 +
n∑
i=1

‖qi‖2), (1.1)

where Ω is the index set of the observed ratings, λ is a positive parameter.
Efficient computational methods for (1.1) include stochastic gradient descent,
alternating least squares, and coordinate descent methods [10, 18, 21]. We
notice that the error term of model (1.1) is L2 squared.

The main contribution in this paper is to develop the coordinate descent
method (CD) for the following matrix factorization model with L1 error term
(L1 fidelity):

min
pu,qi

∑
(u,i)∈Ω

|A(u, i)− pu · qi|+ λ (
m∑
u=1

‖pu‖2 +
n∑
i=1

‖qi‖2). (1.2)

For high dimensional optimization problems such as (1.1) and (1.2), the CD
method minimizes one variable at a time while fixing the other variables. The
one variable L2 model reduces to minimizing a sum of quadratic functions
and is solvable (see equation (4.2) of section 4.1). The one variable L1 model
involves a sum of absolute value terms and is only piecewise quadratic. We
found a closed-form analytical solution for each one-dimensional sub-problem
of the L1 model (1.2). The solution is a regularized weighted median function
of a sequence of numbers. The CD algorithm is built on top of the regularized
weighted median function via convergent iterations. We conducted numerical
experiments on low rank random matrix completion and MovieLens 100k pre-
diction, in comparison with existing results and methods in the literature. We
examined the effect of gross corruptions (large and localized errors) of train-
ing data on the recovery and prediction accuracies. The CD method of L1
model (1.2) is found to be amazingly stable while all methods solving the L2
model (1.1) deteriorate considerably. The L1 model (1.2) and its CD algorithm
(CDL1) are hence desirable in designing a stable recommender system in the
event of a malicious hacking attack.

3

The rest of the paper is organized as follows. In section 2, we derive the
closed form regularized weighted median function as a solution to a class of
convex programs arising in CD method of L1 model (1.2). In section 3, we
introduce the L2 and L1 matrix factorization models and draw connections to
the nuclear norm regularized convex models in the literature. The L1 model
(1.2) is a non-convex version of robust principal component analysis (RPCA)
or the low rank plus sparse decomposition of matrices [3]. In section 4, we
present CDL2 and CDL1 algorithms, their update sequences and convergence
properties. In section 5, we show computational results on robustness of CDL1
algorithm in matrix completion and MovieLens 100k prediction problems, in
comparison with CDL2 and other L2 fidelity based methods. We compared
CDL1 with RPCA [3] on recovering incomplete low rank matrices under sparse
Gaussian noise. Though both methods are designed to be robust under sparse
noise, CDL1 maintains its stable and accurate recovery when sampling ratio
(percentage of observed entries) is as low as 5% for 1000 by 1000 Gaussian
matrices while robust PCA performs well only when sampling ratio is 80%
and above. The conclusions are in section 6. An algebraic identity of CDL2
iterations for convergence analysis is proved in the Appendix.

2 Medians and Optimization Problems

In this section, we discuss “median” of a finite sequence as a solution of a
class of convex optimization problems, to set the stage for coordinate descent
method of matrix completion model in the next section.

The standard median of an increasing sequence a = {aj}, j = 1, 2 · · · , J ,
is denoted by median(a). Consider the convex optimization problem:

ξ∗ = argminξ∈R

J∑
j=1

|ξ − aj| := argminξ∈R g(ξ), (2.1)

where the objective function is a continuous (piecewise linear) function with
corners. We claim that ξ∗ = median(a).

To see that the median is a solution, let us observe that the sum is a
decreasing (increasing) linear function at ξ < a1 (ξ > aJ). So the minimal
point is located in (a1, aJ). If ξ ∈ (aj, aj+1), the derivative: g′ = j − (J − j) =
2 j − J . So if J is an even number, the function g is flat in the interval
(aj∗ , aj∗+1), j∗ = J/2. Since g is continuous, the minimum is attained at any
point in the interval [aj∗ , aj∗+1], in particular ξ = (aj∗ +aj∗+1)/2 or median(a).

4

−3 −2 −1 0 1 2 3
0

5

10

15

20

25

30

35

40
Solid: G(j), a=[−2 −1 1 2]; h=[1 2 2 1], µ=0.05; Dashed: analytical solution

−3 −2 −1 0 1 2 3
0

5

10

15

20

25

30

35

40
Solid: G(j), a=[−2 −1 0 1 2]; h=[1 2 2 2 1], µ=0.05; Dashed: analytical solution

Figure 1: Objective function G of (2.4) at µ = 0.05: a = [−2,−1, 1, 2], h =
[1, 2, 2, 1], J = 4 (solid, left); a = [−2,−1, 0, 1, 2], h = [1, 2, 2, 2, 1], J = 5
(solid, right). Dashed lines indicate minimum locations by formula (2.6).

If J is odd, g′ = 1 (g′ = −1) at ξ > aj∗ (ξ < aj∗), j∗ = (J + 1)/2, so the
minimal point is aj∗ or median(a).

The weighted median problem is:

ξ∗ = argminξ∈R

J∑
j=1

hj |ξ − aj| (2.2)

where hj is a positive finite sequence (the weights). A minimal point (mini-
mizer) can be found similarly as:

ξ∗ = am, m = min

{
k ∈ [1, J] :

J∑
j=1

hj < 2
k∑
j=1

hj

}
. (2.3)

The formula (2.3) is a limiting case of the following quadratically regular-
ized weighted median problem (QRWM):

ξ∗ = argminξ∈R
µ

2
ξ2 +

J∑
j=1

hj |ξ − aj| := argminξ∈RG(ξ), (2.4)

where µ > 0 is a regularization parameter.

The QRWM problem will be used in the coordinate descent method of our
matrix completion model later. We derive a closed form solution below. The
objective function G is convex as it is a linear combination of convex functions.
To find the solution of (2.4), we examine where G changes monotonicity from

5

decreasing to increasing. The function G is differentiable except at corner
points aj:

G′(ξ) = µ ξ +
J∑
j=1

hj
ξ − aj
|ξ − aj|

, ξ 6= aj, (2.5)

so the criterion for a minimum occuring at a point ξ = p is that G′(p) = 0 if
p 6= aj; G

′(p−) < 0 and G′(p+) > 0 if p = aj.

Consider ξ < a1, and G′ = µξ−
∑J

j=1 hj. If a1 > µ−1
∑J

j=1 hj, the critical

point µ−1
∑J

j=1 hj = ξ∗. If a1 < µ−1
∑J

j=1 hj, G is strictly decreasing over
ξ < a1, so we look for a minimal point on the next interval [a1, a2) where
G′ = µ ξ+h1−

∑J
j=2 hj for ξ > a1. If a1 > µ−1(−h1 +

∑J
j=2 hj), G

′(a1+) > 0,

so ξ∗ = a1. On the other hand, if a1 < µ−1(−h1 +
∑J

j=2 hj) < a2, then

G′(a1+) < 0, G′(a2−) > 0, G′(x∗) = 0, where ξ∗ = µ−1(−h1 +
∑J

j=2 hj). The
argument repeats over ξ > a2. The full solution is:

ξ∗ = µ−1
∑J

j=1 hj, if a1 > µ−1
∑J

j=1 hj
= a1, if a1 ∈ µ−1(−h1 +

∑J
j=2 hj,

∑J
j=1 hj)

= µ−1(−h1 +
∑J

j=2 hj), if µ−1(−h1 +
∑J

j=2 hj) ∈ (a1, a2)

= a2 if a2 ∈ µ−1(−h1 − h2 +
∑J

j=3 hj,−h1 +
∑J

j=2 hj)

= µ−1(−h1 − h2 +
∑J

j=3 hj) if µ−1(−h1 − h2 +
∑J

j=3 hj) ∈ (a2, a3)

= a3 if a3 ∈ µ−1(−
∑3

j=1 hj +
∑J

j=4 hj,−h1 − h2 +
∑J

j=3 hj)

· · · · · ·
· · · · · ·
· · · · · ·
= µ−1(hJ −

∑J−1
j=1 hj) if µ−1(hJ −

∑J−1
j=1 hj) ∈ (aJ−1, aJ)

= aJ , if aJ ∈ µ−1(−
∑J

j=1 hj, hJ −
∑J−1

j=1 hj)

= −µ−1
∑J

j=1 hj, if aJ < −µ−1
∑J

j=1 hj
(2.6)

It is instructive to write down two special cases of the solution (2.6) for
J = 2 and J = 3. The J = 2 solution is:

ξ∗ =

µ−1(h1 + h2) if a1 > µ−1(h1 + h2)
a1 if a1 ∈ µ−1(h2 − h1, h1 + h2]
µ−1(h2 − h1) if µ−1(h2 − h1) ∈ [a1, a2]
a2 if a2 ∈ µ−1[−h1 − h2, h2 − h1)
−µ−1(h1 + h2) if a2 < −µ−1(h1 + h2)

6

−3 −2 −1 0 1 2 3
0

5

10

15

20

25

30

35

40
Solid: G(j), a=[−2 −0.5 1 2]; h=[1 1 2 2], µ=2; Dashed: analytical solution

−3 −2 −1 0 1 2 3
0

5

10

15

20

25

30

35

40
Solid: G(j), a=[−2 −0.5 0 1 2]; h=[1 1 1 2 2], µ=2; Dashed: analytical solution

Figure 2: Objective function G of (2.4) at µ = 2: a = [−2,−0.5, 1, 2], h =
[1, 1, 2, 2], J = 4 (solid, left); a = [−2,−0.5, 0, 1, 2], h = [1, 1, 1, 2, 2], J = 5
(solid, right). Dashed lines indicate minimum locations by formula (2.6).

The J = 3 solution is:

ξ∗ =

µ−1(h1 + h2 + h3) if a1 > µ−1(h1 + h2 + h3)
a1 if a1 ∈ µ−1(h2 + h3 − h1, h1 + h2 + h3]
µ−1(h2 + h3 − h1) if µ−1(h2 + h3 − h1) ∈ [a1, a2]
a2 if a2 ∈ µ−1[h3 − h1 − h2, h2 + h3 − h1)
µ−1(h3 − h1 − h2) if µ−1(h3 − h1 − h2) ∈ (a2, a3]
a3 if a3 ∈ µ−1[−h1 − h2 − h3,−h1 − h2 + h3)
−µ−1(h1 + h2 + h3) if a3 < −µ−1(h1 + h2 + h3)

We see that ξ∗ → 0 if µ ↑ ∞, also it is not hard to check that ξ∗ converges
to a minimal point of (2.2) as µ ↓ 0.

Formula (2.6) and objective function G in (2.4) are illustrated in Fig. 1 at
µ = 0.05 and in Fig. 2 at µ = 2. To summarize, we have:

Proposition 2.1 The quadratically regularized weighted median problem
(QRWM) has a closed form solution given by (2.6).

Next, due to strong convexity of G, we have:

Proposition 2.2 There exists a positive constant c = c(µ,min(h1, · · · , hJ))
such that:

G(ξ)−G(ξ∗) ≥ c |ξ − ξ∗|2, ∀ ξ ∈ R. (2.7)

Proof: If ξ∗ occurs away from any aj, G is locally smooth near ξ∗, and (2.7)
follows from Taylor expansion and strong convexity of G in a small neighbor-
hood of ξ∗, with c < µ/4, which also works if ξ is large enough as G ≥ µ ξ2/2.

7

Reducing c properly to accomodate the intermediate ξ yields (2.7). If ξ∗ = aj
for some j, then for ξ near ξ∗, the function G behaves as c1|ξ−aj| ≥ c1|ξ−aj|2,
for some positive constant c1 = 1/2 min(h1, · · · , hJ). Arguing similarly for ξ
large and intermdiate as above, we see that (2.7) holds.

3 Low Rank Matrix Factorization Models

3.1 L2 Models

In a recommender system, one aims to learn a model from past incomplete
rating data (training data) then use the model to estimate current user’s pref-
erence over all items. Since there are normally a few dozen intrinsic degrees of
freedom in terms of user and item categories, an efficient way for computer to
learn the user or item features is to approximate the training data (or equiv-
alently the utility matrix) by a low rank matrix. Let A ∈ Rm×n be a utility
matrix whose row/column numbers are user/item ID’s, and the (i, j)-th entry
if available has the rating value of the i-th user to j-th item. The number of
users (items) is m (n). Let Ω denote the set of indices where the ratings are
available. The low rank matrix factorization problem is to find W ∈ Rm×r and
H × Rr×m, for a proper integer r � m or n, so that

A ≈ W ·H, for all entries in Ω. (3.1)

The factorization problem (3.1) can be made more precise as an optimization
problem of the form:

[W,H] = argmin F2(W,H)

:= argmin
∑

(i,j)∈Ω

(Aij − wTi · hj)2 + λ (‖W‖2
F + ‖H‖2

F), (3.2)

where wTi is the i-th row vector of W , hj is the j-th column vector of H, ‖ · ‖F
is the Frobenius matrix norm. Commonly used methods for (3.2) include
stochastic gradient descent (SDG) [10, 18], alternative least squares (ALS)
[19, 11] and coordinate descent (CD) [21]. A variant of (3.2) without the
quadratic regularization is solved by a weighted alternating method LMaFit
[20].

Since all norms in (3.2) are 2-norms, we shall call it the L2 model. If matrix
A is fully observed, the L2 model is related to the following model involving
the nuclear norm and rank constraint:

min
rank(Z)≤r

‖A− Z‖2
F + λ ‖Z‖∗, (3.3)

8

0
20

40
60

80

0
20

40
60

80
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

L2 model error in completing a 64x64 matrix of rank 4 with 50% missing entires

0
20

40
60

80

0
20

40
60

80
−5

0

5

x 10−4

L1 model error in completing a 64x64 matrix of rank 4 with 50% missing entires

Figure 3: Illustration of factorization error of L2 (left) and L1 (right) fidelity
models in completing a 64× 64 matrix of rank 4 with 50% missing entries.

where the nuclear norm ‖ · ‖∗ is the sum of singular values, r ≤ min(m,n). In
fact, by the identity [2, 19]:

‖Z‖∗ = min
Z=W H

1

2
(‖W‖2

F + ‖H‖2
F), (3.4)

one has:

min
Wm×r,Hr×n

‖A−W H‖2
F +

λ

2
(‖W‖2

F + ‖H‖2
F) = min

rank(Z)≤r
‖A− Z‖2

F + λ ‖Z‖∗.

If the rank constraint is dropped from (3.3), one arrives at the relaxed convex
program:

min
Z
‖A− Z‖2

F + λ ‖Z‖∗, (3.5)

for a low rank approximation of A. If the nuclear term is dropped, (3.3) reduces
to the classical principal component analysis (PCA,[8]):

min
rank(Z)≤r

‖A− Z‖2
F , (3.6)

If A contains missing entries, the connection between (3.2) and (3.5) remains
[11], only with A− Z restricted to Ω.

3.2 L1 Models

The L2 error (fidelity) term in (3.5) is known to cause error to spread and is
sensitive to outliers in the data matrix A, see the left plot of Fig. 3, similar to
classical least squares estimator. In the spirit of robust statistics [6] and robust
principal component analysis [3], we replace the Frobenius norm in (3.5) by L1

9

norm or sum of absolute value of all entries. The resulting error distribution
is more sparse with a few large peaks, see the right plot of Fig. 3. In view of
the connection of (3.2) and (3.5), the robust factorization model for partially
observed matrix A is then:

[W,H] = argmin F1(W,H)

:= argmin
∑

(i,j)∈Ω

|Aij − wTi · hj| + λ (‖W‖2
F + ‖H‖2

F), (3.7)

which we shall call the L1 model. The L1 fidelity renders the error of low rank
approximation sparse. If we denote S := A −W ·H, then the corresponding
convex nuclear norm relaxation of (3.7) is:

min
S,Z
‖S‖1 + λ ‖Z‖∗, subject to Z + S = A, over Ω, (3.8)

which is to decompose A into a sum of low rank and sparse matrices. In other
words, the L1 model (3.7) is akin to a robust PCA (a.k.a principal component
pursuit) for incomplete matrix A, see [3] for analysis and computation of (3.8)
and [4] for a related convex model.

Our work is to study the coordinate descent (CD) method for the L1 model
(3.7) and compare it with L2 model (3.2) in matrix factorization problems
based on synthetic and real world recommender system data. The CD method
is simple in algebra, and is recently found [21] to be parallelizable and compet-
itive with ALS and SGD methods on large scale Netflex (m = 2, 649, 429, n =
17, 770) and Yahoo music (m = 1, 000, 990, n = 624, 961) data.

4 Coordinate Descent Method

Both L1 and L2 models concern high dimensional non-convex optimization.
The idea of CD method is to minimize one variable at a time while fixing
all the other variables, and iterate this procedure till convergence [1]. We
shall first review CD algorithm [21] for L2 model (3.2), then present our CD
algorithm for the L1 model (3.7).

4.1 CD Algorithm of L2 Model (CDL2)

The single variable sub-problem is:

min
z

f2(z) :=
∑

j:(i,j)∈Ω

(Aij − wTi · hj + (wit − z)htj)
2 + λ z2, (4.1)

10

where wit, the (i, t)-th entry of W , is to be updated, and so the t-th term in
wTi hj of the fidelity term is now zhtj. The function f2 is a quadratic polynomial
in z, its minimum is attained at:

z∗ =

∑
j:(i,j)∈Ω (Aij − wTi · hj + withtj)htj

λ+
∑

j:(i,j)∈Ω h2
jt

. (4.2)

Denote the residual matrix as:

Rij = Aij − wTi · hj, ∀(i, j) ∈ Ω, (4.3)

through which we write:

z∗ =

∑
j:(i,j)∈Ω (Rij + withtj)hjt

λ+
∑

j:(i,j)∈Ω h2
tj

. (4.4)

Computationally, it is cost effective to maintain and update the residual. Once
z∗ is available, the update is: wit ← z∗. Such update loops over i = 1, 2, · · · ,m.
Similarly, the update on htj is (with current wit): htj ← ζ∗, where:

ζ∗ =

∑
i:(i,j)∈Ω (Rij + withtj)wit

λ+
∑

i:(i,j)∈Ω w2
it

, (4.5)

and the loop is over j = 1, 2, · · · , n. The update sequence is:

w1,t, w2,t, · · · , wm,t, ht,1, ht,2, · · · , ht,n.

The sequence is iterated a number of times (so called cyclic CD) to produce a
pair of column vectors (w∗t , h

∗
t). The residual matrix Rij is updated as Rij ←

Rij + woith
o
tj − w∗ith∗tj, where superscript ’o’ denotes the previous value before

the alternating iterations. During the cyclic CD, the Rij remains unchanged.
Doing this for t = 1, 2, · · · , k forms one outer iteration. After a fixed number
of outer iterations (at the end of each, assign ’*’ to ’o’), we end up with a
rank-k completed or prediction matrix:

k∑
t=1

w∗t h
∗,T
t (4.6)

We initialize wot as one vector, h0
t as zero vector, for each t.

To summarize, the update sequence for one outer iteration is:

wo1, h
o
1, w

o
2, h

o
2, · · · , wok, hok −→ w∗1, h

∗
1, w

∗
2, h

∗
2, · · · , w∗k, h∗k (4.7)

11

To arrive at each vector pair w∗t , h
∗
t in (4.7), the update sequence of a number

I of inner iterations is:

u0 = wot , v0 = hot ,

u1 = argminu∈Rm ‖R + wot h
o,T
t − u vT0 ‖2

F,Ω + λ‖u‖2 (4.8)

v1 = argminv∈Rn ‖R + wot h
o,T
t − u1 v

T‖2
F,Ω + λ‖v‖2 (4.9)

alternating → u2, v2, · · · , uI , vI
(w∗t , h

∗
t) ← (uI , vI)

R ← R + wot h
o,T
t − uIvTI , on Ω, (4.10)

where ‖ · ‖F,Ω denotes the restriction of the Frobenius norm to matrix indices
in Ω.

The alternating minimization in (4.8)-(4.9) is a rank-one case of alternating
least squares: the components of u in (4.8) or v in (4.9) can be solved for
independently in closed analytical form. Let:

E(u, v) := ‖R + wot h
o,T
t − u vT‖2

F,Ω + λ(‖u‖2 + ‖v‖2), (4.11)

we show:

Proposition 4.1 The alternating updates of the CDL2 inner iterations satisfy
the descent property:

E(uk, vk) ≥ E(uk+1, vk) ≥ E(uk+1, vk+1), (4.12)

and the identity:

E(uk, vk)− E(uk+1, vk+1) = ‖(uk − uk+1)vTk ‖2
F,Ω + ‖uk+1(vk+1 − vk)T‖2

F,Ω

+ λ(‖uk − uk+1‖2 + ‖vk − vk+1‖2), (4.13)

implying the inequality:

‖(uk, vk)− (uk+1, vk+1)‖2 ≤ λ−1 |E(uk, vk)− E(uk+1, vk+1)|. (4.14)

Proof: The descent property (4.12) is clear by construction. The identity
(4.13) is proved in the appendix.

4.2 CD Algorithm for L1 Model (CDL1)

The CDL1 algorithm follows the steps of CDL2 outlined above, except that
the formulas for the minimizers z∗ and ζ∗ are replaced by the quadratically

12

regularized weighted median formulas (2.6). To this end, the single variable
sub-problem:

min
z

f1(z) :=
∑

j:(i,j)∈Ω

|Aij − wTi hj + (wit − z)htj|+ λ z2, (4.15)

is written as:
min
z

∑
j:(i,j)∈Ω,htj 6=0

|htj||z − aj|+ λ z2, (4.16)

where:

aj =
Aij − wTi hj + withtj

htj
.

In the algorithm, we set a threshold 10−9, below which |htj| is regarded as zero.
If htj is zero in this sense for all j such that (i, j) ∈ Ω, the model is nearly
singular. We opt to not update, and keep wit as is for preserving stability and
non-increasing property of the objective function, instead of taking z = 0 and
zero out a term in the factorization. If |htj| is above the threshold for some j,
we call the function in (2.6) to define z∗. The update on hjt is similar.

Proposition 4.2 Let us denote by (W l, H l) the approximate factors after the
l-th CD outer iteration of either CDL2 or CDL1. By construction, the descent
property:

Fi(W
l+1, H l+1) ≤ Fi(W

l, H l), i = 1, 2, (4.17)

holds.

We recap the CD algorithms as a pseudo code below.

• Input: R = A, k, W = zeros(m, k), H = ones(k, n), λ, O, I.

• for iter = 1, 2, · · · , O, do

• for t = 1, 2,, k, do

• solve in closed-form (4.8)-(4.9) or the L1 version alternately I times.

• end for

• save vectors w∗t , h
∗
t , and update R by (4.10).

• end for

• Output: rank k matrix (4.6).

13

4.3 Convergence

We study convergence properties of CDL2 and CDL1. The regularization
terms of L2 and L1 models (3.2)-(3.7) imply the uniform bound

‖(W l, H l)‖F ≤ λ−1 max(F1(W 0, H0), F2(W 0, H0)), ∀ l ≥ 1,

where (W 0, H0) is the initialization. Hence (W l, H l) converges to (W̄ , H̄) up
to a subsequence lj, and limlj→∞ Fi(W

lj , H lj) = Fi(W̄ , H̄), i = 1 or 2.

Next, recall that during the each single variable update on way from
(W l−1, H l−1) to (W l, H l), the objective function is non-increasing, in fact, the
change of objective function is bounded by Fi(W

l−1, H l−1)− Fi(W l, H l) := δl
which tends to zero as l → +∞. For CDL1, by inequality (2.7) on updating
W̄ or H̄, the difference of the previous value and the new value is bounded by
O(δl). Note that the constant c in (2.7) depends on λ and the cut-off threshold
(10−9) we introduced in the algorithm, but independent of the iteration num-
ber l. Since the total number of updates from l − 1 to l in the outer iteration
is order O(mn), we have

‖W l−1 −W l‖2
F + ‖H l−1 −H l‖2

F ≤ O(δl). (4.18)

By the inequality (4.14), the estimate (4.18) holds for CDL2 as well, except
that the constant apprearing in the upper bound is global (λ−1). It follows
that the critical point equations at each update can be passed to the limit
(lj →∞), and together they imply:

Theorem 4.1 The limit point (W̄ , H̄) is a first order stationay point for the
L2 or L1 model. For L2 model:

∇W F2(W̄ , H̄) = 0, ∇H F2(W̄ , H̄) = 0, (4.19)

and for the L1 model:

0 ∈ ∂W F1(W̄ , H̄), 0 ∈ ∂H F1(W̄ , H̄). (4.20)

The partial denotes sub-gradient.

4.4 CD Limits and Convex Programs

Recall the inequality [14] for m× r matrix W and r × n matrix H:

‖WH‖∗ ≤
1

2
(‖W‖2

F + ‖H‖2
F),

14

with equality for a particular representation of WH based on singular value
decomposition (SVD):

WH = UDV T , W = UD1/2, H = D1/2V T . (4.21)

Applying the representation (4.21) to the CDL2 or CDL1 descending se-
quence (W k, Hk) to get (W̃ k, H̃k), we find that:

Fl(W
k, Hk) ≥ Fl(W̃

k, H̃k) = El(W̃
kH̃k), l = 1, 2, (4.22)

where:

E2 = E2(Z) := ‖A− Z‖2
F,Ω + λ ‖Z‖∗,

E1 = E1(Z) := ‖A− Z‖1,Ω + λ ‖Z‖∗. (4.23)

If the outer iteration sequence is modified to:

(W 1, H1)→ (W̃ 1, H̃1)→ (W 2, H2)→ (W̃ 2, H̃2)→ · · · , (4.24)

then we generate a sequence of rank-r matrices Zk = W̃ kH̃k so that:

El(Zk) = Fl(W̃
k, H̃k) ≥ Fl(W̃

k+1, H̃k+1) = El(Zk+1). (4.25)

The limk→∞ El(Zk) may not be the minimum of convex objectives due to
the rank-r constraint (when r is less than the rank of the optimal solution of
the corresponding convex program). A necessary condition is r ≥ r∗, where r∗

is the rank of an optimal solution of the convex program. Additional global
condition is needed to ensure that the matrix Z∗ := lim Zk is optimal for the
convex objectives (4.23). For the L2 model, an additional condition [11] is that
Z∗ is an optimal solution of the convex problem:

Z∗ = argminZ ‖PΩ(A) + P⊥Ω (Z)− Z‖2
F + λ ‖Z‖∗, (4.26)

where PΩ is the projection onto the observed entries in Ω. Similar condition
works for L1 model as well, with ‖ · ‖F in (4.26) replaced by ‖ · ‖1.

5 Numerical Experiments

In this section, we present numerical results of CDL2 and CDL1 on matrix
completion and rating prediction problems, and compare them with other

15

representative methods in the literature. We shall demonstrate the robustness
of CDL1 when the observed data contains gross corruptions.

The methods in comparison include: FPCA [13], sIRLs-q [16], IRucL-q [12],
LMaFit [20], for matrix completion; sIRLs-q [16], Optspace [9], and Iterative
Hard Thresholding (IHT) [5, 15] for rating prediction. The q ∈ [0, 1). LMAFit
solves a constrained low-rank factorization model without computing SVD
similar to CD methods. The other methods in comparison compute SVD, and
are non-convex in nature except the convex FPCA based on a relaxed nuclear
norm model. Default parameter values are used in the comparison codes.

5.1 Low Rank Matrix Completion

Given an incomplete matrix with missing entries, the goal is to extend it
to a low rank complete matrix so that the observed entries are preserved or
minimally changed.

We generated random matrices M = MLM
T
R ∈ Rm×n, where matrices

ML ∈ Rm×r and MR ∈ Rn×r are generated from independent unit Gaussian
distribution. Setting r small, we obtain M at low rank (generically r). Then
M is normalized as M ← M/‖M‖2. After this step, we uniformly random-
sampled a subset Ω of p entries from M to produce A = M |Ω. The sampling
ratio sr is p/(mn). In our experiment, we set m = n = 100, and rank equal
to 1, 2, · · · , 5. The recovered matrix Ã at convergence is compared with the
ground truth M in relative Frobenius norm: rel.err := ‖Ã−M‖F/‖M‖F . For
CDL2 (CDL1), λ = 10−10 (10−2); inner and outer iteration numbers are 24
and 32 respectively. The λ values are so chosen that the completion error is
under 10−6 for sample Gaussian matrices in Table 1. The values are the same
later when corruptions of A are considered. Ten random samples of A are
computed and the average accuracy is reported in Table 1. We see that CDL1
is most accurate at bottom rank values. Table 2 shows computational times
at convergence of each method under comparison. The CD methods are much
slower at this size of matrices. The speedup of CDL2 via parallel computation
and the good scalability property for large matrices have been shown in [21].
Doing so for CDL1 will be left for a future project. The computation reported
here is done in Matlab on a single processor (Intel-Core i7-4770) with 3.4 GHz
cpu speed and 16G RAM.

Next we introduce a corrupted value at a randomly selected entry of A
by magnifying the observed value by 10 times. Table 3 shows that CDL1 is
remarkably robust and accurate while the other methods under-perform dras-
tically by several orders of magnitude. Table 5 makes a comparison when the

16

Table 1: Accuracy comparison of CDL2, CDL1, sIRLS-0, IRucL-1/2 and
LMaFit on completing Gaussian matrices at known rank, m = n = 100,
sr = 0.4.

Problem CDL2 CDL1 FPCA sIRLS-0 IRucL-1/2 LMaFit
rank rel.err rel.err rel.err rel.err rel.err rel. err

1 4.54e-06 1.09e-16 2.94e-06 6.08 e-06 6.92e-06 1.83e-06
2 4.14e-06 1.35e-08 3.47e-06 2.19e-06 7.16e-06 1.56e-06
3 5.03e-06 6.28e-08 4.06e-06 3.79e-06 6.73e-06 1.68e-06
4 4.28e-06 1.79e-06 4.70e-06 4.25e-06 6.71e-06 1.72e-06
5 4.46e-06 5.13e-05 5.34e-06 4.56e-06 7.40e-06 1.93e-06

Table 2: Runtime comparison of CDL2, CDL1, sIRLS-0, IRucL-1/2 and
LMaFit on completing Gaussian matrices at known rank, m = n = 100,
sr = 0.4. Runtime is the average time of all trials in seconds.

Problem CDL2 CDL1 FPCA sIRLS-0 IRucL-1/2 LMaFit
rank time time time time time time

1 11.16 16.92 0.401 0.32 1.37 0.005
2 17.34 32.88 0.410 0.39 1.52 0.005
3 23.79 50.89 0.400 0.39 1.85 0.006
4 37.74 68.49 0.402 0.45 2.23 0.007
5 40.16 81.43 0.428 0.49 2.49 0.008

17

Table 3: Accuracy comparison of CDL2, CDL1, sIRLS-0, IRucL-1/2 and
LMaFit on completing Gaussian matrices under corruption by magnifi-
cation of an observed entry by 10 times; m = n = 100, sr = 0.4.

Problem CDL2 CDL1 FPCA sIRLS-0 IRucL-1/2 LMaFit
rank rel.err rel.err rel.err rel.err rel.err rel. err

1 4.15e-02 1.10e-16 1.47e-02 3.12e-02 3.29e-02 1.08e-02
2 5.18e-02 3.41e-09 4.18e-02 6.51e-02 7.78e-02 3.92e-02
3 3.06e-02 1.69e-07 6.65e-02 1.04e-01 1.35e-01 7.62e-02
4 5.79e-02 8.78e-07 2.72e-02 3.30e-02 4.71e-02 2.35e-02
5 6.94e-02 3.40e-05 5.67e-02 5.97e-02 8.07e-02 5.08e-02

Table 4: Runtime (in seconds) comparison of CDL2, CDL1, sIRLS-0, IRucL-
1/2 and LMaFit on completing Gaussian matrices under corruption by
magnification of an observed entry by 10 times; m = n = 100, sr = 0.4.

Problem CDL2 CDL1 FPCA sIRLS-0 IRucL-1/2 LMaFit
rank time time time time time time

1 8.71 16.42 0.396 15.09 0.69 0.003
2 19.65 32.30 0.423 19.02 0.84 0.003
3 29.38 48.76 0.409 19.12 0.97 0.004
4 39.15 64.55 0.407 16.94 1.09 0.005
5 40.87 81.30 0.410 20.18 1.29 0.007

corrupted value is 100 times the observed one. CDL1 remains robust and ac-
curate at the same order while the others deteriorate. Comparing computation
times in Tables 2, 4 and 6, we see that the CD methods and the convex FPCA
method appear most stable under increased corruptions.

5.2 Prediction on MovieLens Data

We study the MovieLens 100k data set [17] which consists of 100,000 ratings
(1 to 5) from 943 users on 1682 movies. Each user has rated at least 20
movies. Users and items are numbered consecutatively from 1. To compare
with results in the literature, we consider 4 different 80/20 splits of the full
data set u into training (ui.base) and test sets (ui.test), i = 1, 2, 3, 4. Each
of the four training/test dataset is mapped to matrix A/T with rows/columns
representing users/movies. The index set of available entries of T is denoted by
ΩT . A matrix factorization algorithm is applied to A to generate a prediction

18

Table 5: Accuracy comparison of CDL2, CDL1, sIRLS-0, IRucL-1/2 and
LMaFit on completing Gaussian matrices under corruption by magnifi-
cation of an observed entry by 100 times; m = n = 100, sr = 0.4.

Problem CDL2 CDL1 FPCA sIRLS-0 IRucL-1/2 LMaFit
rank rel.err rel.err rel.err rel.err rel.err rel. err

1 4.98e-01 1.09e-16 2.72e-01 1.91 4.63e-01 4.66e-01
2 3.07 4.27e-08 1.99e-01 1.80 5.42e-01 1.34
3 10.94 2.85e-08 4.76e-01 3.03 7.79e-01 2.73
4 5.33 6.57e-07 1.90e-01 1.93 6.83e-01 1.91
5 5.73 3.42e-05 5.47e-01 2.62 7.93e-01 2.37

Table 6: Runtime (in seconds) comparison of CDL2, CDL1, sIRLS-0, IRucL-
1/2 and LMaFit on completing Gaussian matrices under corruption by
magnification of an observed entry by 100 times; m = n = 100, sr =
0.4.

Problem CDL2 CDL1 FPCA sIRLS-0 IRucL-1/2 LMaFit
rank time time time time time time

1 9.91 16.25 0.388 18.54 0.84 0.006
2 18.52 33.34 0.437 19.29 1.76 0.029
3 26.12 48.86 0.416 19.42 2.79 0.134
4 40.05 67.07 0.423 19.75 2.64 0.084
5 46.80 83.66 0.420 21.10 3.96 0.205

19

matrix P which is compared with the test matrix T on ΩT . The performace
metric is Normalized Mean Absolute Error (NMAE) defined as:

NMAE := (rmax − rmin)−1 |ΩT |−1
∑

(i,j)∈ΩT

|Pij − Tij|,

where rmax/rmin are maxium/minimum ratings, and |ΩT | is the number of ele-
ments in ΩT . In the three methods (sIRLS,IHT,Optspace) under comparison,
the rank of P was set to five, see [16]. As suggested in [10], we extract the
leading order information from the training set by a first order base model:

Āij = r̄ + ui +mj, (5.1)

where r̄ is the mean of all rating entries in A; ui is the average rating by
user i in A minus r̄; mj is the average rating received by movie j minus
r̄. The ui and mj terms are called bias [10]. The deviation from the base

model Âij = Aij − Āij is factorized by CDL2 and CDL1 at rank equal to
one. Computation indicated that there is no significant gain beyond rank one,
partly because the prediction matrix from the first order model reaches a rank
about 20. The predicted ratings are finally truncated to the range [1, 5].

A major difference of the rating prediction problem from the low rank
matrix completion problem is that we do not want P to be too close to A
because this would cause overfitting instead of extracting robust features to
be more predicative on the test matrix T . For this reason, the regularization
parameter is chosen much larger: λ = 150 for CDL2 and λ = 60 for CDL1. The
range of λ in CDL2 is drawn from that of the alternating least squares method
of [11], which is in the 100’s. The specific value 150 comes from minimizing the
prediction error during cross validation on the 80/20 split of training/testing
data. The λ value of 60 for CDL1 is chosen for keeping its prediction error no
more than that of CDL2 on the four splits in Table 7. The inner and outer
iteration numbers are same as before (24 and 32). Minimal improvement is
gained from more iterations.

In Table 7, CDL1 and CDL2 perform the best with CDL1 slightly ahead of
CDL2. Next, we introduce corruptions of three types in the training sets: (1)
randomly select and switch 1000 lowest ratings (1’s) to highest ratings (5’s);
(2) randomly select 200 lowest ratings (1’s) and magnify by a factor of 10; (3)
randomly select 10 lowest ratings (1’s) and magnify by a factor of 100. In the
4 training sets, the total number of lowest ratings is in the range of 4700 to
4900, and number of the highest ratings is from 16700 to 17100. The type
(2) corruption requires modifying the rating of about 8 users, while type (3)
corruption involves only 1 user’s ratings, a much easier task for a hacker.

20

Table 7: Comparison of CDL2, CDL1, sIRLS, IHT and Optspace on 100k
MovieLens data.

Problem CDL2 CDL1 sIRLS IHT Optspace
Problem NMAE NMAE NMAE NMAE NMAE
split-1 0.1836 0.1835 0.1919 0.1925 0.1887
split-2 0.1810 0.1808 0.1878 0.1883 0.1878
split-3 0.1811 0.1808 0.1870 0.1872 0.1881
split-4 0.1809 0.1808 0.1899 0.1896 0.1882

Table 8: Comparison of CDL2 and CDL1 on 100k MovieLens data under 3
types of corruptions indexed by the last number: (1) switch 1000 lowest ratings
to highest ratings; (2) magnify 200 lowest ratings by a factor of 10; (3) magnify
10 lowest ratings by a factor of 100.

Problem CDL2-1 CDL1-1 CDL2-2 CDL1-2 CDL2-3 CDL1-3
Problem NMAE NMAE NMAE NMAE NMAE NMAE
split-1 0.1890 0.1890 0.2027 0.1890 0.3221 0.1857
split-2 0.1829 0.1828 0.2112 0.1838 0.3104 0.1826
split-3 0.1823 0.1821 0.2130 0.1825 0.2777 0.1825
split-4 0.1821 0.1820 0.2122 0.1818 0.2481 0.1966

The results from CDL2 and CDL1 on the three types of corruptions for the
4 splits are in Table 8. We see that the difference between CDL2 and CDL1
is small (relative change about 0.1%) for type (1) corruption, though CDL1 is
consistently a shade better. This is partly due to the limited range of ratings
(i.e. [1,5]), and the outliers are tamer than in the experiment on Gaussian
matrices. The difference reaches nearly 14% for type (2) corruption and as
much as 43% for type (3) corruption. As in the matrix completion problem,
the CDL1 method is much more stable than CDL2 under a small number of
large size (gross) corruptions.

5.3 Comparison with Robust PCA

Following [3], a low rank square matrix L0 is generated and randomly sampled
to form matrix L at sampling ratio sr. An independent Gaussian matrix is
generated and randomly sampled at sparse ratio spr < sr to form S (the
sparse noise). The input to CDL1 and robust PCA (RPCA [3]) is L+ S. Let
the low rank output be matrix L. We compare its relative Frobenius norm

21

Table 9: Comparison of RPCA and CDL1 on recovering low rank 100 by 100
Gaussian matrices under sparse Gaussian noise with 0.5 % sparse ratio. Each
reported data point is the average of lowest 7 relative Frobenius errors over 10
trials, as sampling ratio (sr) varies.

Methods sr rank-1 rank-2 rank-3 rank-4 rank-5
RPCA 90% 9.01e-6 1.18e-5 1.64e-5 1.15e-5 1.31e-5
CDL1 90% 1.03e-16 2.40e-8 3.12e-8 1.10e-8 1.40e-9
RPCA 80% 3.08e-6 2.12e-6 2.29e-6 7.60e-3 2.02e-2
CDL1 80% 1.05e-16 1.19e-7 5.53e-9 1.93e-8 4.50e-8
RPCA 70% 2.00e-1 2.52e-1 3.57e-1 3.93e-1 3.98e-1
CDL1 70% 1.22e-16 1.57e-8 6.40e-10 1.38e-8 1.71e-8
CDL1 40% 1.08e-16 9.43e-10 1.44e-8 2.98e-6 3.47e-5
CDL1 30% 1.10e-16 2.17 e-8 1.47e-6 2.69e-4 4.26e-3
CDL1 20% 1.10e-16 6.49e-6 2.23e-3 1.47e-1 5.79e-1

Table 10: CDL1 recovering larger low rank square Gaussian matrices under
sparse Gaussian noise with 0.5 % sparse ratio. Each reported data point is the
average of lowest 7 relative Frobenius errors over 10 trials, as sampling ratio
(sr) and matrix size vary.

sr size rank-1 rank-2 rank-3 rank-4 rank-5
10% 400× 400 1.09e-16 3.21e-9 1.57e-7 4.55e-6 3.52e-4
10% 800× 800 1.06e-16 1.13e-12 7.64e-12 6.17e-10 4.17e-9
5% 1000× 1000 1.08e-16 1.35e-9 6.47e-9 2.19e-7 1.36e-5
3% 1000× 1000 1.11e-16 6.30e-8 3.02e-5 2.6e-3 7.65e-2

error from L0, with CDL1 parameters in subsection 5.1 and default setting
in RPCA. Table 9 lists the average of lowest seven relative Frobenius norm
errors in 10 trials on 100 by 100 Gaussian matrices with low ranks. At high
sampling ratios (80% and above), both methods perform well. However, at
70% sampling ratio, RPCA starts to incur large errors (over 20%), while CDL1
mainstains its accuracy down to 30% (20% up to rank-3). Taking 7 lowest
errors removes some fluctuations in CDL1 due to its non-convex nature. As
matrix size increases to 1000 by 1000, CDL1 performs even better. Table 10
shows that CDL1 maintains accuracy at 3 % to 5 % sampling ratio, which is
a typical range for Movielens and Netflix data [11]. The RPCA performs well
still at or above 80% sampling ratio.

22

6 Conclusions

We studied the coordinate descent method for matrix factorization model with
L1 fidelity and applied its algorithm (CDL1) for low rank matrix completion
and recommender system rating prediction problems. We discovered a closed
form analytical solution for the one-dimensional sub-problem and applied it
to CDL1 iterations. In comparison with CDL2 and other L2 fidelity based
methods, CDL1 stands out as a robust and stable method in the presence
of large and sparse corruptions as possibly encountered in a hacker attack.
In comparison with RPCA, CDL1 recovers low rank matrices at much lower
sampling ratios in the presence of sparse noise. A line of future work is to speed
up the CDL1 algorithm on parallel machines and apply it to large scale data
sets to further verify the scalability of its robustness. A theoretical question
is to study the convergence to a local minimum.

7 Acknowledgements

I would like to thank my mentor Prof. Hongkai Zhao at UC Irvine for his
encouragement and advice throughout the project. I thank Mr. Shuai Zhang
for helpful communications on matrix completion research.

8 Appendix

We show the identity (4.13). Let R̂ = R+woth
o
t over the index set Ω where R

is known. Direct calculation gives:

E(uk, vk)− E(uk+1, vk+1) = 2
∑

(i,j)∈Ω

R̂ij(uk+1,ivk+1,i − uk,ivk,i) (8.1)

+
∑

(i,j)∈Ω

(uk,ivk,j)
2 − (uk+1,ivk+1,j)

2 + λ (‖uk‖2 + ‖vk‖2 − ‖uk+1‖2 − ‖vk+1‖2).

Since uk+1 = argminuE(u, vk), it satisfies Eu(uk+1, vk) = 0, or:∑
j∈Ωi

[−2R̂ij vk,j + 2uk+1,i(vk,j)
2] + 2λuk+1,i = 0, ∀ i. (8.2)

Similarly, vk+1 = argminvE(uk+1, v), and so Ev(uk+1, vk+1) = 0, or:∑
i∈Ωj

[(−2)R̂ijuk+1,i + 2(uk+1,i)
2vk+1,j] + 2λ vk+1,j = 0, ∀ j. (8.3)

23

Multiplying (8.2) by uk,i and summing over i, likewise multiplying (8.3) by
vk+1,j and summing over j, then subtracting the two resulting equalities to
get:

0 =
∑

(i,j)∈Ω

−2R̂ijuk,ivk,j + 2R̂ijuk+1,ivk+1,j + 2
∑

(i,j)∈Ω

uk,iuk+1,i(vk,j)
2

− 2
∑

(i,j)∈Ω

(uk+1,ivk+1,j)
2 + 2λ

∑
i

uk+1,iuk,i − 2λ
∑
j

(vk+1,j)
2. (8.4)

It follows from (8.1) and (8.4) that:

E(uk, vk)− E(uk+1, vk+1) =
∑

(i,j)∈Ω

(uk,ivk,j)
2 + (uk+1,ivk+1,j)

2 − 2uk,iuk+1,i(vk,j)
2

− 2λ
∑
i

uk+1,iuk,i + 2λ
∑
i

(vk+1,i)
2

+ λ(‖uk‖2 + ‖vk‖2 − ‖uk+1‖2 − ‖vk+1‖2).

(8.5)

The 3 terms in the first sum of (8.5) can be written as:

(uk+1,ivk+1,j)
2 − (uk+1,ivk,j)

2 + (uk+1,ivk,j)
2 − 2uk,iuk+1,j(vk,j)

2 + (uk,ivk,j)
2,

which is:

(vk,j)
2(uk+1,i − uk,i)2 + (uk+1,ivk+1,j)

2 − (uk+1,ivk,j)
2. (8.6)

The remaining terms of (8.5) with λ in front combine to give:∑
i

(uk,i)
2 − 2uk,iuk+1,i − (uk+1,i)

2 + (vk,i)
2 + (vk+1,i)

2. (8.7)

Multiplying (8.2) by uk+1,i and summing over i; multiplying (8.3) by vk,j
and summing over j, subtracting the two resulting expressions, we find:

0 = 2
∑

(i,j)∈Ω

[(uk+1,i)
2(vk,j)

2 − vk,jvk+1,j(uk+1,i)
2] + 2λ

∑
i

[(uk+1,i)
2 − vk,ivk+1,i].

(8.8)
Adding (8.8) to (8.5), we see that (8.6) becomes:

(vk,j)
2(uk+1,i − uk,i)2 + (uk+1,ivk+1,j)

2 + (uk+1,i)
2(vk,j)

2 − 2vk,jvk+1,j(uk+1,i)
2

24

= (vk,j)
2(uk+1,i − uk,i)2 + (uk+1,i)

2(vk+1,j − vk,j)2, (8.9)

leading up to the first two square terms on the right hand side of (4.13).
Similarly, (8.7) becomes:∑

i

(uk,i)
2 − 2uk,iuk+1,i + (uk+1,i)

2 + (vk,i)
2 + (vk+1,i)

2 − 2vk,ivk+1,i,

producing the sum of squares term with λ prefactor on the right hand side of
(4.13). Proof is complete.

References

[1] D. Bertsekas, “Nonlinear Programming”, Belmont, MA, Athena Scien-
tific, 2nd ed, 1999.

[2] S. Burer, R. Monteiro, A nonlinear programming algorithm for solving
semidefinite programs via low rank factorization, Math. Programming,
Ser. B, 95(2003), pp. 329-357.

[3] E. J. Candès, X. Li, Y. Ma, and J. Wright, Robust Principal Component
Analysis?, Journal of ACM, 58(1), pp. 1-37, 2009.

[4] Y. Chen, A. Jalali, S. Sanghavi, and C. Caramanis, Low-rank matrix re-
covery from errors and erasures, IEEE Transactions on Information The-
ory, 59(7):4324–4337, 2013.

[5] D. Goldfarb and S. Ma, Convergence of fixed point continuation algorithms
for matrix rank minimization, Foundations of Computational Mathemat-
ics, 11(2), 183–210, 2011.

[6] P. Huber, E. Ronchetti, “Robust Statistics”, Wiley, New York, 2009.

[7] D. Jannach, M. Zanker, A. Felfernig, G. Friedrich, “Recommender Sys-
tems: An Introduction”, Cambridge Univ. Press, 2012.

[8] I. Jolliffe, “Principal Component Analysis”, Springer-Verlag, 1986.

[9] R. Keshavan, A. Montanari, S. Oh, Matrix completion from a few entries,
IEEE Trans. Info. Theory, 56 (6), 2980-2998, 2010.

[10] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recom-
mender system, Computer, vol. 42, pp. 30-37, 2009.

25

[11] T. Hastie, R. Mazumder, J. Lee, R. Zadeh, Matrix Completion and Low-
Rank SVD via fast Alternating Least Squares, J. Machine Learning Re-
search, 2015, to appear.

[12] M. Lai, Y. Xu, and W. Yin, Improved iteratively reweighted least squares
for unconstrained smoothed lq minimization, SIAM Journal on Numerical
Analysis, 51(2):927–957, 2013.

[13] S. Ma, D. Goldfarb, and L. Chen, Fixed point and bregman iterative meth-
ods for matrix rank minimization, Mathematical Programming, 128(1-
2):321–353, 2011.

[14] R. Mazumder, T. Hastie, R. Tibshirani, Spectral regularization algorithms
for learning large incomplete matrices, J. Machine Learning Research, 11:
2287–2322, 2010.

[15] R. Meka, P. Jain, and I. S. Dhillon, Guaranteed rank minimization via sin-
gular value projection, In Proc. of Neural Information Processing Systems
(NIPS), 2010.

[16] K. Mohan and M. Fazel, Iterative reweighted algorithms for matrix rank
minimization, Journal of Machine Learning Research, 13(1):3441–3473,
2012.

[17] MovieLens Dataset: groupens.org/datasets/movielens.

[18] B. Recht and C. Ré, Parallel stochastic gradient algorithms for large-scale
matrix completion, Mathematical Programming Computation, 5(2):201–
226, 2013.

[19] N. Srebo, J. Rennie, T. Jaakkola, Maximum margin matrix factorization,
Advances in Neural Info Processing Systems, 17, pp. 1329–1336, 2005.

[20] Z. Wen, W. Yin, and Y. Zhang, Solving a low-rank factorization model
for matrix completion by a nonlinear successive over-relaxation algorithm,
Mathematical Programming Computation, 4(4):333–361, 2012.

[21] H. F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon, Scalable Coordinate De-
scent Approaches to Parallel Matrix Factorization for Recommender Sys-
tems, Proceedings of the IEEE International Conference on Data Min-
ing(ICDM), pages 765-774, December 2012.

26

