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Chapter 1

Sample File for SIAM
LATEX Book Macro
Package

We have nothing to fear but fear itself.
—Franklin D. Roosevelt

I am not a crook.
—Richard M. Nixon

1.1 Introduction and Examples
This paper presents a sample file for the use of SIAM’s LATEX macro package. It illustrates the
features of the1 macro package, using actual examples culled from various papers published in
SIAM’s journals. It is to be expected that this sample will provide examples of how to use the
macros to generate standard elements of journal papers, e.g., theorems, definitions, or figures.
This paper also serves as an example of SIAM’s stylistic preferences for the formatting of such
elements as bibliographic references, displayed equations, and equation arrays, among others.
Some special circumstances are not dealt with in this sample file; for such information one should
see the included documentation file.

Note: This paper is not to be read in any form for content. The conglomeration of equations,
lemmas, and other text elements were put together solely for typographic illustrative purposes
and don’t make any sense as lemmas, equations, etc.

1.1.1 Sample text

Let S = [sij ] (1 ≤ i, j ≤ n) be a (0, 1,−1)-matrix of order n. Then S is a sign-nonsingular ma-
trix (SNS-matrix) provided that each real matrix with the same sign pattern as S is nonsingular.
There has been considerable recent interest in constructing and characterizing SNS-matrices [1],
[4]. There has also been interest in strong forms of sign-nonsingularity [2]. In this paper we give
a new generalization of SNS-matrices and investigate some of their basic properties.

Let S = [sij ] be a (0, 1,−1)-matrix of order n and let C = [cij ] be a real matrix of order n.
The pair (S,C) is called a matrix pair of order n. Throughout, X = [xij ] denotes a matrix of
order n whose entries are algebraically independent indeterminates over the real field. Let S ◦X
denote the Hadamard product (entrywise product) of S and X . We say that the pair (S,C) is a
sign-nonsingular matrix pair of order n, abbreviated SNS-matrix pair of order n, provided that

1This is a sample footnote. This is a sample footnote. This is a sample footnote. This is a sample footnote. This is a
sample footnote. This is a sample footnote.
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4 Chapter 1. Sample File for SIAM LATEX Book Macro Package

the matrix
A = S ◦X + C

is nonsingular for all positive real values of the xij . If C = O then the pair (S,O) is a SNS-
matrix pair if and only if S is a SNS-matrix. If S = O then the pair (O,C) is a SNS-matrix pair
if and only if C is nonsingular. Thus SNS-matrix pairs include both nonsingular matrices and
sign-nonsingular matrices as special cases.

The pairs (S,C) with

S =

[
1 0
0 0

]
, C =

[
1 1
1 1

]
and

S =

 1 1 0
1 1 0
0 0 0

 , C =

 0 0 1
0 2 0
3 0 0


are examples of SNS-matrix pairs.

1.1.2 Some list environments

In this paper we consider the evaluation of integrals of the following forms:

∫ b

a

(∑
i

EiBi,k,x(t)

)∑
j

FjBj,l,y(t)

 dt, (1.1)

∫ b

a

f(t)

(∑
i

EiBi,k,x(t)

)
dt, (1.2)

where Bi,k,x is the ith B-spline of order k defined over the knots xi, xi+1, . . . , xi+k. We will
consider B-splines normalized so that their integral is one. The splines may be of different orders
and defined on different knot sequences x and y. Often the limits of integration will be the entire
real line, −∞ to +∞. Note that (1.1) is a special case of (1.2) where f(t) is a spline.

There are five different methods for calculating (1.1) that will be considered; here is the
remunerate list:

1. Use Gauss quadrature on each interval.
2. Convert the integral to a linear combination of integrals of products of B-splines and pro-

vide a recurrence for integrating the product of a pair of B-splines.
3. Convert the sums of B-splines to piecewise Bézier format and integrate segment by seg-

ment using the properties of the Bernstein polynomials.
4. Express the product of a pair of B-splines as a linear combination of B-splines. Use this to

reformulate the integrand as a linear combination of B-splines, and integrate term by term.
5. Integrate by parts.

Of these five, only methods 1 and 5 are suitable for calculating (1.2). The first four methods will
be touched on and the last will be discussed at length.

Here is the bullet list:

• Use Gauss quadrature on each interval.
• Convert the integral to a linear combination of integrals of products of B-splines and pro-

vide a recurrence for integrating the product of a pair of B-splines.
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• Convert the sums of B-splines to piecewise Bézier format and integrate segment by seg-
ment using the properties of the Bernstein polynomials.

• Express the product of a pair of B-splines as a linear combination of B-splines. Use this to
reformulate the integrand as a linear combination of B-splines, and integrate term by term.

• Integrate by parts.

and, finally, the romannum list:

(i) Use Gauss quadrature on each interval.
(ii) Convert the integral to a linear combination of integrals of products of B-splines and pro-

vide a recurrence for integrating the product of a pair of B-splines.
(iii) Convert the sums of B-splines to piecewise Bézier format and integrate segment by seg-

ment using the properties of the Bernstein polynomials.
(iv) Express the product of a pair of B-splines as a linear combination of B-splines. Use this to

reformulate the integrand as a linear combination of B-splines, and integrate term by term.
(v) Integrate by parts.

1.1.3 An algorithm

Here is a sample algorithm:

ALGORITHM 1.1.
The Sample Algorithm For i = 1 to 10
print “Hello world”
end

Some text after the algorithm. Some text after the algorithm. Some text after the algorithm.
Some text after the algorithm. Some text after the algorithm.

1.1.4 Some displayed equations and {eqnarray}s

By introducing the product topology on Rm×m ×Rn×n with the induced inner product

〈(A1, B1), (A2, B2)〉 := 〈A1, A2〉+ 〈B1, B2〉, (1.3a)

we calculate the Fréchet derivative of F as follows:

F ′(U, V )(H,K) = 〈R(U, V ), HΣV T + UΣKT − P (HΣV T + UΣKT )〉
= 〈R(U, V ), HΣV T + UΣKT 〉 (1.3b)
= 〈R(U, V )V ΣT , H〉+ 〈ΣTUTR(U, V ),KT 〉.

In the middle line of (1.3b) we have used the fact that the range of R is always perpendicular to
the range of P . The gradient∇F of F , therefore, may be interpreted as the pair of matrices:

∇F (U, V ) = (R(U, V )V ΣT , R(U, V )TUΣ) ∈ Rm×m ×Rn×n. (1.3c)

Because of the product topology, we know

T(U,V )(O(m)×O(n)) = TUO(m)× TVO(n), (1.3d)

where T(U,V )(O(m) × O(n)) stands for the tangent space to the manifold O(m) × O(n) at
(U, V ) ∈ O(m) × O(n) and so on. The projection of ∇F (U, V ) onto T(U,V )(O(m) × O(n)),
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therefore, is the product of the projection of the first component of∇F (U, V ) onto TUO(m) and
the projection of the second component of∇F (U, V ) onto TVO(n). In particular, we claim that
the projection g(U, V ) of the gradient ∇F (U, V ) onto T(U,V )(O(m) × O(n)) is given by the
pair of matrices:

g(U, V ) =

(
R(U, V )V ΣTUT − UΣV TR(U, V )T

2
U,

(1.4)
R(U, V )TUΣV T − V ΣTUTR(U, V )

2
V

)
.

Thus, the vector field
d(U, V )

dt
= −g(U, V ) (1.5)

defines a steepest descent flow on the manifoldO(m)×O(n) for the objective function F (U, V ).

1.2 Main Results
Let (S,C) be a matrix pair of order n. The determinant

det(S ◦X + C)

is a polynomial in the indeterminates of X of degree at most n over the real field. We call
this polynomial the indicator polynomial of the matrix pair (S,C) because of the following
proposition.

Theorem 1.1. The matrix pair (S,C) is a SNS-matrix pair if and only if all the nonzero coeffi-
cients in its indicator polynomial have the same sign and there is at least one nonzero coefficient.

Proof. Assume that (S,C) is a SNS-matrix pair. Clearly the indicator polynomial has a nonzero
coefficient. Consider a monomial

bi1,...,ik;j1,...,jkxi1j1 · · ·xikjk (1.6)

occurring in the indicator polynomial with a nonzero coefficient. By taking the xij that occur in
(1.6) large and all others small, we see that any monomial that occurs in the indicator polynomial
with a nonzero coefficient can be made to dominate all others. Hence all the nonzero coefficients
have the same sign. The converse is immediate.

For SNS-matrix pairs (S,C) with C = O the indicator polynomial is a homogeneous poly-
nomial of degree n. In this case Theorem 1.1 is a standard fact about SNS-matrices.

Lemma 1.2 (Stability). Given T > 0, suppose that ‖ε(t)‖1,2 ≤ hq−2 for 0 ≤ t ≤ T and q ≥ 6.
Then there exists a positive number B that depends on T and the exact solution ψ only such that
for all 0 ≤ t ≤ T ,

d

dt
‖ε(t)‖1,2 ≤ B(hq−3/2 + ‖ε(t)‖1,2) . (1.7)

The function B(T ) can be chosen to be nondecreasing in time.

Theorem 1.3. The maximum number of nonzero entries in a SNS-matrix S of order n equals

n2 + 3n− 2

2
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with equality if and only if there exist permutation matrices such that P |S|Q = Tn where

Tn =



1 1 · · · 1 1 1
1 1 · · · 1 1 1
0 1 · · · 1 1 1
...

...
. . .

...
...

...
0 0 · · · 1 1 1
0 0 · · · 0 1 1


. (1.8)

We note for later use that each submatrix of Tn of order n−1 has all 1s on its main diagonal.
We now obtain a bound on the number of nonzero entries of S in a SNS-matrix pair (S,C)

in terms of the degree of the indicator polynomial. We denote the strictly upper triangular (0,1)-
matrix of order m with all 1s above the main diagonal by Um. The all 1s matrix of size m by p
is denoted by Jm,p.

Proposition 1.4 (Convolution theorem). Let

a ∗ u(t) =

∫ t

0

a(t− τ)u(τ)dτ, t ∈ (0,∞).

Then

â ∗ u(s) = â(s)û(s).

Lemma 1.5. For s0 > 0, if ∫ ∞
0

e−2s0tv(1)(t)v(t)dt ≤ 0 ,

then ∫ ∞
0

e−2s0tv2(t)dt ≤ 1

2s0
v2(0).

Proof. Applying integration by parts, we obtain∫ ∞
0

e−2s0t[v2(t)− v2(0)]dt = lim
t→∞

(
− 1

2s0
e−2s0tv2(t)

)
+

1

s0

∫ ∞
0

e−2s0tv(1)(t)v(t)dt

≤ 1

s0

∫ ∞
0

e−2s0tv(1)(t)v(t)dt ≤ 0.

Thus ∫ ∞
0

e−2s0tv2(t)dt ≤ v2(0)

∫ ∞
0

e−2s0tdt =
1

2s0
v2(0).

Corollary 1.6. Let E satisfy (5)–(6) and suppose Eh satisfies (7) and (8) with a general G.
Let G = ∇ × Φ + ∇p, p ∈ H1

0 (Ω). Suppose that ∇p and ∇ × Φ satisfy all the assumptions
of Theorems 4.1 and 4.2, respectively. In addition suppose all the regularity assumptions of
Theorems 4.1–4.2 are satisfied. Then for 0 ≤ t ≤ T and 0 < ε ≤ ε0 there exists a constant
C = C(ε, T ) such that

‖(E −Eh)(t)‖0 ≤ Chk+1−ε,
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Place Holder 

for

Art Only

Figure 1.1. Log10 of the residual norm versus the number of GMRES(m) iterations for the finite
difference methods.

where C also depends on the constants given in Theorems 4.1 and 4.2.

Definition 1.7. Let S be an isolated invariant set with isolating neighborhood N . An index pair
for S is a pair of compact sets (N1, N0) with N0 ⊂ N1 ⊂ N such that:

(i) cl(N1\N0) is an isolating neighborhood for S.
(ii) Ni is positively invariant relative to N for i = 0, 1, i.e., given x ∈ Ni and x · [0, t] ⊂ N ,

then x · [0, t] ⊂ Ni.
(iii) N0 is an exit set for N1, i.e. if x ∈ N1, x · [0,∞) 6⊂ N1, then there is a T ≥ 0 such that

x · [0, T ] ⊂ N1 and x · T ∈ N0.

1.2.1 Numerical experiments

We conducted numerical experiments in computing inexact Newton steps for discretizations of a
modified Bratu problem, given by

∆w + cew + d
∂w

∂x
= f in D,

(1.9)
w = 0 on ∂D,

where c and d are constants. The actual Bratu problem has d = 0 and f ≡ 0. It provides
a simplified model of nonlinear diffusion phenomena, e.g., in combustion and semiconductors,
and has been considered by Glowinski, Keller, and Rheinhardt [11], as well as by a number of
other investigators; see [11] and the references therein. See also problem 3 by Glowinski and
Keller and problem 7 by Mittelmann in the collection of nonlinear model problems assembled
by Moré [13]. The modified problem (1.9) has been used as a test problem for inexact Newton
methods by Brown and Saad [7].

In our experiments, we took D = [0, 1] × [0, 1], f ≡ 0, c = d = 10, and discretized
(1.9) using the usual second-order centered differences over a 100× 100 mesh of equally spaced
points in D. In GMRES(m), we took m = 10 and used fast Poisson right preconditioning as in
the experiments in §2. The computing environment was as described in §2. All computing was
done in double precision.



1.2. Main Results 9

Table 1.1. Statistics over 20 trials of GMRES(m) iteration numbers, F -evaluations, and run
times required to reduce the residual norm by a factor of ε. For each method, the number of GMRES(m)
iterations and F -evaluations was the same in every trial.

Number of Number of Mean Run Time Standard
Method ε Iterations F -Evaluations (Seconds) Deviation
EHA2 10−10 26 32 47.12 .1048
FD2 10−10 26 58 53.79 .1829

EHA4 10−12 30 42 56.76 .1855
FD4 10−12 30 132 81.35 .3730

EHA6 10−12 30 48 58.56 .1952
FD6 10−12 30 198 100.6 .3278

Place Holder 

for

Art Only

Figure 1.2. Log10 of the residual norm versus the number of GMRES(m) iterations for c = d =
10 with fast Poisson preconditioning. Solid curve: Algorithm EHA; dotted curve: FDP method; dashed
curve: FSP method.

In the first set of experiments, we allowed each method to run for 40 GMRES(m) iterations,
starting with zero as the initial approximate solution, after which the limit of residual norm
reduction had been reached. The results are shown in Fig. 1.1.

In Fig. 1.1, the top curve was produced by method FD1. The second curve from the top is
actually a superposition of the curves produced by methods EHA2 and FD2; the two curves are
visually indistinguishable. Similarly, the third curve from the top is a superposition of the curves
produced by methods EHA4 and FD4, and the fourth curve from the top, which lies barely above
the bottom curve, is a superposition of the curves produced by methods EHA6 and FD6. The
bottom curve was produced by method A.

In the second set of experiments, our purpose was to assess the relative amount of compu-
tational work required by the methods which use higher-order differencing to reach comparable
levels of residual norm reduction. We compared pairs of methods EHA2 and FD2, EHA4 and
FD4, and EHA6 and FD6 by observing in each of 20 trials the number of GMRES(m) iterations,
number of F -evaluations, and run time required by each method to reduce the residual norm
by a factor of ε, where for each pair of methods ε was chosen to be somewhat greater than the
limiting ratio of final to initial residual norms obtainable by the methods. In these trials, the
initial approximate solutions were obtained by generating random components as in the similar
experiments in §2. We note that for every method, the numbers of GMRES(m) iterations and
F -evaluations required before termination did not vary at all over the 20 trials. The GMRES(m)
iteration counts, numbers of F -evaluations, and means and standard deviations of the run times
are given in Table 1.1.
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In our first set of experiments, we took c = d = 10 and used right preconditioning with a
fast Poisson solver from FISHPACK [16], which is very effective for these fairly small values of
c and d. We first started each method with zero as the initial approximate solution and allowed
it to run for 40 GMRES(m) iterations, after which the limit of residual norm reduction had been
reached. Figure 1.2 shows plots of the logarithm of the Euclidean norm of the residual versus
the number of GMRES(m) iterations for the three methods. We note that in Fig. 1.2 and in all
other figures below, the plotted residual norms were not the values maintained by GMRES(m),
but rather were computed as accurately as possible “from scratch.” That is, at each GMRES(m)
iteration, the current approximate solution was formed and its product with the coefficient matrix
was subtracted from the right-hand side, all in double precision. It was important to compute the
residual norms in this way because the values maintained by GMRES(m) become increasingly
untrustworthy as the limits of residual norm reduction are neared; see [17]. It is seen in Fig. 1.2
that Algorithm EHA achieved the same ultimate level of residual norm reduction as the FDP
method and required only a few more GMRES(m) iterations to do so.

Example 1.8. Let S be an isolated invariant set with isolating neighborhood N . An index pair
for S is a pair of compact sets (N1, N0) with N0 ⊂ N1 ⊂ N such that:

(i) cl(N1\N0) is an isolating neighborhood for S.
(ii) Ni is positively invariant relative to N for i = 0, 1, i.e., given x ∈ Ni and x · [0, t] ⊂ N ,

then x · [0, t] ⊂ Ni.
(iii) N0 is an exit set for N1, i.e. if x ∈ N1, x · [0,∞) 6⊂ N1, then there is a T ≥ 0 such that

x · [0, T ] ⊂ N1 and x · T ∈ N0.

In these trials, the initial approximate solutions were obtained by generating random components
as in the similar experiments in §2.

In our second set of experiments, we took c = d = 100 and carried out trials analogous to
those in the first set above. No preconditioning was used in these experiments, both because we
wanted to compare the methods without preconditioning and because the fast Poisson precon-
ditioning used in the first set of experiments is not cost effective for these large values of c and
d. We first allowed each method to run for 600 GMRES(m) iterations, starting with zero as the
initial approximate solution, after which the limit of residual norm reduction had been reached.

Exercises
1.1. The first problem. Solve for x:

y =

√
x+

1

2

1.2. The second problem. The second problem. The second problem. The second problem.
The second problem. The second problem. The second problem. The second problem.
The second problem. The second problem. The second problem.
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