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Overview

• SIAM FM21 hosted the first student programming challenge
which is sponsored by MathWorks

• >100 students partook in a two month competition to
optimize a portfolio under transaction costs and market
impact

• We have 7 finalist teams3 presenting their solutions
9-10:30am EST, June 3rd.

• The four winning teams will be announced after the lightning
talks and will receive cash prizes.

• Please submit your questions to the teams in the chat area.

3Each team consists of either 2 or 3 student members.



Definitions

• Consider the problem of optimizing a portfolio in d > 0
exchange traded stocks over each time period
t = 0, 1, . . . ,T − 1.

• At each period, the proportional allocation of capital to each
stock is represented by the weights

wt ∈ ∆d := {x ∈ R
d : x i ≥ 0 and

∑

i

x i = 1} ,

where each w i
t represents the proportion of the total capital

allocated to stock i at time period t4

4Note for avoidance of doubt, that the weights are defined in terms of the
position size (i.e. number of assets held), ui

t , as w
i

t = u
i

tS
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t/P
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portfolio value P
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Definitions

• Given a sequence of chosen weights w0:T−1 = (wt)
T−1

t=0

historical stock prices s0:T = (st)
T
t=0, where for each t,

st = (s it)
d

i=1
denotes the vector of prices, the total return of

the portfolio over the T periods is

RT (w0:T−1) =

T−1
∏

t=0

(

1 +

d
∑

i=1

(w i

t r
i

t − η |∆uit−1|)

)+

,

where ( · )+ = max{·, 0}, r it =
s
i

t+1
−s

i
t

s i
t

and

∆uit = ui
t+1 − uit = w i

t+1P
i
t+1/S

i
t+1 − w i

tP
i
t/S

i
t with the

convention that ∆ui
−1 = 0.

• There are two terms for each period t:

1. The standard definition of the portfolio return in period t

2. A transaction cost parameter that the portfolio manager must
pay each time they rebalance (i.e. change) their portfolio
positions, where η > 0 controls the scale of this cost.



Problem Statement

• Construct a trading strategy which for any fixed λ > 0 (Risk
aversion parameter) and T > 0, maximizes the mean-variance
objective function

Lλ

T (u0:T ) = E[RT (u0:T−1)]− λV[RT (u0:T−1)] .

• At each time t, the portfolio manager may only only use
trading strategies which use historical stock price information
in order to decide on positions ut .

• The data generation process is defined by a market simulator
with market impact.

• Teams are judged based on out-of-sample performance of
their strategies.5

5Under an unknown parameterization of the market simulator determined by
the committee.



Market Simulator
• Stock prices are assumed to randomly evolve over time and

are dependent on how the portfolio is rebalanced.
• Denoting St = (log s it)

d

i=1
, the increments of St satisfy the

relation
St+1 − St = µ + κ (∆ut−1) +M ρt ,

where
• µ ∈ R

d is an unknown drift vector.
• κ : Rd → R

d is a market impact function which depends on
the change in positions, ∆ut , which we define according to

κ(xi ) =
(

ci sign(xi )|xi |
1

2

)d

i=1

,

for unknown constants ci > 0, and where
sign : R → {−1, 0, 1} is the sign of a number.

• M ∈ R
d×d is an unknown low-rank matrix

• ρt = (ρi
t
)d
i=1

is a vector of independent and identically
distributed random variables with unknown density p satisfying
E[ρi

t
] = 0 and V[ρi

t
] = 1.



Schedule

Time Team Members

9-9:10 Opening Remarks from
Agostino Capponi
& the organizers

9:10-9:15 LSE Chris Chia Sandra Ng
9:15-9:20 NCU Ning Yen Min-Syue Chang Chung-Yu Shih
9:20-9:25 UC Boulder L. Minah Yang Danny Kurban
9:25-9:30 Imperial-Exeter-Oxford Ben Batten Henry Elsom Tom Walshe

9:30-9:40 Q&A

9:40-9:45 Giessen-KIT Lukas Gröber Levin Kiefer Michael Zheng
9:45-9:50 Sheffield Georgios Moulantzikos Vinh Vu
9:50-9:55 KCL Haochen Li Yan Wu Chunli Liu

9:55-10:10 Q&A

10:10-10:30 Award ceremony
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Mean-Semivariance Optimisation

Sandra Ng 1 Chris Chia 1

1The London School of Economics and Political Science

May 30, 2021

Methodology Results: Analysis

Sandra Ng, Chris Chia (LSE) SIAM Presentation May 30, 2021 1 / 5



Methodology: Motivation

Lλ

T
= E[RT (w0:T−1)]− λV[RT (w0:T−1)] (1)

Mean-variance optimisation: minimising variance directly
symmetrically penalizes both downside and upside volatilty

Potentially not desirable as higher upside volatility may be associated
with higher mean returns

Instead, minimize semivariance: the variance of negative returns

Markowitz, Starer, Fram, and Gerber, 2020

Methodology Results: Analysis

Sandra Ng, Chris Chia (LSE) SIAM Presentation May 30, 2021 2 / 5



Methodology: Implementation

Problem formulation:

Minimise

nTn− 1

2λ
µ
Tw , subject to 1Tw = 1 ,

1√
T

Rw = p−n , p ≥ 0 , and n ≥ 0.

(2)

Formulate in quadratic programming form; solve using convex
optimisation methods in MATLAB

First trade at the end of Tw = 100 periods, subsequently rebalance
every f = 100 periods

Methodology Results: Analysis

Sandra Ng, Chris Chia (LSE) SIAM Presentation May 30, 2021 3 / 5



Results: Comparison with alternative strategies

For fixed T = 500 periods, risk aversion λ = 0.1

Mean RT SD RT Utility

Semivariance 0.0261 0.0076 0.0260

Equal-weighted 0.0116 0.0082 0.0116
Price-weighted 0.0115 0.0080 0.0115

Mean Variance 0.0215 0.0656 0.0211
Ledoit-Wolf 0.0178 0.0670 0.0173

CDaR 0.0179 0.0671 0.0175
cVaR 0.0123 0.0054 0.0123
MAD 0.0107 0.0053 0.0107

Inverse Volatility Weighted 0.0112 0.0071 0.0112
Mean Correlation 0.0116 0.0084 0.0116
Hierarchial 0.0108 0.0071 0.0108

Table: Evaluations of Utility over numerous strategies

Methodology Results: Analysis

Sandra Ng, Chris Chia (LSE) SIAM Presentation May 30, 2021 4 / 5



Results

Figure: Portfolio Weight Evolution

Empirical Observations

Introduces sparse weights

Convergence to a stable solution
in the case of i.i.d. log-returns?

For N = 500 varying small
transaction costs and small
market impact does not affect
result much

Next Steps

Dynamic position targeting
instead of fixed frequency

Methodology Results: Analysis

Sandra Ng, Chris Chia (LSE) SIAM Presentation May 30, 2021 5 / 5
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Method Results and conclusions

Trading Strategy with Moving Average and Mean
Variance Optimization

SIAM FM21 Programming Challenge
Sponsored by MathWorks

Ning Yen, Min-Syue Chang, Chung-Yu Shih

National Central University, Taiwan

2021/6/3

Ning Yen, Min-Syue Chang, Chung-Yu Shih National Central University, Taiwan
Trading Strategy with Moving Average and Mean Variance Optimization
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Method Results and conclusions

Step 1. Data collection
Step 2. Stocks selection: moving average

We build the initial without trading (all the weight is 0). The
initial length Ti must satisfy the following conditions.

Ti = max{10 (for Step 2.), 2 · d (for Step 3.)}
We select the stock for each time steps by using the long moving
average (10MA) and the short moving average (5MA).

5MA ≤ 10MA ⇒ Bearish. Choose weight as 0

Ning Yen, Min-Syue Chang, Chung-Yu Shih National Central University, Taiwan
Trading Strategy with Moving Average and Mean Variance Optimization
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Method Results and conclusions

Step 3. Build weight: mean variance optimization
We use Portfolio in Matlab financial toolbox. This function are
base on Markowitz’s mean variance optimization (MVO) and
expectation conditional maximization (ECM). Given the risk
aversion parameter λ, we maximize the return to find the weight w

max
w

E(Rp), subject to σ2

p = λ.

Where E be the function of expected return

E(Rp) = E(wT r).

And using the covariance matrix of returns Σ to estimate the risk,
we have

σ2

p = wTΣw.

Ning Yen, Min-Syue Chang, Chung-Yu Shih National Central University, Taiwan
Trading Strategy with Moving Average and Mean Variance Optimization
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Method Results and conclusions

Results

Set the number of stocks d = 20, time grids T = 4000. In different
risk aversion parameter λ:

Ning Yen, Min-Syue Chang, Chung-Yu Shih National Central University, Taiwan
Trading Strategy with Moving Average and Mean Variance Optimization
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Method Results and conclusions

Conclusions

MA is an easy and useful method.
MVO can take higher risk to get more returns.
With higher λ, with MVO method can have more return.
With same λ, MA + MVO have more returns then MVO only.

Ning Yen, Min-Syue Chang, Chung-Yu Shih National Central University, Taiwan
Trading Strategy with Moving Average and Mean Variance Optimization



Pi ki  Wi ers to Opti ize Port olios

L. Minah Yang
Applied Mathematics
lucia.yang@colorado.edu
https://yangminah.github.io

Danny Kurban
Economics
danny.kurban@colorado.edu
https://dannykurban.com

mailto:lucia.yang@colorado.edu
https://yangminah.github.io
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Method Des iptio
Who are the wi ers?

We tried the ollowin  strate ies:
● P i iest sto ks a e the i e s. ✔
● Sto ks ith the hi hest -pe iod etu s a e 

the i e s.                                        ✘
Suppose there are n winners in a d-sized port olio.
● A  i e  should ha e o e ei ht tha  

a  lose .
○ 𝛼/n > -𝛼 / d-n

How to o fi ure the wi er asket?

Size:
● Wi e s ha e 𝛼, lose s ha e -𝛼 .

○ 𝛼 < → lose s et > .        ✔
○ 𝛼 =  → lose s et .          ✘

Distribution:
● Ho  is  𝛼 di ided a o st the i e s?

○ e ual ei hts : 𝛼/n.           ✔
○ ei hted  p i e.              ✘

Moti atio
● We assu e that o pa ies a  e ha a te ized as eithe  i e s o  lose s; i e s ha e a  up a d t e d. 

○ Wi e s deli e  hi h etu  a d keepi  lose s i i izes isk. 
● DeMi uel et al. 9, Re ie  o  Fi a ial Studies  sho ed that a  e ual ei ht st ate  a tuall  outpe o s 

o e sophisti ated ea - a ia e opti izatio  st ate ies o  <  pe iods.
● P edi ti  utu e sto k p i es is diffi ult a d o te  i t odu es la e esti atio  e o s. 

https://yangminah.github.io
https://dannykurban.com

https://yangminah.github.io
https://dannykurban.com


● Hi h 𝜆 is isk-a e se, a d lo  𝜆 is isk .
● Lo  𝛼 is isk-a e se, a d hi h 𝛼 is isk .
● Fo              , e e t to  the e ual ei ht st ate .

Gi e  a fixed u e  o  i e s n, e set the 
i e  asket p opo tio  𝛼 to:

Model
● Hi h n is isk-a e se, a d lo  n is isk .
● Data-d i e  app oa h: Co pute the opti al n 

ith espe t to the o je ti e u tio  o  a ious 
o i atio s o  d po t olio size  a d 𝜆. 

● k: steep ess o  lo isti  u tio .
● Ce te ed a ou d       .

https://yangminah.github.io
https://dannykurban.com

https://yangminah.github.io
https://dannykurban.com


Results: E a ple ith 𝜆=   

We o fi u ed ou  odel ith  k= .  a d     = . 
● At 𝜆= ,

○ u e  o  i e s: n=
○ u e  o  lose s: d-n= .
○ p opo tio  o  i e  asket: 𝛼= .
○ p opo tio  o  lose  asket: -𝛼= .

● Hi h tu o e  i itiall .
● Lo e  tu o e  a te  ~  pe iods.

https://yangminah.github.io
https://dannykurban.com

https://yangminah.github.io
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● All o fi u atio s 
○ o e e to the e ual ei hts st ate  EWS  at 

hi h 𝜆.
○ outpe o  the EWS at lo  𝜆.
● k= . ,    =  pe o s est o  ide a e o  𝜆.

Results: 

● All o fi u atio s ield hi he  e pe ted etu  
a d a ia e i  o pa iso  to the EWS. 

● O  a e a e, the ai  i  e pe ted etu  o e 
tha  akes up o  the i ease i  isk.https://yangminah.github.io

https://dannykurban.com

https://yangminah.github.io
https://dannykurban.com
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University of Exeter2

University of Oxford3

Portfolio Optimisation with 
Dynamic Risk Aversion Tuning

Ben Batten1, Henry Elsom2, and Tom Walshe3



Method - Solution overview

● Strategies are assessed based on an inter-simulation performance function.

● We use quadratic optimisation on a constrained Markowitz model.

● Gamma is dynamically tuned according to three simulation-state dependant metrics.

● By contextualising performance metrics, we dynamically tune our optimisation 
hyperparameters.



Method - Empirically determined risk metrics
 
● Risk aversion increases with current return to preserve profit.

● Monte Carlo simulation provides an estimate for expected return.

● Scale the user specified risk aversion parameter, λ.

CR:    Current Return
L:       Lambda
SR:     Simulated Return



Results - Efficacy of strategy components

● We perform an ablation 
study on our strategy.

● Test the validity of 
combining our three 
approaches to dynamic risk 
aversion.

● Combined approach finds 
best balance for given 
simulation state.



Results - Performance analysis

● Maximum average return of 5.2% (λ = 5.5).
● Average return of 2.65% over 500 steps, randomised parameters (λ = 1.0).



SIAM Student Coding Competition

Flash presentations

Lukas Gröber (Uni Gießen), Levin Kiefer (KIT), Michael Zheng (KIT)

2021-06-03

1 / 5



Basic Approach

◮ Ideas: Machine learning, Monte Carlo Tree Search, Linear Extrapolation

◮ Optimizing for best cumulative drift in portfolio worked out the best

◮ Periods without trading to estimate drift and pairwise covariance

◮ Initial strategy according to risk aversion λ → more or less random shares

◮ Look for “good pairs” → no or negative correlation, number of pairs according to

λ

2 / 5



Basic Approach

◮ Higher λ → longer period with initial strategy

◮ Heuristics to implement ideas e.g. trading every max (⌊50000 · η⌋ , 30) periods

◮ Choice for specific formulas based on testing

◮ We decided to ignore the reallocation reactions κ → not enough effects, too

difficult of a relation with η

◮ Reasonable computing time with best performance (compared to our other

solutions)

3 / 5



Results

◮ Machine learning did not converge sufficiently → parameters too small (?)

◮ MCTS took way too much computing power for poor results

◮ Linear Extrapolation worked surprisingly well

◮ Conventional estimators with a strategy favoring low correlation and high drift

worked the best

◮ We achieved returns ranging from 0.9263 to 1.1138 (under given parameters)

4 / 5



Results
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Figure: Example run with default parameters T = 500, d = 20, η = 2 · 10−4, λ = 0.25, . . .
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SIAM Financial Competition 

Georgios Moulantzikos and Vinh Vu



Strategy  - LSTM

● Long short-term memory: special type of RNN capable of learning long term 

dependencies. LSTM networks are well-suited to making predictions based 

on time series data.

● Algorithm:
1. Split timeframe into a) first training interval - use equal weights to 

generate stock prices  b) smaller predictions intervals.

2. When we reach a rebalancing date: train an LSTM network with 

stock prices up to this date and predict stock prices for the next 

prediction interval.

3. Use predicted stock prices to calculate the weights using 

Markowitz optimization.

● Comments/Future work: computational costs, batch vs incremental training, 

lengths of intervals.                                                                                                                                                                                                                                                                                                                                                                                      

                                                                                                                 



Strategy  - PCA

● Principal component analysis is an optimal decomposition method to 

decompose a dataset in the Euclidean space. 

○ Filters out noise. 

○ Allows trends to be identified.

● Simple to obtain
○ Find eigenvalues and eigenvectors of the covariance. 

● Algorithm
○ Take data from past few timesteps to predict the trend.

○ Weights are allocated proportionally to the most dominant 

eigenvectors.

● Risk strategy
○ Rises the weights to the power of the inverse of the risk parameter.



Results Convergence

● Problem - how do we know if these strategies are effective at predicting stock 

prices? 

○ Need to factor in effects of randomness.

● Welford’s Online algorithm - We can use this to calculate the expected 

returns of a strategy.

○ This gives us an expected returns for our strategies after considering 

the effects of randomness.

○ If the moving average of the second term is less than our 

convergence criteria of 1e-8, we assume the solution has converged.



Results



Black-Litterman Model &
Long Short-Term Memory Network

Haochen Li Chunli Liu Yan Wu

King’s College London King’s College London Beijing Normal University



Black-Litterman Model (BL model)
• Portfolio optimization based on Markowitz’s Modern Portfolio Theory

• Incorporate subjective views of the investor instead of relying only on historical 
asset returns

• Views: Weigh highly on the stocks with less volatility and higher expected return 
predicted by the predictor

• Predictor: moving average regression

Long Short-Term Memory Network (LSTM)
• A type of Recurrent neural network (RNN)

• Good at learning, processing, and classifying sequential data 

• Trained by backpropagation through time

• Weigh more on the historical trend of each asset instead of recent fluctuations



BL model LSTM



Incorporation
• BL model: more stable, lower return, LSTM: more potential, unstable

• Set threshold on the maximum drawdown

• BL model to keep the lower limit, LSTM to fight for the upper limit



Future works
• Framework of multimodal machine learning

• Master: multi-layer neural network with 

fully connected layers

• Use LSTM and BL model simultaneously 

with weights controlled by master

weights of models

BL model

master
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