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Overview

® SIAM FM21 hosted the first student programming challenge
which is sponsored by MathWorks

® >100 students partook in a two month competition to
optimize a portfolio under transaction costs and market
impact

® We have 7 finalist teams? presenting their solutions
9-10:30am EST, June 3rd.

® The four winning teams will be announced after the lightning
talks and will receive cash prizes.

® Please submit your questions to the teams in the chat area.

3Each team consists of either 2 or 3 student members.



Definitions

® Consider the problem of optimizing a portfolio in d > 0
exchange traded stocks over each time period
t=0,1,..., 7T -1

® At each period, the proportional allocation of capital to each
stock is represented by the weights

wy € A9 = {x e R : x' >0 and inzl},

1

where each W[ represents the proportion of the total capital
allocated to stock i at time period t*

*Note for avoidance of doubt, that the weights are defined in terms of the
position size (i.e. number of assets held), u;, as w; = u;Si/P;, where the
portfolio value P, = Z‘.i u;S;.

I



Definitions

® Given a sequence of chosen weights wy.7_1 = (Wt);r:_ol

historical stock prices sp.7 = (st);’—zo, where for each t,
st = (si)9_, denotes the vector of prices, the total return of
the portfolio over the T periods is

T-1 d _ +
Rr(wo.r—1) = [] <1+Z(Wé ry —W’AU§1’)> ;

t=0 i=1

where (-)* = max{-,0}, ri = @ and
. . . . . . t . . .
Aup = up  —up=w{ P; /S 1 — wiP{/S] with the
convention that Au’ ; = 0.
® There are two terms for each period t:

1. The standard definition of the portfolio return in period t

2. A transaction cost parameter that the portfolio manager must
pay each time they rebalance (i.e. change) their portfolio
positions, where 17 > 0 controls the scale of this cost.



Problem Statement

e Construct a trading strategy which for any fixed A > 0 (Risk
aversion parameter) and T > 0, maximizes the mean-variance
objective function

L3 (uo.7) = E[R7(uo:7—1)] = AV[Ry(uo.7-1)] -

® At each time t, the portfolio manager may only only use
trading strategies which use historical stock price information
in order to decide on positions u;.

® The data generation process is defined by a market simulator
with market impact.

® Teams are judged based on out-of-sample performance of
their strategies.’

®Under an unknown parameterization of the market simulator determined by
the committee.



Market Simulator

® Stock prices are assumed to randomly evolve over time and
are dependent on how the portfolio is rebalanced.
® Denoting S; = (logs!)9_,, the increments of S; satisfy the
relation
St+1— St =p + Kk (Aue—1) + Mpe
where
® ;€ R? is an unknown drift vector.

® x:RY = R? is a market impact function which depends on
the change in positions, Au;, which we define according to

d
k(X)) = (C,' sign(x,-)|x,-|%)i_1 ,

for unknown constants ¢; > 0, and where
sign : R — {—1,0,1} is the sign of a number.

* M c R is an unknown low-rank matrix

* p. = (pi)e, is a vector of independent and identically
distributed random variables with unknown density p satisfying
E[p] = 0 and V[p}] = 1.



Schedule

Time Team Members
9-9:10 Opening Remarks from

Agostino Capponi

& the organizers
9:10-9:15 LSE Chris Chia Sandra Ng
9:15-9:20 NCU Ning Yen Min-Syue Chang Chung-Yu Shih
9:20-9:25 UC Boulder L. Minah Yang Danny Kurban
9:25-9:30 Imperial-Exeter-Oxford  Ben Batten Henry Elsom Tom Walshe
9:30-9:40 Q&A
9:40-9:45 Giessen-KIT Lukas Grober Levin Kiefer Michael Zheng
9:45-9:50 Sheffield Georgios Moulantzikos Vinh Vu
9:50-9:55 KCL Haochen Li Yan Wu Chunli Liu
9:55-10:10 Q&A

10:10-10:30  Award ceremony
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Sandra Ng !  Chris Chia !

IThe London School of Economics and Political Science

May 30, 2021

Sandra Ng, Chris Chia (LSE) SIAM Presentation

May 30, 2021

1/5



Methodology: Motivation

L5 = E[Rr(wo.7-1)] = AV[RT(wo.7-1)] (1)

@ Mean-variance optimisation: minimising variance directly
symmetrically penalizes both downside and upside volatilty

@ Potentially not desirable as higher upside volatility may be associated
with higher mean returns

@ Instead, minimize semivariance: the variance of negative returns
@ Markowitz, Starer, Fram, and Gerber, 2020

Methodology

1S
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Methodology: Implementation

Problem formulation:

Minimise
nTn—iuTw subject to 17w =1 iRw =p-n,p>0,and n>0
2\ ' VT A -
(2)
e Formulate in quadratic programming form; solve using convex
optimisation methods in MATLAB

o First trade at the end of T,, = 100 periods, subsequently rebalance
every f = 100 periods

Results: Analysis

Methodology
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Results: Comparison with alternative strategies
@ For fixed T = 500 periods, risk aversion A = 0.1

Mean RT SD RT  Utility

Semivariance 0.0261 0.0076 0.0260
Equal-weighted 0.0116 0.0082 0.0116
Price-weighted 0.0115 0.0080 0.0115
Mean Variance 0.0215 0.0656  0.0211
Ledoit-Wolf 0.0178 0.0670 0.0173
CDaR 0.0179 0.0671 0.0175
cVaR 0.0123 0.0054 0.0123
MAD 0.0107 0.0053 0.0107
Inverse Volatility Weighted 0.0112 0.0071 0.0112
Mean Correlation 0.0116 0.0084 0.0116
Hierarchial 0.0108 0.0071 0.0108

Table: Evaluations of Utility over numerous strategies

Methodology Results: Analysis
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Results

Portfolio Weight Evolution

[} 50 00 150 200 260 0 /O 400 450 500

Figure: Portfolio Weight Evolution

Empirical Observations
@ Introduces sparse weights

e Convergence to a stable solution
in the case of i.i.d. log-returns?
e For N =500 varying small
transaction costs and small
market impact does not affect
result much
Next Steps

@ Dynamic position targeting
instead of fixed frequency

Results: Analysis

Chris Chia (LSE)

SIAM Presentation
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Trading Strategy with Moving Average and Mean
Variance Optimization

SIAM FM21 Programming Challenge
Sponsored by MathWorks

Ning Yen, Min-Syue Chang, Chung-Yu Shih
National Central University, Taiwan

2021/6/3

Ning Yen, Min-Syue Chang, Chung-Yu Shih National Central University, Taiwan

Trading Strategy with Moving Average and Mean Variance Optimization



Step 1. Data collection
Step 2. Stocks selection: moving average

We build the initial without trading (all the weight is 0). The
initial length T; must satisfy the following conditions.

T; = max{10 (for Step 2.), 2-d (for Step 3.)}

We select the stock for each time steps by using the long moving
average (10MA) and the short moving average (5MA).

5MA < 10MA = Bearish. Choose weight as 0

Moving Average

== Stock price
=——5MA
10MA

100.3 | gl

N
100.2 : 7 Vi
100.1 | 1

Ning Yen, Min-Syue Chang, Chung-Yu Shih National Central University, Taiwan

100.4

Trading Strategy with Moving Average and Mean Variance Optimization



Step 3. Build weight: mean variance optimization

We use Portfolio in Matlab financial toolbox. This function are
base on Markowitz's mean variance optimization (MVO) and
expectation conditional maximization (ECM). Given the risk
aversion parameter \, we maximize the return to find the weight w

max E(R)), subject to 02 =\

Where E be the function of expected return
E(R,) = B(w™r).

And using the covariance matrix of returns X to estimate the risk,
we have

02 = w!Yw.

Ning Yen, Min-Syue Chang, Chung-Yu Shih National Central University, Taiwan

Trading Strategy with Moving Average and Mean Variance Optimization



Results and conclusions
(o)

Results

Set the number of stocks d = 20, time grids 7' = 4000. In different
risk aversion parameter A:

average rate of return with 30 similations

1.25 1.2245
12 1.1921
1.15
1.0796 10996
11 : 1.0697 10615
1.05 1.0256
1
0.95
0.9
MA MVO MA+MVO MVO MA+MVO MVO MA+MVO
equal lambda=0.25 lambda=0.4 lambda=0.7
weight

Chung-Yu Shih National Central U

ding Strategy with Moving Average and Mean Variance Optimization



Results and conclusions
oe

Conclusions

m MA is an easy and useful method.

m MVO can take higher risk to get more returns.

m With higher A, with MVO method can have more return.

m With same A\, MA + MVO have more returns then MVO only.

en, Min-Syue Chang, Chung-Yu Shih National Central University, Taiwan

Trading Strategy with Moving Average and Mean



Picking Winners to Optimize Portfolios

L. Minah Yang @ Danny Kurban

Applied Mathematics Economics
lucia.yang@colorado.edu University of Colorado | danny . kurban@colorado.edu
https://vangminah.github.io Boulder https://dannvkurban.com
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Motivation

https://vangminah.github.io
https://dannykurban.com

®  We assume that companies can be characterized as either winners or losers; winners have an upward trend.
o Winners deliver high return and keeping losers minimizes risk.
e DeMiguel ez al. (2009, Review of Financial Studies) showed that an equal weight strategy actually outperforms
more sophisticated mean-variance optimization strategies for < 6000 periods.
® Predicting future stock prices is difficult and often introduces large estimation errors.

Method Description

Who are the winners?

We tried the following strategies:
® DPriciest stocks are the winners. ¢/
®  Stocks with the highest 1-period returns are
the winners. b 4
Suppose there are n winners in a d-sized portfolio.
e Any winner should have more weight than
any loser.

o a/n>(l-a)/(dn)

How to configure the winner basket?

Size:
e  Winners have a, losers have (1-a).
o a<1— losers get >0. v
0 a=1—losersget0. b 4
Distribution:

e Howis a divided amongst the winners?

o equal weights : a/n. (4
o weighted by price. ) 4
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Model

https://vangminah.github.io
https://dannykurban.com

e High A is risk-averse, and low A is risky.
® Low a is risk-averse, and high « is risky.
® For X > )y, revertto the equal weight strategy.

Given a fixed number of winners 7, we set the
winner basket proportion « to:

14+ =42 0< A< X

a = a(An,d, ho) = {n/d A> X

High # is risk-averse, and low # is risky.
Data-driven approach: Compute the optimal 7
with respect to the objective function for various
combinations of d (portfolio size) and A.
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® /: steepness of logistic function.
® Centered around ).
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Results: Example with A=15
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stock index
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We configured our model with £=0.25 and Ac=25.
e AtA=15,
©  number of winners: =5
o number of losers: d-n=45.
o  proportion of winner basket: #=0.45
o  proportion of loser basket: 1-¢=0.55
e High turnover initially.
® Lower turnover after ~150 periods.

https://yangminah.github.io
https://dannykurban.com
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Results: k£ € {0.25,0.50}, Xo € {10,25}

1.035 - Efficient Frontier
e All configurations ' T
O converge to the equal weights strategy (EWS) at B i
hlgh /1 103l ® k=50 |0;1o
Equal Weights Strategy
o outperform the EWS at low A.
® £k=0.25,A=25 performs best for wide range of 4. o
s

1.035

equal weights
® k=0.25,10=25 1.02
el k=0.25,, 10=10
k=0.50, 10=25 ||

[ ] k=0.50, 10=10

1.015

1.01 : 1 L
0 0.5 1 1.5 2

Standard Deviation %1073

Objective Function

e All configurations yield higher expected return

1o s 10 15 20 25 30 35 a0 45 o and variance in comparison to the EWS.
Lambdas
® On average, the gain in expected return more
https: angminah.github.io than makes up for the increase in risk.

https://dannvkurban.com
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Portfolio Optimisation with
Dynamic Risk Aversion Tuning

Ben Batten', Henry Elsom?, and Tom Walshe®

Imperial College London’
University of Exeter?
University of Oxford?



Method - Solution overview

e Strategies are assessed based on an inter-simulation performance function.
Performance = Mean Return — A\(Variance of Return)

e We use quadratic optimisation on a constrained Markowitz model.

e Gamma is dynamically tuned according to three simulation-state dependant metrics.

e By contextualising performance metrics, we dynamically tune our optimisation
hyperparameters.

max(score) = max((Ap) w — v(w! (6*)w + w! cov'w))



Method - Empirically determined risk metrics

e Risk aversion increases with current return to preserve profit.
log,9(vcr) = 0.24CR + 0.013

e Monte Carlo simulation provides an estimate for expected return.

YSR = 10060.25(CR—SR)+15

e Scale the user specified risk aversion parameter, A.
YL = 1.88)\2'19

’7 — Cl’yL —|— C2’YC¢R —I— CgfySR I(_::R: E:rrrzirétaReturn

SR: Simulated Return




Results - Efficacy of strategy components

° We perform an ablation Ablation Study (Fixed Simulation Parameters - 500 runs per point)

study on our strategy. 1.088 1

1.086 A %

e Test the validity of 3 1084

combining our three S 1082{ {

approaches to dynamic risk ;.

aversion. 51 0re

. 1.076 A {
e Combined approach finds
. 1.074 A
best balance for given . - . —
. . All No Lambda No Current Return  No Simulated Return
simulation state. Altered Strategy



Results - Performance analysis

e Maximum average return of 5.2% (A = 5.5).
e Average return of 2.65% over 500 steps, randomised parameters (A = 1.0).
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Basic Approach

Ideas: Machine learning, Monte Carlo Tree Search, Linear Extrapolation

Optimizing for best cumulative drift in portfolio worked out the best

| 4

>

» Periods without trading to estimate drift and pairwise covariance

» Initial strategy according to risk aversion A — more or less random shares
>

Look for “good pairs” — no or negative correlation, number of pairs according to

A

2/5



Basic Approach

vV v v v

Higher A — longer period with initial strategy

Heuristics to implement ideas e.g. trading every max (50000 - 1|, 30) periods
Choice for specific formulas based on testing

We decided to ignore the reallocation reactions k — not enough effects, too
difficult of a relation with n

Reasonable computing time with best performance (compared to our other

solutions)

3/5



Results

» Machine learning did not converge sufficiently — parameters too small (?)
» MCTS took way too much computing power for poor results
» Linear Extrapolation worked surprisingly well

» Conventional estimators with a strategy favoring low correlation and high drift

worked the best

» We achieved returns ranging from 0.9263 to 1.1138 (under given parameters)

4/5



Results

Stock Price Evolution

12 i Portfolio Weight Evolution 0.07 Portfolio Cumulative Growth
A

110 r/\ ~ A 09

AN
. AN 0

o

106 o 07 0.05
0 o

Figure: Example run with default parameters T = 500,d = 20,7 = 2- 1074, \ = 0.25,
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Strategy1-LSTM

° Long short-term memory: special type of RNN capable of learning long term
dependencies. LSTM networks are well-suited to making predictions based
on time series data.

° Algorithm:

1. Split timeframe into a) first training interval - use equal weights to
generate stock prices b) smaller predictions intervals.
2. When we reach a rebalancing date: train an LSTM network with

stock prices up to this date and predict stock prices for the next
prediction interval.
3. Use predicted stock prices to calculate the weights using
Markowitz optimization.
° Comments/Future work: computational costs, batch vs incremental training,
lengths of intervals.

96
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Strategy 2 - PCA

12 PCA
10
° Principal component analysis is an optimal decomposition method to
decompose a dataset in the Euclidean space. 8
o Filters out noise.
o Allows trends to be identified. 6
° Simple to obtain
o Find eigenvalues and eigenvectors of the covariance. 4
° Algorithm 2
o Take data from past few timesteps to predict the trend.
o Weights are allocated proportionally to the most dominant 0
eigenvectors.
° Risk strategy -2
o Rises the weights to the power of the inverse of the risk parameter.
-4
-6




The
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Results Convergence
° Problem - how do we know if these strategies are effective at predicting stock — — xn — X
prices? xn—i—l — ‘/'U’I’L +
o Need to factor in effects of randomness. n

° Welford’s Online algorithm - We can use this to calculate the expected
returns of a strategy.
o This gives us an expected returns for our strategies after considering
the effects of randomness.
o If the moving average of the second term is less than our
convergence criteria of 1e-8, we assume the solution has converged.
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Black-Litterman Model &
Long Short-Term Memory Network

Haochen L1 Chunli L1u Yan Wu
King’s College London King’s College London  Beijing Normal University



Black-Litterman Model (BL model)

* Portfolio optimization based on Markowitz’s Modern Portfolio Theory

* |Incorporate subjective views of the investor instead of relying only on historical

asset returns

* Views: Weigh highly on the stocks with less volatility and higher expected return

predicted by the predictor

* Predictor: moving average regression

Long Short-Term Memory Network (LS

* A type of Recurrent neural network (RNN)

* Good at learning, processing, and classifying sequential data
* Trained by backpropagation through time

M)

* Weigh more on the historical trend of each asset instead of recent fluctuations



BL model LSTM
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Incorporation

* BL model: more stable, lower return, LSTM: more potential, unstable
e Set threshold on the maximum drawdown

* BL model to keep the lower limit, LSTM to fight for the upper limit
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Future works

* Framework of multimodal machine learning

* Master: multi-layer neural network with weights of models
fully connected layers

* Use LSTM and BL model simultaneously
with weights controlled by master
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