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Abstract

This paper investigates a model for cellular and viral interactions following Human Immun-
odeficiency Virus Type 1 (HIV-1) infection. A simplified version of this model, which considers
interactions between the populations of susceptible CD4+ T cells, infected CD4+ T cells, in-
fectious virus, and non-infectious virus, under the effects of reverse transcriptase and protease
inhibitors, is presented and solved analytically. The solution is obtained through an iterative
method after isolating one dependent variable and performing various substitutions. Although
an analytical solution is more difficult to obtain than numerical approximations, it produces ex-
act results to the system of equations. As such, the analytical solution can be used to study the
behavior of HIV-1 and its interactions with various treatment methods in an infected patient.

1 Introduction

Human Immunodeficiency Virus (HIV) is a retrovirus that infects CD4+ T cells, a class of white
blood cells that are central to the immune response [1]. Once infectious virus particles enter a
human’s immune system, they invade (i.e., infect) susceptible CD4+ T cells and assemble new virus
particles within these infected cells. Once these newly produced virus particles are activated, leave
their respective cells, and mature, they become infectious and, as such, have the ability to infect
other susceptible T cells [2]. Continuation of this process depletes the population of T cells over
time, consequently harming the immune system, and eventually resulting in the development of
Acquired Immune Deficiency Syndrome (AIDS) [3]. Mathematical models can be used to describe
the interactions between the CD4+ T cell and virus populations over time, which is beneficial for
understanding the dynamics of HIV infection and predicting the onset of AIDS.

Previous mathematical works have used various models of cellular and viral interactions to
study the dynamics of HIV Type 1 (HIV-1) [1, 4, 5, 6, 7]. The model investigated here, which was
originally presented in 2002 by Callaway and Perelson [5], considers the behavior of four distinct
populations: uninfected CD4+ T cells (denoted T ), productively infected CD4+ T cells (denoted
T ∗), infectious virus particles (denoted VI), and non-infectious virus particles (denoted VNI). This
model also includes the efficacy of two treatment methods: reverse transcriptase (RT) inhibitors
and protease inhibitors. RT inhibitors prevent HIV ribonucleic acid (RNA) from being converted to
deoxyribonucleic acid (DNA), thus reducing its infectiousness [8]. Protease inhibitors, on the other
hand, do not have a direct impact on infectiousness of the virus; rather, they lead to the production
of non-infectious (rather than infectious) virus particles by infected CD4+ T cells [9].

Copyright © SIAM
Unauthorized reproduction of this article is prohibited

567



Time-dependent changes in the model’s cellular and viral populations (T, T ∗, VI , VNI) under
the effects of RT and protease inhibitors are described by the following system of ordinary differential
equations (ODEs):

dT

dt
= λ− dT − (1− κ)kVIT (1.1)

dT ∗

dt
= (1− κ)kVIT − δT ∗ (1.2)

dVI
dt

= (1− η)NT δT
∗ − cVI (1.3)

dVNI
dt

= ηNT δT
∗ − cVNI (1.4)

with parameters λ, d, k, δ, NT , c, κ, η > 0.
Equations 1.1 and 1.2 represent the dynamics of the susceptible and infected classes of CD4+

T cells, respectively. The addition of susceptible CD4+ T cells to the population is regulated by
birth rate λ, and their removal via cell death is regulated by death rate d. Cells are also removed
from this population through infection by virus particles; the term (1−κ)kVIT in equations 1.1 and
1.2 represents this transfer of a CD4+ T cell from a susceptible state to an infected state, taking
into account the effects of RT inhibitors with efficacy level κ. Cells are removed from the infected
CD4+ T cell population via cell death, regulated by death rate δ.

Equations 1.3 and 1.4 represent the dynamics of infectious and non-infectious virus particles,
respectively. Addition of virus particles to these populations is controlled by the viral production
rate, NT δT

∗. This rate is impacted by protease inhibitors with efficacy η, and thus infectious virus
particles are produced at rate (1 − η)NT δT

∗, while non-infectious virus particles are produced at
rate ηNT δT

∗. Removal of virus particles from these populations is regulated by the viral clearance
rate c.

Table 1 summarizes the model parameters and their interpretations, and presents their baseline
values as given in [10].

PARAMETER VALUE UNITS INTERPRETATION REF.

λ 0.1089 cells/day Birth rate of susceptible T cells. [10]

d 0.01089 1/day Death rate of susceptible T cells. [10]

k 1.179×10−3 1/virions · day Infection rate of susceptible T cells. [10]

δ 0.366 1/day Infected T cell death rate. [10]

NT 4246.4 virions/cell Virus production rate. [10]

c 3.074 1/day Viral clearance rate. [10]

Table 1: Model parameters, interpretations, and baseline values.

Observe that κ and η are not included in Table 1. These parameters represent efficacy of RT
and protease inhibitors, respectively, and thus fall within the range (0, 1) [5]. Their baseline values
are derived from data collected for 176 HIV-infected patients from medical records of Severance
Hospital, South Korea, which includes values for the initial conditions T (0) = T0, T ∗(0) = T ∗0 , and
VI(0) = VI0 and parameters λ, d, k, µ, NT , c, κ, and η for each patient. The average values of κ
and η in this data set are 0.6; therefore their baseline values are defined as κ = 0.6 and η = 0.6.
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Some shortcomings of the model described by equations 1.1-1.4 are addressed in [5], including
its extreme sensitivity to small changes in the drug efficacy parameters (κ and η), suggesting the
ability of a patient to clear the virus. This implication conflicts with patient studies, which observe
a reduction in (rather than full elimination of) viral population in patients [11, 12, 13, 14, 15, 16].

More recent work in this area has been focused on the introduction of a time delay into the
system of ODEs describing HIV-1 dynamics to account for the time between viral entry and latent
infection, as well as the time between cellular infection and viral production [17, 18, 19, 20, 21].
There has also been an increase in studies of stochastic models of HIV-1 dynamics in order to
account for the earlier stages of infection, where there is a small number of infected cells and fewer
virus particles in the body [20, 22, 23, 24].

The work presented within is focused on a model that is relatively simple, including neither a
time delay nor an element of stochasticity; however, its simplistic nature presents a more reasonable
problem from which an analytical solution can be derived. In [25], an analytical solution was found
to the Susceptible-Infected-Virus (SIV) model for HIV dynamics, which does not consider treatment
methods and the resultant production of non-infectious virus particles. Inclusion of RT inhibitors,
protease inhibitors, and non-infectious virus in the model investigated here allows for expansion of
the results produced in [25], and is a useful step in the direction of ultimately deriving analytical
solutions to more biologically sound models of HIV-1 dynamics.

2 Solution to the Simplified Model

The system of ODEs given in equations 1.1-1.4 is simplified by removing terms of the model involving
the susceptible CD4+ T cell birth and death rates, as well as those involving the viral clearance
rate. Although removing these terms makes the model inaccurate in characterizing the development
of HIV-1 in later stages of infection, its analytical solution can still provide some useful insight into
the behavior of and interaction between the terms of the system. The simplified model is given by:

dT

dt
= −(1− κ)kVIT (2.1)

dT ∗

dt
= (1− κ)kVIT − δT ∗ (2.2)

dVI
dt

= (1− η)NT δT
∗ (2.3)

dVNI
dt

= ηNT δT
∗ (2.4)

Observe that the removal of λ, the birth rate of susceptible CD4+ T cells, implies that the
population of CD4+ T cells is strictly decreasing. Moreover, removal of the terms involving viral
clearance rate c indicates that the levels of infectious and non-infectious virus monotonically increase.
Although these behavioral assumptions stemming from removal of the terms λ, dT , cVI , and cVNI
result in a model that is not fully biologically sound, these reductions allow for the system to be
sufficiently simplified to the point where an analytical solution is obtainable.

The simplified model presented in equations 2.1-2.4 is considered to satisfy the initial conditions
T (0) = T0, T ∗(0) = T ∗0 , VI(0) = VI0, and VNI(0) = VNI0. For a discussion of the steady state
solutions to the full and simplified systems, see Appendix A.

2.1 Existence and Uniqueness

Prior to solving the system of ODEs in equations (2.1)-(2.4) analytically, we verify that a unique
solution exists. To do so, we use the Picard Lindelöf Theorem, adoptiong the approach in [25].
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Theorem 2.1. (Picard Lindelöf Theorem) Let n ∈ N and x0 ∈ Rn be given. Assume the
function f : Rn × R → Rn is locally Lipschitz in its first argument and continuous in its second
argument. Then there exists t∗ > 0 and a unique function x : [0, t∗]→ Rn satisfying

x′(t) = f(x(t), t)

for every t ∈ [0, t∗] and the initial condition x(0) = x0.

Observe that the system of ODEs given by equations (2.1)-(2.4) is autonomous since it does
not explicitly depend on the dependent variable t. In our system, let x and f(x) be defined as

x =


T
T ∗

VI
VNI

 and f(x) =


−(1− κ)kVIT

(1− κ)kVIT − δT ∗
(1− η)NT δT

∗

ηNT δT
∗

 .
The Jacobian matrix is then given by

−(1− κ)kVI 0 −(1− κ)kT 0
(1− κ)kVI −δ (1− κ)kT 0

0 (1− η)NT δ 0 0
0 ηNT δ 0 0

 .
Note that the partial derivatives of f exist and are continuous, which implies that f is Lipschitz

continuous; therefore, there exists a unique solution to our system on some interval [0, t∗].

2.2 Exact Solution

We now solve the simplified system of ODEs given by equations 2.1)-(2.4. Note that

d

dt

[
T + T ∗ +

1

NT
(VI + VNI)

]
= 0 and

d

dt

[
VI +

(
η − 1

η

)
VNI

]
= 0.

Therefore,

T + T ∗ +
1

NT
(VI + VNI) = P and VI +

(
η − 1

η

)
VNI = PV ,

where P and PV are constants, with P representing total population of white blood cells and virus
in the body and PV representing the total viral population in the body. Then

T = P − T ∗ − 1

NT
(VI + VNI) and T ∗ = P − T − 1

NT
(VI + VNI),

VI = PV −
(
η − 1

η

)
VNI and VNI =

(
η

η − 1

)
(PV − VI) .

Additionally, with the previously defined initial conditions, we have

P = T0 + T ∗0 +
1

NT
(VI0 + VNI0) and PV = VI0 +

(
η − 1

η

)
VNI0.

To obtain an analytical solution for this simplified model, we first use an iterative technique
to obtain an implicit solution for VI , and then use this solution to find VNI , T , and T ∗.
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We begin by differentiating equation 2.3 with respect to t and applying substitutions for T
and VNI to obtain the second derivative of VI with respect to time. For the sake of simplicity, let
α = (1− η)δ(1− κ)k and ω = αNT = (1− η)NT δ(1− κ)k. Then

d2VI
dt2

= ωPVI − αV 2
I − α

(
η

η − 1

)
PV VI + α

(
η

η − 1

)
V 2
I − (1− κ)kVI

dVI
dt
− δ dVI

dt
.

Therefore, the second derivative of VI with respect to time is given by

V ′′I =

[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI − (1− κ)kVIV

′
I − δV ′I . (2.5)

To make equation 2.5 easier to solve, let

u =
dt

dVI
=

1

V ′I
,

with initial condition
u(VI0) =

1

(1− η)NT δT ∗0
.

Then

du

dVI
=

[
−
[
α

(
η

η − 1

)
− α

]
V 2
I −

[
ωP − α

(
η

η − 1

)
PV

]
VI

]
u3 +

[
(1− κ)kVI + δ

]
u2. (2.6)

Equation 2.6 is an Abel equation of the first kind, and can be solved using an iterative method
as in [26]. This is done by obtaining a sequence of approximate analytical solutions to equation 2.6,
and then taking the limit of this sequence at infinity to acquire the exact solution. Let

φ = ln(u),

so that
u = eφ.

The initial condition for φ is given by

φ(VI0) = − ln
(
(1− η)NT δT

∗
0

)
.

Then the differential equation (equation 2.6) can be rewritten as

dφ

dVI
=
[
(1− κ)kVI + δ

]
eφ −

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

]
e2φ. (2.7)

We can use the Taylor series expansion of eφ to rewrite equation 2.7 as

dφ

dVI
=
[
(1− κ)kVI + δ

][
1 + φ+

φ2

2
+ · · ·

]
(2.8)

−

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

][
1 + 2φ+

(2φ)n

2
+ · · ·

]
.

571



For a first approximation, namely φ1(VI), we use the first two terms of the Taylor series:

dφ1
dVI

=
[
(1− κ)kVI + δ

][
1 + φ1

]
−

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

][
1 + 2φ1

]

=

(
(1− κ)kVI + δ −

[
α

(
η

η − 1

)
− α

]
V 2
I −

[
ωP − α

(
η

η − 1

)
PV

]
VI

)
(2.9)

+

(
(1− κ)kVI + δ − 2

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

])
φ1

Equation 2.9 is a first order linear differential equation of the form φ1(VI)
′ = Q(VI)+R(VI)φ1,

with Q(VI) and R(VI) given by

Q(VI) = (1− κ)kVI + δ −
[
α

(
η

η − 1

)
− α

]
V 2
I −

[
ωP − α

(
η

η − 1

)
PV

]
VI ,

R(VI) = (1− κ)kVI + δ − 2

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

]
.

As such, we can solve equation 2.9 using an integrating factor. Let

F = exp

[
2

3

[
α

(
η

η − 1

)
− α

]
V 3
I +

[
ωP − α

(
η

η − 1

)
PV

]
V 2
I −

1

2
(1− κ)kV 2

I − δVI

]
.

Applying this integrating factor to solve equation 2.9 above, we obtain the solution to the φ1, the
first approximation for φ:

φ1(VI) =
1

F (VI)

[
− ln

(
(1− η)NT δT

∗
0

)
F (VI0)

]
(2.10)

+
1

F (VI)

[∫ VI

VI0

F (ξ)

[
(1− κ)kξ + δ −

[
α

(
η

η − 1

)
− α

]
ξ2 −

[
ωP − α

(
η

η − 1

)
PV

]
ξ

]
dξ

]
,

where φ1(VI0) = φ(VI0).
Observe that equation 2.8 can be rewritten in the following manner:

dφ

dVI
=

[
(1− κ)kVI + δ

][
1 + φ+

∞∑
n=2

φn

n!

]

−

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

][
1 + 2φ+

∞∑
n=2

(2φ)n

n!

]

=

[
(1− κ)kVI + δ −

[
α

(
η

η − 1

)
− α

]
V 2
I −

[
ωP − α

(
η

η − 1

)
PV

]
VI

]
(2.11)

+

[
(1− κ)kVI + δ − 2

([
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

)]
φ

+

∞∑
n=2

[
(1− κ)kVI + δ

][
(φ)n

n!

]
−

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

][
(2φ)n

n!

]
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We can obtain a second approximation, φ2(VI0), by plugging φ1 (our first approximation) into
the infinite sum expression in equation 2.11. Then

dφ2
dVI

=

[
(1− κ)kVI + δ −

[
α

(
η

η − 1

)
− α

]
V 2
I −

[
ωP − α

(
η

η − 1

)
PV

]
VI

]

+

[
(1− κ)kVI + δ − 2

([
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

)]
φ2 (2.12)

+
∞∑
n=2

[
(1− κ)kVI + δ

][
(φ1)

n

n!

]
−

[[
α

(
η

η − 1

)
− α

]
V 2
I +

[
ωP − α

(
η

η − 1

)
PV

]
VI

][
(2φ1)

n

n!

]
The result given by 2.12 is another first order and linear differential equation, which can again

be solved using an integrating factor. Note that the coefficient for φ2 in equation 2.12 is the same as
the coefficient for φ1 in equation 2.9, and therefore the same integrating factor will be used. Thus:

φ2(VI) =
1

F (VI)

[
− ln

(
(1− η)NT δT

∗
0

)
F (VI0)

]
+

1

F (VI)

[∫ VI

VI0

F (ξ)

[
(1− κ)kξ + δ −

[
α

(
η

η − 1

)
− α

]
ξ2 −

[
ωP − α

(
η

η − 1

)
PV

]
ξ

]
dξ

]

+
1

F (VI)

∫ VI

VI0

F (ξ)
∞∑
n=2

[
(1− κ)kξ + δ

][
(φ1)

n

n!

]
−

[[
α

(
η

η − 1

)
− α

]
ξ2 +

[
ωP − α

(
η

η − 1

)
PV

]
ξ

][
(2φ1)

n

n!

]
dξ,

with φ2(VI0) = φ(VI0).
We can continue this process to get successively more accurate approximations to φ. In general,

for any integer m > 1, we have:

φm+1(VI) =
1

F (VI)

[
F (VI0)φm+1(VI0)

]
+

1

F (VI)

[∫ VI

VI0

F (ξ)

[
(1− κ)kξ + δ −

[
α

(
η

η − 1

)
− α

]
ξ2 −

[
ωP − α

(
η

η − 1

)
PV

]
ξ

]
dξ

]

+
1

F (VI)

∫ VI

VI0

F (ξ)
∞∑
n=2

[
(1− κ)kξ + δ

][
(φm)n

n!

]
−

[[
α

(
η

η − 1

)
− α

]
ξ2 +

[
ωP − α

(
η

η − 1

)
PV

]
ξ

][
(2φm)n

n!

]
dξ,

which can be written more compactly as

φm+1(VI) = φ1(VI) +
1

F (VI)

∫ VI

VI0

F (ξ)

[
(1− κ)kξ + δ

][
eφm(ξ) − 1− φm(ξ)

]
dξ

− 1

F (VI)

∫ VI

VI0

F (ξ)

[[
α

(
η

η − 1

)
− α

]
ξ2 +

[
ωP − α

(
η

η − 1

)
PV

]
ξ

][
e2φm(ξ) − 1− 2φm(ξ)

]
dξ.

Each consecutive approximation of φ(VI) becomes closer and closer to the actual solution of
φ(VI). In other words,

lim
m→∞

φm(VI) = φ(VI).

With this limit, we have obtained a solution to φ(VI), and can now work backwards to obtain
the solution of VI . Recall that

dt

dVI
= eφ(VI).
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Separating variables and integrating both sides, we have∫ t

t0

dξ =

∫ VI

VI0

eφ(ξ)dξ.

Then, taking t0 = 0, we have VI(t) given implicitly by

t =

∫ VI

VI0

eφ(ξ)dξ. (2.13)

The implicit solution for VI can now be used to obtain solutions for T , T ∗, and VNI . First,
the solution for VNI is found using the following equation:

VNI =

(
η

η − 1

)
(PV − VI). (2.14)

We will now derive a solution for T . Recall that

dT

dt
= −(1− κ)kVIT.

Separating variables and integrating,∫ T

T0

1

ξ
dξ = −(1− κ)k

∫ t

t0

VI(ξ)dξ.

Taking t0 = 0,

T = T0e
−(1−κ)k

∫ t
0 VI(ξ)dξ. (2.15)

Finally, we obtain a solution for T ∗. Recall that

T ∗ = P − T − 1

NT

(
VI + VNI

)
Applying the solutions for T ∗, VI , and VNI obtained above, we have

T ∗ = P − T0e−(1−κ)k
∫ t
0 VI(ξ)dξ − 1

NT

[
VI +

(
η

η − 1

)
(PV − VI)

]
. (2.16)

Equations 2.13-2.16 give the analytical solution to the simplified model.
Figures 1 and 2 display various approximations to φ, T , T ∗, VI and VNI obtained using

100, 200, 300, 400, and 500 iterations, along with their exact solutions obtained by numerical
methods. The initial conditions T0 = 500 cells/mm3, T ∗0 = 0.1 cells/mm3, VI0 = 1 × 10−7 virions/mm3

and VNI0 = 1 × 10−9 virions/mm3 were used to obtain these results. Observe that as the number of
iterations increase, the approximations obtained by the analytical solution get closer to the exact
solution. In fact, in Figures 1 and 2, the approximations overlap with the exact solutions once the
400th iteration is reached.
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Figure 1: Various approximations of φ obtained by the analytical solution, along with the exact
solution obtained by numerical methods.

Figure 2: Various approximations of T (2a), T ∗ (2b), VI (2c) and VNI (2d) obtained by the analytical
solution, along with the exact solution obtained by numerical methods.
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3 Discussion

To further understand the dynamics of HIV-1 according to the simplified model described by equa-
tions 2.1-2.4, a predictor-corrector method was used to numerically solve the system. The explicit
four-step Adams-Bashforth Method and implicit three-step Adams-Moulton Method were used to
obtain this solution, and the Runge-Kutta Method of order four was used to find its starting values
[27]. The resulting approximation is plotted in Figure 3. Due to the discrepancy in class sizes
between virus particles (VI and VNI) and CD4+ T cells (T and T ∗), it is helpful to plot VI and VNI
separately from T and T ∗.
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Figure 3: Approximate solution for T , T ∗, VI , and VNI in the simplified model.

As expected, the removal of the CD4+ T cell birth rate results in a continuous decrease in the
population density of susceptible cells until it reaches its steady state. Conversely, removal of the
viral clearance rate leads to a continuous increase in the density of infectious and non-infectious
virus particles until they reach their steady states. Each class reaches its steady state relatively
quickly, before t = 40 days.

The behavior of the analytical and numerical results provided here are quite similar to those
presented in [25], which is anticipated as a similar model was solved. However, the inclusion of
protease and RT inhibitors in this work leads to slower growth of the infected T cell population and
viral population densities (both infectious and non-infectious).

The full model given in equations 1.1-1.4, which incorporates the CD4+ T cell birth and death
rates as well as the viral clearance rate, is a more biologically sound model for the study of HIV-
1 dynamics. Figure 4 displays an approximate solution to the full system obtained by the same
predictor-corrector multistep method that was used to solve the simplified system.
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Figure 4: Approximate solution for T , T ∗, VI , and VNI obtained by the Multistep Method.

Figure 4 shows that around t = 50 days, the amount of infectious and non-infectious virus
present increases, and the population densities of infected and susceptible CD4+ T cells consequently
increase and decrease, respectively. Once virus concentration hits its peak and begins to decrease,
the number of infected T cells decrease, while the number of susceptible T cells increase. This
pattern continues as time progresses, from the beginning of antiretroviral therapy until each class
reaches its respective steady state.

Observe in Figure 4 that the inclusion of the CD4+ T cell birth rate in the full model allows
the population of susceptible T cells to increase, while in Figure 3, their population is monotonically
decreasing. Similarly, the incorporation of viral clearance rate in the full model (Figure 4) allows
for a decrease in the populations of infectious and non-infectious virus particles, as opposed to their
monotonically increasing behavior predicted by the simplified model (Figure 3).

It is interesting to consider the possibility that one or both of the treatment methods considered
in this model could be unsuccessful in reducing the viral load through its respective method of
enzyme inhibition. Recall that κ and η represent the efficacy level of RT and protease inhibitors,
respectively, with baseline values κ = η = 0.6 (see Section 1). To investigate how efficacy impacts
model dynamics, consider results produced by the full model (equations 1.1-1.4) for four cases of
varying treatment efficacies: (1) neither treatment method is ineffective, i.e., κ = η = 0.6; (2) only
RT inhibitors are ineffective, i.e., κ = 0 and = η = 0.6; (3) only protease inhibitors are ineffective,
i.e., κ = 0.6 and η = 0; and (4) both treatment methods are ineffective, i.e., κ = η = 0.

Figure 5 displays the results produced by the full system in each of the scenario for the pop-
ulation of susceptible CD4+ T cells, T (Fig. 5A); population of infected CD4+ T cells, T ∗ (Fig.
5k); infectious virus population, VI (Fig. 5C); and non-infectious virus population, VNI (Fig. 5D).
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Figure 5: Comparison of results for various levels of efficacy of RT and protease inhibitors (i.e.,
various values of κ and η, respectively).

RT inhibitors treat HIV-1 infection by preventing HIV RNA from being converted to DNA
[5], thus reducing infectiousness of the virus. It follows that an effective RT inhibitor will hinder
depletion of the susceptible CD4+ T cell population, as seen in Figure 5A. Moreover, the results
presented in Figure 5C show that the peak population levels of infectious virus computed with an
RT efficacy level of κ = 0.6 are lower than those observed with an ineffective RT inhibitor (κ = 0).

Protease inhibitors, through modification of the viral assembly process, lead to the production
of noninfectious virus in place of infectious virus [5]. It follows that an ineffective protease inhibitor
(η = 0) will result in the absence of non-infectious virus, or VNI = 0; this is supported by the
numerical results presented in Figure 5D. Furthermore, there is a visible increase in the population
of VI when η = 0 relative to the scenario in which η > 0, which is expected as the protease inhibitor
no longer hinders the ability of an infected cell to produce infectious virus.

Effective RT and protease inhibitors correspond to a less severe depletion of susceptible CD4+
T cells, as seen in Figure 5A. Visually, it appears that the RT inhibitors are slightly more effective at
slowing the depletion of CD4+ T cells than protease inhibitors. Additionally, the results in Figure
5C show that the concentration of infectious virus is higher in scenarios where the RT inhibitor is
ineffective (i.e., κ = 0), while the efficacy of the protease inhibitors seems to have less of an effect
on the infectious virus population. This is a reasonable implication, as the purpose of RT inhibitors
is to reduce infectiousness of the virus, which will ultimately result in a lower viral concentration.

In sum, the results produced by the full model demonstrate that an efficient RT inhibitor will
reduce the concentration of infectious virus, while an efficient protease inhibitor will increase the
population of non-infectious virus (note that the non-infectious virus population is only introduced
if protease inhibitor efficacy η > 0). Moreover, both treatment methods hinder the depletion of
CD4+ T cells during infection, with higher efficacy levels corresponding to lower levels of depletion.
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4 Future Work

Limitations of the simplified model presented in this work, including the removal of terms and
a lack of time delays and stochastic elements, imply that its solution will not accurately predict
the dynamics of HIV-1 in an infected patient. However, the method applied in Section 2.2 to
derive an analytical solution from this simplified system may be extended and applied to systems of
increasing complexity. Therefore, the work presented within is an advantageous step in the direction
of producing more biologically sound results, which will ultimately be obtained by analytically
solving more comprehensive models of HIV-1 dynamics.

As discussed in Section 3, removal of the T cell birth rate, susceptible T cell death rate, and
viral clearance rate leads to inaccurate model predictions. The reintroduction of these terms will
relax the behavioral assumptions outlined in Section 2 (i.e., the monotonically decreasing behavior
of uninfected CD4+ T cells and monotonically increasing behavior of infectious and non-infectious
virus populations), and consequently improve the accuracy of model predictions.

The introduction of time delays in future work will be essential for establishing changes in model
dynamics resulting from the time delays between viral entry and latent infection, cell infection and
virus production, and infection and beginning of antiretroviral therapy.

Inclusion of stochasticity (i.e., some element of randomness) within the model will further
improve the credibility of results, particularly in the early stages of HIV infection, as the processes
being considered are inherently stochastic [24].
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Appendix A: Steady State Solutions

A.1 Full Model Steady State

The full model describing the dynamics of HIV-1 infection is given by the following system of ODEs:

dT

dt
= λ− dT − (1− κ)kVIT (A.1)

dT ∗

dt
= (1− κ)kVIT − δT ∗ (A.2)

dVI
dt

= (1− η)NT δT
∗ − cVI (A.3)

dVNI
dt

= ηNT δT
∗ − cVNI (A.4)

To find the steady state(s) of the model described by A.1-A.4, the change in each state variable
over time is set to zero:

0 = λ− dT − (1− κ)kVIT (A.5)
0 = (1− κ)kVIT − δT ∗ (A.6)
0 = (1− η)NT δT

∗ − cVI (A.7)
0 = ηNT δT

∗ − cVNI (A.8)

First, observe that rearrangement of equations A.7 and A.8 allow VI and VNI to be expressed
in terms of T ∗:

VI =
(1− η)NT δT

∗

c
(A.9)

VNI =
ηNT δT

∗

c
(A.10)

The expression for VI presented in equation A.9 is substituted into A.6, and T ∗ is then factored
out as follows:

0 = (1− κ)k

[
(1− η)NT δT

∗

c

]
T − δT ∗

0 = T ∗
[

(1− κ)k(1− η)NT δ

c
T − δ

]
(A.11)

There are two cases for which equation A.11 is true: T ∗ = 0 or T ∗ 6= 0. This implies the
existence of two steady state solutions for the full model in equations A.1-A.4.

First consider the case in which T ∗ = 0. Then, by equations A.9 and A.10, VI = 0 and VNI = 0;
and substituting VI = 0 into equation A.5 results in T = λ/d. Thus, the first steady state of the
full model in equations A.1-A.4 is: 

T =
λ

d

T
∗

= 0

V I = 0

V NI = 0

(A.12)
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In the second case, for which T ∗ 6= 0, both sides of equation A.11 can be divided by T ∗. Doing
so and solving for T , we obtain:

T =
c

(1− κ)k(1− η)NT δ
(A.13)

Substituting the expression for T in equation A.13 into equation A.5, the corresponding value of VI
is derived, given by:

VI =
(1− η)NTλ

c
− d

(1− κ)k
(A.14)

Then, replacing VI in equation A.9 with the expression for VI in A.14 and solving for T ∗ results in:

T ∗ =
λ

δ
− cd

(1− η)NT δ(1− κ)k
(A.15)

Finally, VNI is found by substituting equation A.15 into A.10 and solving for VNI , resulting in:

VNI =
ηNTλ

c
− dη

(1− η)(1− κ)k
(A.16)

Thus, the second steady state of the full system in equations A.1-A.4 is:

T =
c

(1− κ)k(1− η)NT δ

T
∗

=
λ

δ
− cd

(1− η)NT δ(1− κ)k

V I =
(1− η)NTλ

c
− d

(1− κ)k

V NI =
ηNTλ

c
− dη

(1− η)(1− κ)k

(A.17)

Note that V I = V NI = 0 in the first steady state (equation A.12) suggests complete clearance
of virus populations within the host. Conversely, the second steady state (equation A.17) requires
V I > 0 and V NI > 0, implying that the host will be in a state of perpetual infection. As such,
these steady states will be hereinafter referred to as the virus-free and infected steady states of the
full model, respectively.

A.2 Simplified Model Steady State

The full model can be reduced by removing the terms involving the birth and death rates of the
susceptible CD4+ T-cell population (i.e., λ and dT , respectively) and terms involving the viral
clearance rate (i.e., cVI and cVNI). In doing so, a simplified model of HIV-1 dynamics is obtained,
described by the following system of ODEs:

dT

dt
= −(1− κ)kVIT (A.18)

dT ∗

dt
= (1− κ)kVIT − δT ∗ (A.19)

dVI
dt

= (1− η)NT δT
∗ (A.20)

dVNI
dt

= ηNT δT
∗ (A.21)
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To find the steady state(s) of this reduced model, as in Section A.1, we set the change in each
state variable over time (i.e., equations A.18-A.21) to zero as follows:

0 = −(1− κ)kVIT (A.22)
0 = (1− κ)kVIT − δT ∗ (A.23)
0 = (1− η)NT δT

∗ (A.24)
0 = ηNT δT

∗ (A.25)

The steady state of T ∗ can be obtained directly from equation A.24 or A.25; solving either of
these equations for T ∗ results in T ∗ = 0.

Equation A.22 implies that either T = 0 or VI = 0. First, let T = 0. Note that VI and
VNI cannot be found directly from equations A.22-A.25. However, note that both VI and VNI are
strictly increasing over time in the simplified model due to the removal of viral clearance rate; it
follows that V I ≥ VI0 and V NI ≥ VNI0. Thus, the first steady state of the reduced model is:

T = 0

T
∗

= 0

V I ≥ VI0

V NI ≥ VNI0

(A.26)

Next, let VI = 0. Again, neither T nor VNI can be solved from equations A.22-A.25 directly.
As in the first case, since VNI is monotonically increasing, V NI ≥ VNI0. Conversely, note that in
the reduced model, T is strictly decreasing over time due to the removal of CD4+ T-cell birth and
death rates; it follows that 0 ≤ T ≤ T0. Thus, the second steady state of the reduced model is:

0 ≤ T ≤ T0

T
∗

= 0

V I = 0

V NI ≥ VNI0

(A.27)

The first steady state of the simplified system (equation A.26) suggests that growth in the
infectious and non-infectious virus populations slows only as the susceptible T cell population di-
minishes, eventually resulting in clearance of the susceptible and infected T cell populations with
non-zero infectious and non-infectious virus populations at the steady state. This behavior results
from the lack of a T cell production rate (i.e., λ, the birth rate of CD4+ T cells) and viral clearance
rate (i.e., c) in the simplified model.

Note that the second steady state of the simplified system (equation A.27) is similar to the
virus-free steady state of the full model in its clearance of infected CD4+ T cells and infectious
virus particles (i.e., T ∗ = 0 and V NI = 0). This implies that the infection has cleared the system,
regardless of the non-zero population of non-infectious virus at this steady state. As such, this
steady state can be considered the virus-free steady state of the simplified system.
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