
SIAM MPI23 Project Proposal—Model inversion for complex physical systems using low-
dimensional surrogates

Pacific Northwest National Laboratory (PNNL) is enthusiastic about participating as an industry partner
in the 2023 SIAM Mathematical Problems in Industry Workshop. We invite participants to collaborate with
PNNL on developing data-driven, low-dimensional surrogate models of the observable response of complex
physical systems and to use these surrogatemodels to calibrate parameterized computermodels of the systems
using field measurements. Calibrating computer models requires repeatedly querying the model for different
inputs, which can be prohibitively expensive depending on the computational cost per query. This project
aims to construct surrogate models of the observable response to substitute expensive model queries with
cheap surrogate queries. To construct these surrogatemodels, we aim to exploit the low-dimensional structure
of the map from model parameters to the observable response.

Industrial partner background. PNNL is a Department of Energy
(DOE) research and development laboratory stewarded by the DOEOffice
of Science. The laboratory employs over 5,300 personnel across adminis-
trative offices and four research directorates—Physical & Computational
Sciences, Energy & Environment, Earth & Biological Sciences, and Na-
tional Security.

PNNL serves many missions and scientific endeavors, including

• Material science
• Nuclear and particle physics
• Weapons of mass effects
• Cybersecurity
• Energy grid

• Energy efficiency and storage
• Nuclear energy
• Nuclear nonproliferation
• Earth systems science
• Environmental management

among many others. Many of these applications focus on environmental science, including coastal and
marine sciences and energy security.

Scientific background. Computer models of complex physical systems are often parameterized by one or
many spatiotemporally heterogeneous scalar fields. Estimating these parameter fields is necessary to ensure
the predictive capacity of these models. Directly measuring these parameter fields is often difficult or impos-
sible, either because the measurement process is expensive and destructive or because the fields are effective
quantities that cannot be observed directly. Therefore, it is customary to estimate these parameters by solv-
ing inverse problems in which we minimize the discrepancy between model predictions of the “observable
response” of the physical system and field measurements of this response.

Inverse problems for complex physical systems are often ill-posed, that is, multiple parametric configura-
tions can produce model predictions that match measurements up to observation error. Furthermore, they are
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often high-dimensional because representing heterogeneous fields requires a large number of degrees of free-
dom. Therefore, inverse problems are commonly formulated as model-constrained, regularizedminimization
problems, where regularization is introduced to address ill-posedness [2]. Solving these minimization prob-
lems requires repeatedly querying the model, which can be prohibitively expensive if the model’s solvers
are computationally costly. Consequently, it is customary to either reduce the dimensionality of the inverse
problem or to replace model querying with a surrogate model of the observable response.

Figure 1: Log-hydraulic
transmissivity field for a
2D confined aquifer model
of the Hanford Site.

DOE is responsible for the Hanford Site, “one of the largest cleanup efforts
in the world, managing the legacy of five decades of nuclear weapons produc-
tion” [1]. Calibrating computer models of groundwater flow and contaminant
transport at the Hanford Site is critical for evaluating remediation strategies
and performing exposure assessments [3]. A network of sparsely-distributed
observation wells (Figure 1) collects measurements of hydraulic pressure and
tracer breakthrough curves from tracer experiments. These measurements can
be used to estimate the heterogeneous parameter fields that govern groundwater
flow and transport at the Hanford Site.

Project description. The observable response of complex physical systems as
a function of the model parameters often exhibits a low-dimensional structure,
which can be exploited to construct low-dimensional surrogate models of the
observable response (e.g., [6, 5]). These surrogate models will allow us to si-
multaneously tackle the challenges of model reduction and computational cost.
The goals of the project are:

• Identify a linear, low-dimensional embedding for the multivariate hydraulic pressure and tracer con-
centration response of a 2D model of the Hanford Site as a function of the hydraulic transmissivity.

• Use this low-dimensional embedding to construct a surrogate model of the observable response.
• Use the surrogate models to identify the hydraulic transmissivity field by solving a deterministic model
inversion problem.

One way of identifying the low-dimensional structure of functions of many variables and constructing
low-dimensional surrogate models is Basis Adaptation (BA) [5]. In BA, we construct a linear regression
model of a scalar quantity of interest (QoI) as a function of the model parameters; this step is usually per-
formed using sparse regression techniques. We then use this linear model to identify a linear transformation
from parameter space to a single latent variable. Finally, we construct a nonlinear ridge function regressor
for the QoI as a function of the latent variable.

BA is formulated for scalar QoIs, but it can be extended to multivariate QoIs by casting the associated
linear regression problem as a “reduced-rank regression” (RRR) problem [4]. In RRR, we approximate the
relation between a multivariate input and a multivariate output as a linear transformation represented by a
rank-deficient matrix of coefficients. This transformation can be interpreted as a two-step procedure: (1) an
orthogonal transformation from parameter space to a low-dimensional latent space, and (2) a transformation
from latent space to the multivariate output. Once the transformation into latent space has been identified,
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we can train a nonlinear surrogate model for the multivariate QoI as a function of the latent variables.
Once a low-dimensional surrogate of the observable response has been constructed, the hydraulic trans-

missivity field can be estimated by solving a deterministic inverse problem. This inverse problem consists
of finding the transmissivity field that minimizes the norm of the surrogate model’s prediction minus mea-
surements of the observable response. Such an inverse problem is ill-posed, and introducing a regularization
penalty is required to obtain a unique solution. The regularization penalty encodes a priori information about
the spatial distribution of hydraulic transmissivity, so it must be chosen carefully to ensure that the estimated
field accurately approximates the conditions in the field. Some important questions to answer are:

• The BA procedure identifies the main direction of variability in parameter space for a scalar QoI. Can
we identify the second most important direction of variability? The third most important? Is more
information about the observable response necessary to identify additional directions?

• What is the sensitivity of BA and RRR to the size of the training dataset? Can it be improved with
sparse regression techniques?

• What is a good regularizer choice for the Hanford Site transmissivity field?

Data description. The data to be used in this project consists of three datasets: (1) a generated set of pairs of
model parameters and the corresponding simulated observable response, (2) the Hanford Site’s 2D reference
hydraulic transmissivity distribution, and (2) a set of synthetically generated noisy measurements of the
observable response to be used for model inversion.

PNNL representative.
David A. Barajas-Solano
Mathematician, Computational Mathematics
Pacific Northwest National Laboratory
(509) 375-3783, David.Barajas-Solano@pnnl.gov
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