Extreme Learning

A challenge to develop and apply novel math to capture, characterize and predict extreme events in a warming world

> Mihai Anitescu (ANL) Giovanna Bucci (PARC) George Crabtree (U Illinois) Michael Craig (U of Michigan) Clint Dawson (UT Austin) Hans Engler (Georgetown) Kate Evans (ORNL)

Sign Society for Industrial and Applied Mathematics

DMS2227219

Motivation and Impact

- Climate extremes have devastating societal impact
 - Temperature, heavy precipitation and flood, droughts, storms, wildfires, compound events
- Long-term prediction of extreme events is impossible, short term is "merely" hard
- By definition, data for extreme events are sparse
- With a changing climate background, extremes are even harder to assess
 - Even modest changes in global temperature can cause large changes in frequency and severity
 - These may be concentrated regionally, even locally
 - Tipping points may introduce qualitative changes in the climate background
- How can we understand future extremes without knowing their background?

At 4.0°C global warming

Projected MAX temperature (from IPCCAR 6)

State of the Art for AI/ML and Physical Modeling for extremes

Build on initial efforts in this space: NSF AI Institute on Weather, Climate and Oceanography (AI2ES), CNRS's XAIDA: Artificial Intelligence for Detection and Attribution, etc.

- Assumptions that limit us
 - Stable climate
 - Gaussian distributions
 - ML/AI methods are typically based on gaussians, not tails
- We have models of the future: but imperfect and few data points
 - Coarse grid data
 - Assumptions about future required
- Physics-based models are currently riddled with uncertainties in parameters, parameterizations, multiple scaling issues, stale algorithms.

Grand challenge: assess frequency and magnitude of local extremes within a globally changing world

- Anticipate future conditions, incorporating
 - global trends (current state of the art)
 - tipping points
 - catastrophic events
- Create scenarios for probability distribution of extremes
 - at unprecedented spatial and temporal resolution
 - with more physical understanding
- Improve decision-making by accurate prioritization
- Advance scientific knowledge
 - create new tools to understand and predict extremes
- Increase climate change resilience to
 - heat waves and wildfires
 - drought, flooding, extreme rain
 - blizzards, hurricanes, tornado/hail clusters
 - epidemics, die-offs

Stakeholders:

- Local (e.g. cities, counties, communities)
- National (NOAA, DHS, FEMA, USACE, USDA, USFS)
- Public, private, commercial (e.g., insurance)

Concerns: Lack of concrete ways of moving forward, add specific systems/examples, capture financial modeling, multiscale, dependence on current/past climate

What ML and Math research is needed?

- New ML techniques: Novel loss functions, their mathematical properties, and robust algorithms to carry out training with them.
- Scientific Machine Learning: merging physics-based models with ML while focusing on the precursors and process chains leading to extreme event models.
- Statistical methods for nonstationary and spatially distributed extremes.
- Improvements in physical and computational models. Numerical methods cannot currently reliably simulate and predict extreme events with reliability and error bounds.
- New insights in characterizing and propagating uncertainty in all relevant variables

BPA cascading failure data (courtesy lan Dobson, lowa State), prob(size)=C*size^(-3) (Gaussian =exp(-size^2)).

Roth, Jacob, et al. "A Kinetic Monte Carlo Approach for Simulating Cascading Transmission Line Failure." *Multiscale Modeling & Simulation* 19.1 (2021): 208-241.

Additional requirements

- Determining data sources and needs for future data collection efforts, assessing quality of data.
- Convene stakeholder meetings, including infrastructure planners and operators, to identify initial types of extremes for our focus
 - Prioritize diverse stakeholder representation to maximize value of research in improving equitable outcomes
- Workforce development:
 - interdisciplinary training in mathematics, domain sciences, computational science, data science, statistics, etc.
 - Broaden the diversity of the workforce
- Computing/data storage/networking
- Experimental campaigns
- Interdisciplinary connections to economists, environmental scientists, biologists, physicists, computer scientists, etc.
- Create infrastructure and policies for verification, validation, and assurance