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Motivation and Impact

● Climate extremes have devastating societal 
impact

○ Temperature, heavy precipitation and flood, droughts, 
storms, wildfires, compound events 

● Long-term prediction of extreme events is 
impossible, short term is “merely” hard

● By definition, data for extreme events are sparse 
● With a changing climate background, extremes 

are even harder to assess
○ Even modest changes in global temperature can cause 

large changes in frequency and severity 
○ These may be concentrated regionally, even locally 
○ Tipping points may introduce qualitative changes in the 

climate background
● How can we understand future extremes without 

knowing their background?



State of the Art for AI/ML and Physical Modeling for extremes

Build on initial efforts in this space: NSF AI Institute on Weather, Climate and 
Oceanography (AI2ES), CNRS’s XAIDA: Artificial Intelligence for Detection and 
Attribution, etc.

● Assumptions that limit us
○ Stable climate 
○ Gaussian distributions  
○ ML/AI methods are typically based on gaussians, not tails 

● We have models of the future: but imperfect and few data points
○ Coarse grid data
○ Assumptions about future required

● Physics-based models are currently riddled with uncertainties in parameters, 
parameterizations, multiple scaling issues, stale algorithms. 



Grand challenge: assess frequency and magnitude of local 
extremes within a globally changing world

● Anticipate future conditions, incorporating
○ global trends (current state of the art)
○ tipping points 
○ catastrophic events 

● Create scenarios for probability distribution of extremes 
○ at unprecedented spatial and temporal resolution 
○ with more physical understanding

● Improve decision-making by accurate prioritization
● Advance scientific knowledge

○ create new tools to understand and predict extremes
● Increase climate change resilience to

○ heat waves and wildfires
○ drought, flooding, extreme rain
○ blizzards, hurricanes, tornado/hail clusters
○ epidemics, die-offs

Stakeholders: 

● Local (e.g. cities, counties, 
communities)

● National (NOAA, DHS, FEMA, 
USACE, USDA, USFS)

● Public, private, commercial 
(e.g., insurance)

Concerns: Lack of concrete ways of moving forward, add specific systems/examples, capture financial modeling, multiscale, dependence on current/past 
climate



What ML and Math research is needed?
● New ML techniques: Novel loss functions, their 

mathematical properties, and robust algorithms to 
carry out training with them. 

● Scientific Machine Learning:  merging physics-based 
models with ML while focusing on the precursors and 
process chains leading to extreme event models. 

● Statistical methods for nonstationary and spatially 
distributed extremes.

● Improvements in physical and computational models.  
Numerical methods cannot currently reliably simulate 
and predict extreme events with reliability and error 
bounds. 

● New insights in characterizing and propagating 
uncertainty in all relevant variables  

Concens: limits of ML, Generic ML hampered by space-time auto-correlation, variability, and tele-connection, Incorporate non-ML approaches, How to validate?

BPA cascading failure data (courtesy Ian Dobson, Iowa 
State), prob(size)=C*size^(-3) (Gaussian =exp(-size^2)). 

Roth, Jacob, et al. "A Kinetic Monte Carlo Approach for Simulating Cascading Transmission 
Line Failure." Multiscale Modeling & Simulation 19.1 (2021): 208-241.



Additional requirements

● Determining data sources and needs for future data collection efforts, 
assessing quality of data.

● Convene stakeholder meetings, including infrastructure planners and 
operators, to identify initial types of extremes for our focus

○ Prioritize diverse stakeholder representation to maximize value of research in improving 
equitable outcomes

● Workforce development: 
○ interdisciplinary training in mathematics, domain sciences, computational science, data science, 

statistics, etc.
○ Broaden the diversity of the workforce

● Computing/data storage/networking
● Experimental campaigns
● Interdisciplinary connections to economists, environmental scientists, 

biologists, physicists, computer scientists, etc.
● Create infrastructure and policies for verification, validation, and assurance

Concerns: Are rare events frequent enough to be predictable and analyzable? 


