The End of Fossil Fuels

Udo Schwarz, Alex Pothen, Hans Kaper, Md Abu Helal, Sergio A. Gamboa

October 12, 2022

DMS 2227218

Big Idea

Save the planet for future generations though preventing the emission of further greenhouse gases, in particular carbon dioxide

Popular Mechanics 1912, pages 339-342

The furnaces of the world are now burning about 2,000,000,000 tons of coal a year. When this is burned, uniting with oxygen, it adds about 7,000,000,000 tons of carbon dioxide to the atmosphere yearly. This tends to make the air a more effective blanket for the earth and to raise its temperature. The effect may be considerable in a few centuries.

Big Idea

Save the planet for future generations though preventing the emission of further greenhouse gases, in particular carbon dioxide

- This project would enable the U.S. goal of achieving net-zero GHG emissions by 2050.
- See the White House report https://www.whitehouse.gov/wpcontent/uploads/2021/10/US-Long-Term-Strategy.pdf
- ► The U.S. Department of Energy has the goal of decarbonizing energy production by 2050. See https://www.energy.gov/eere/doe-industrial-decarbonization-roadmap

The Big Idea	
Reasoning and Justification	
Goal Areas	
Broader Impacts of The Idea	
Scientific Challenges	
Requirements	
Methodology	
Why NSF, DMS?	
Conclusion	
Reasoning and Justification	

- ► We have overstepped the planetary boundaries and treated the planet without regard for the consequences.
- Scientists have long ago raised the alarm but failed to motivate decision makers to prepare for action. It is time for science to speak up and push for a moon-shot program of decarbonization.

Goal Areas

- Accelerate clean energy innovations
- ► Increase climate change resilience
- ► Promote sustainable practices

S

The Big Idea	
Reasoning and Justification	
Goal Areas	
Broader Impacts of The Idea	
Scientific Challenges	
Requirements	
Methodology	
Why NSF, DMS?	
Conclusion	

Broader Impacts

- ► Dramatic reduction in carbon emissions
- ► Significant improvements in quality of life, health, and environment.
- Creation of green jobs
- ► Independence on oil and gas
- Increased geopolitical stability
- Localized energy production ("power to the people")
- Reduced transportation costs
- ► Local jobs, local resilience

The Big Idea	
Reasoning and Justification	
Goal Areas	
Broader Impacts of The Idea	
Scientific Challenges	
Requirements	
Methodology	
Why NSF, DMS?	
Conclusion	
Scientific Challenges	

- ► Reduce energy consumption
- ► Increase energy efficiency
- ► Electrify what can be electrified
- Develop renewables (biofuels, hydrogen, methanol, etc.) for what cannot be electrified
- ► Manage the transition to a fossil-free system

The Big Idea	
Reasoning and Justification	
Goal Areas	
Broader Impacts of The Idea	
Scientific Challenges	
Requirements	
Methodology	
Why NSF, DMS?	
Conclusion	
Requirements	

This is an ambitious goal that requires progress on many levels. Needed in particular are:

- ► Multidisciplinary teams: Scientists, Engineers, Social Scientists, Industry.
- Coordinated support from multiple funding agencies and, within NSF, multiple divisions.
- ► Timeline:
 - 5 years to start up, identify topics, recruit team members, and begin implementation
 - 10 years until first significant results are providing accelerated progress towards a net-zero carbon economy
 - 25 years to complete implementation of a net-zero vision.

Methodology

- Various scales of planning
 - Project, tactical, operational, strategic
- Variety of stakeholders and users
- ▶ Different sources of uncertainty & risk
- ► Integrate different tools and methods

N

Why NSF, DMS?

- Mathematical models, data analytics, network science, machine learning and high performance computing have a key role to play in this work.
- ► A recent advance is the incorporation of observational data and high resolution simulations for subsystems in Earth System Models to improve climate projections, e.g., Geophysical Research Letters, Schneider et al, 2017.
- ► Similar approaches would be needed for:
 - ▶ making green energy producing chemical processes more efficient;
 - ▶ improving the energy storage capabilities of batteries and fuel cells;
 - the discovery of new materials to enable energy production and conversions;
 - the incorporation of large numbers of renewable energy generators into the electrical grid;
 - designing green buildings to reduce energy consumption;
 - ► Etc., etc.

Conclusion

- Successful sustainable and renewable enterprises require an efficient, appropriate raw material supply
- ▶ Improvements and efficiency gains in productions and logistics are critical
- Integrated, multi-scale models and tools are needed for complex multi-facility environments
- ► Developing specialized models and tools for industry can help de-risk investment in the clean energy.
- NSF has the intellectual standing to propose a science-based approach to decarbonization and can do its part by supporting the basic research needed to accelerate a national effort to eliminate the need for fossil fuels.

Thank you

Mathematics is the language with which GOD has written the Universe.

Galileo

See

Any Questions?

Please Contact:

Group 5

Email: udo. schwarz@yale. edu

Email: apothen@purdue.edu

Email: hgkaper@gmail.com

Email: MdAbu. Helal@usda.gov

Email: sags@ier.unam.mx

