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1 Abstract

Different mathematical approaches to ranking were used to determine the level 
of importance of every member in a criminal network. Two different data sets 
consisting of phone records provided by the FBI were analyzed. The first data 
set consisted of call logs over a three year span of members in a drug ring. The 
second data set consisted of the call logs of members in a gang. After analyzing 
the results of the rankings, properties of the two networks are discussed to 
provide further insight into why certain ranking algorithms performed well and 
others did not.

2 Background

Rankings are a familiar part of life found in sports, movies, and even dining 
locations. Despite the importance of knowing which is best, it is challenging 
to rank a set of data objectively and fairly. Numbers and statistics are impar-
tial to sentiment, so a mathematical approach to ranking seems appropriate. 
However, there are many ways to mathematically rank a set of data, each of 
which has a unique approach and emphasis which in turn produces a variety 
of results. In this paper, we explore several ranking methods including the 
PageRank algorithm, the Massey and Colley method, Keener, and Elo, which 
are used in various applications across disciplines. PageRank is used in ranking 
the importance of webpages and is a component of Google’s search engine. The 
Massey and Colley methods are used throughout the NCAA football season 
when producing rankings. One method used to produce rankings in the NFL 
is the Keener method, while the Elo method is used in the ranking of chess 
competitors. We set out to determine whether these methods could effectively 
rank members of a drug ring and then a gang, using only their phone records.

The first data set consists of call logs of eight people in a drug ring investi-
gated by the FBI. Over the span of approximately three years, the eight people 
placed or received a total of 58,513 calls between 129 people. The goal was to
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apply the various ranking methods to the call logs to ascertain which math-
ematical method produced the most accurate results. Accuracy is defined by
matching the FBI’s ranked list of the criminal network as closely as possible.

To further compare effectiveness, each method was applied to a similar data
set of phone records from members of a gang. This data set was considerably
smaller and consisted of the phone records of 23 individuals; the call log was
approximately half as plentiful and spanned a year and a half. Again, the goal
was to find the best method to match the FBI’s ranked list as closely as possible.

3 The Markov Method and Google’s PageRank

Prior to the appearance of Google in 1998, internet search engines were not
very useful because they could be easily gamed. When Google arrived with
its own search engine, users found it gave good results [3]. These results came
in part from their innovative ranking approach called PageRank ([3], [4]). In
constructing their search algorithm, the founders of Google changed the way
search engines displayed results. Instead of fully relying on text relevancy (which
was easily abused), they used stochastic matrices of relevant web pages that
represented random web traffic ([3], [4]). The stochastic matrix is created by
counting the links between pages and dividing each entry in a column by the
column’s sum.

The following example illustrates how PageRank works. Suppose we start
with a simple web consisting of four web pages as follows, where the direction
of the arrow represents the direction of the link on the internet.

1 2

34

Figure 1: Directed Web Graph of four Nodes

Then, an associated matrix A is created where

Ai,j =

{
1
n if webpage j links to webpage i, n =number of directed edges out of j

0 if j does not link to i.

The associated matrix for this small example would be:
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0 0 1

2 0
1 0 0 0
0 1 0 0
0 0 1

2 0

 .
First, we apply the Markov Chain process, which can be summarized as

finding the eigenvector corresponding to the dominant eigenvalue which gives
the long term behavior of the system [6]. Matrix A has an eigenvalue less than
1 by the Perron-Frobenius Theorem because the values are all non-negative
and the columns sum to at most 1([5], [6]). This matrix is also column sub-
stochastic. To make it fully stochastic, we must fix the column of zeros to sum
to 1 as well.

When a node doesn’t link to another node, as is the case with node 4, it
is called a dangling node. This disrupts the method because dangling nodes
create a column of zeros, therefore making the matrix sub-stochastic. We can
proceed to find the Perron eigenvalue, or we may choose to make that node link
to every other node equally. Using the example from above, we could imagine
placing an arrow from node 4 to every other node including itself. Then, the
associated matrix can be fixed by placing 1

4 in every element of the fourth
column. Although this approach is changing elements of the matrix, it is not
changing the solution because it is sending links to every node equally. If the
dangling node had many links, then every web page will receive an equal share of
these, thus not changing the state probabilities nor the long term probabilities.
This produces the following revised matrix:

0 0 1/2 1/4
1 0 0 1/4
0 1 0 1/4
0 0 1/2 1/4

 .
Non-negative matrices are known to have a dominant positive eigenvalue and
corresponding dominant eigenvector ([5], [6]). The Markov method states that if
our matrix is also stochastic, the dominant eigenvalue will be 1 and the long term
behavior of the matrix will converge to the dominant eigenvector. To find the
long term result for a stochastic matrix, we find the eigenvector corresponding
to the eigenvalue of 1. In the above example, the resulting vector is

1
5/4
3/2

 .
1

This means the first and fourth nodes are equally important, and the third node 
is most important. The third node is the most important because the probability 
of being on that page after convergence is higher than the probability of being 
on any other page. Typically the resulting eigenvector is scaled to sum to one 
so that the probabilities can be read as percentages.
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The founders of Google expanded on this method. The current model as-
sumes 100% of movement is continuous. If you imagine surfing this small web,
moving around the websites, you can think of the associated matrix as the
probabilities of where you click next. But what if the user decides to start over,
to start at a new web page by typing in a new URL? To model this, Google
founders Larry Page and Sergey Brin proposed the following equation to model
web behavior [3]

G = (1− α)A+ αR. (1)

Here A is the same matrix as before, matrix R contains all entries of
1

n
where

n is the number of nodes, and 0 < α < 1 is a constant chosen to characterize
the network. A higher α value corresponds to more random networks. While,
today, Google keeps much of their information on their programming private,
they did reveal that they often chose α = 0.15 for many simulations when
first developing their search engine [4]. This means that the majority of the
movement was through the directed web graph; roughly 85% of the time on
the Internet you are moving around through the web, but 15% of the time you
decide to start over. From here, we can proceed to find the dominant eigenvector
as before because G will still be stochastic with dominant eigenvalue 1. In our
example, using α = 0.15 produced

G =


3/80 3/80 37/80 1/4
71/80 3/80 3/80 1/4
3/80 71/80 37/80 1/4
3/80 3/80 3/80 1/4

 ,
with corresponding dominant eigenvector after normalization

0.242
0.253
0.457

 .
0.048

Now we see that the eigenvector no longer has two equal rankings providing a 
hierarchy for all nodes, and the overall top rank is still the same. According to 
the results, the most important node is 3 followed by 2 and 1 while 4 is the least 
important.

The Google PageRank method can be applied to any data set when looking 
for a ranking of nodes, and members of a criminal network are an interesting and 
relevant set to further examine. The first data set given consisted of 129 people 
in a drug ring, labeled Person A through Person F, Foreign 1, Foreign 2, and 
Person 1 through 121 (inputted in that order). Persons A-F were the central 
figures of the gang, while persons 1-121 were possible members or contacts of 
the gang. The first step is to input the call log data of all 129 people into a 
matrix. Using the method outlined above, a person calling another person was 
viewed as that person “linking” to the other “page”. If person A called person
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C 376 times, then A3,1=376, similar to techniques used in [7]. Since many of the
people only called a handful of other people, a fairly sparse 129×129 matrix was
created. Each column of matrix A was then scaled by the reciprocal of its sum to
make the matrix column stochastic. Next the dangling nodes were fixed using
the aforementioned method, to eliminate columns of zeros. In this context,
a dangling node was someone who never made an outgoing call. Our data
consisted of five of these people. After this was done, both the Markov method
and Google’s PageRank method were applied and produced the following top
10 results respectively:[

A E F C G B D 1 2 71
]

and[
A E F C G 1 D 71 74 2

]
.

The results of each method will be compared to each other and the FBI’s ranked
list.

4 Massey and Colley

The Massey method takes a different approach that can easily be applied to
sports rankings. It uses point differentials and number of games won against
each opponent to create a ranking. The idea behind this method is that if you
know the rankings of two teams, not only can you predict the winner, but you
can also predict the margin of victory. This idea can be expressed in a system
of equations given by

ri − rj = pk, (2)

where pk is the point differential between teams i and j while ri is the rating
of team i and rj is the rating of team j. The point differential is calculated as
points i scored minus points j scored. After a season of play, we know the point
differentials, but we don’t know the rankings. For each game played, we know
the comparative difference in ranking between the two teams. Over a season
there are many of these. For each team at the end of a season of m games, the
equation for team i is

(ri − r1) + (ri − r2) + (ri − r3) + . . .+ (ri − rm) = pk,

which simplifies to

mri − r1 − r2 − r3 − . . .− rm = pk. (3)

If this is done for every team, then a matrix can be made from these equations. 
The numerical value placed on non-diagonal entries is the negative of how many 
times teams i and j played each other. Naturally, if two teams did not play 
one another, then the corresponding entries are zeros. This matrix M is of size 
n × n and gives rise to the equation Mr = p where r is the ratings vector and
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p is the vector of cumulative point differentials for each team. This is a system
of equations which has infinitely many solutions. To adjust this matrix to have
a unique solution, the last row is replaced with ones. No information is lost
with this change because all of the other teams carry a piece of the last team’s
information on their own rows.

For our data, the Massey matrix was a very sparse 129 × 129 matrix. The
point differential for our data was how many calls a person made to another
person minus how many calls that person made to them. After finding the
ratings, the numbers were sorted to produce the following ranking:[

F A G 47 E 46 62 26 27 73
]
.

The Colley method, summarized by the equation Cr = b is equal to (2I +
M)r = p where M is the adjusted Massey matrix. However, to find Colley
without first finding the Massey matrix, C and b are the results of, bi = 1 +
1

2
(wi − li) where wi and li are the wins and losses of i respectively, and

Ci,j =

{
2 + ti i = j

−ni,j i 6= j
,

where ti is number of games played by team i and ni,j is the number of games
team i played team j. The ranking produced by the Colley method turned out
to be the exact same ranking as that of Massey for the drug ring data.

5 Keener

The Keener method, primarily used in the NFL, creates ratings for teams based
on a single metric at the user’s discretion. After choosing your metric, the first
step is to create the matrix

Si,j = value of metric team i got against team j.

The next step is to adjust these values using Laplace’s rule of succession. Doing
this normalizes the data so a person/team can not skew the results by having an
outlier performance in terms of the chosen metric. Laplace’s Rule of Succession
is expressed as

S + 1

S + F + 2
,

where S and F represent the number of successes and failures respectively. After
doing this, we have the following new matrix A

Ai,j =
Si,j + 1

Si,j + Sj,i + 2
.

Lastly, a skew function may be used to separate people of equal ratings. We
used the standard Keener skew function [5]

h(x) =
1

2
+
sgn{x− 1

2
}
√
|2x− 1|

2
.
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To provide an example of this method, here is a single entry from the matrix we
used. Let S3,1 = 376 and S1,3 = 676. To find Ai,j , we use the above formulas
which yields

A3,1 =
376 + 1

376 + 676 + 2
= 0.3577 and A1,3 =

676 + 1

376 + 676 + 2
= 0.6423.

Notice that A3,1 +A1,3 = 1.
For the criminal network data, the number of calls was the chosen statistic,

which was the same initial matrix from the Markov method and yielded the
following top 10 rankings:[

B C 63 5 10 116 15 Foreign 2 92 105
]
.

6 Elo

The Elo method of ranking has wide usage ranging from chess to E-sports such
as League of Legends. Named after Arpad Elo, who created the system to rank
chess players, the Elo system changes subjects’ rating based on how far the
subjects’ performance is away from its current rating. The basis for this is the
equation

r(new) = r(old) +K(S − µ)

where K is a value (sometimes adjusted based on importance of match-up), and
S is a constant that can be defined as

Si,j =


1 if i beats j

0 if i loses to j

1/2 if i and j tie

and µ is a value that can be defined as

µi,j =
1

1 + 10−di,j/400
.

Here di,j is calculated based on the difference between the ratings of two subjects 
to find the expected margin for who is to win

di,j = ranki(old) − rankj(old).

To provide an example of this, let’s consider two chess players. One player 
is rated 1300 while another is rated at 1500, using a K of 25. First calculate 
the new rating of the 1500 player if they lose to the 1300 player:

d = 1500 − 1300 = 200

r(new) = 1500 + 25 ∗ (0 − 1/(1 + 10−d/400)) = 1481.
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Now for the 1300 player who beats the 1500 player:

d = 1300− 1500 = −200

r(new) = 1300 + 25 ∗ (1− 1/(1 + 10−d/400)) = 1319.

Notice that the winner gained points and the loser lost points by an equal
magnitude.

By construction, the Elo method works over time and not all at once. The
data that we used had the entire log of calls spanning three years arranged
chronologically. It also featured FROM and TO columns. Each call was consid-
ered to be a“match”. In total there were 58,513 calls. To quickly run a rating
update after every call to the correct callers, a simple script in Matlab was
created. In this method, everyone starts out at an arbitrary, but equal initial
rating. The K value was kept constant to make sure every call is equally valued.

When a call is made, there are two different interpretations of who the
winner is, both results from each interpretation are included below. If the
person making the call is the “loser”, we are saying that the most important
people are the ones receiving the calls and this interpretation produced the
following top ten:[

3 107 71 26 52 1 2 50 8 53
]
.

The other interpretation is that the person making the call is the “winner”. A
reason this might make sense that that in a criminal network, it is possible the
people at the head of the organization make the most calls. If choosing the
caller to be the winner, then the result becomes:[

F C A G E 7 D B 104 42
]
.

7 Analysis of Results

After running the data through the various ranking methods, we needed to 
compare them to the actual rankings, as assigned by the FBI. An intelligence 
analyst at the FBI provided additional information about the actual rankings 
of the criminals in the drug ring. Note that while there is a hierarchy, there 
is also lateral structure, meaning that there are several instances where more 
than one person would practically be of equal importance and rank. There were 
two outside foreign contacts that were of significance in the larger structure of 
the network. In this data set, Person E and F are actually the same person 
who simply used two phones. A further exploration could be to combine both 
E and F’s call logs and look at the results. However, the rankings were never 
combined into one in order to better extrapolate the findings of these methods 
on networks of which one has less information.

Looking collectively at all of the ranking methods together with the ac-
tual assigned ranking by the FBI in Table 1 below, we see that the method 
that best approximated this ranking was Google’s PageRank method. The two
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forms of Elo are to provide both possible interpretations of who the winner
is when a phone call is made. The Elo(From=Winner) outperformed the Elo
(From=Loser), providing that people at the top of the network are the ones
making more calls. Other points of interest include that Foreign 1 and 2 were
contacts from Mexico that supplied the operations. The only methods that had
the foreign contacts appear even remotely important were the Massey, Colley,
and Keener methods, and Keener was the only one that had Foreign 2 in its top
ten.

FBI Google Massey Colley Keener Elo(F=W) Elo(F=L)
A A F F B F 3

E/F E A A C C 107
E/F F G G 63 A 71

C C 47 47 5 G 26
G G E E 10 E 52
D B 46 46 116 7 1
1 D 62 62 15 D 2

1 26 26 For. 2 B 50
2 27 27 92 104 8
71 73 73 105 42 53

Table 1: Drug Ring Final Rankings

To statistically analyze and compare algorithm performance, we used Kendall’s
tau-b, a non-parametric test of rank order correlation adjusted to handle ties
[1]. Here the Google algorithm performed best (τB = 0.324, p = 0.000). This in-
dicates a statistically significant moderate relationship between the algorithm’s
prediction and the FBI rankings. The best of the Elo algorithms (τB = 0.235, p =
.001), and the Keener algorithm (τB = .148, p = .039) also revealed statistically
significant but weaker relationships between their predictions and the FBI rank-
ings. In all cases, it is important to note that the large number of cases unranked
by the FBI artificially lowers the correlation coefficients.1

8 Second Data Set

After analyzing the drug ring data set, we obtained a second set of data from
the FBI to consider. This data set was considerably smaller, consisting of 27,510
calls over a period of approximately a year and a half between 23 individuals
in a gang. All the previous methods discussed were used on the entirety of the
data set and the following rankings were obtained.

These rankings compared to the rankings given by the FBI yield less than
favorable results. There were no instances in this data set of a single person
using multiple phones but this data set had some aspects of a lateral structure.
The FBI correspondent informed us that multiple people were considered to be
at equal rank. In the results below, names on the same line indicate that people
are equal in rank in reference to lateral structure.
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FBI Google Massey(FL) Massey(FW) Elo(FW) Elo(FL) Keener
3 17 23 23 1 9 17
12 11 22 8 14 22 5
9 2 4 16 8 15 9
4 20 8 7 16 10 18

8/1/22/17/23 18 16 3 7 18 13
5 15 7 13 3 19 15

14/2 3 17 11 11 17 10
7 16 19 18 4 6 2
13 8 12 15 23 20 22
16 12 14 12 7 13 19

Table 2: Gang Member Rankings

FBI
3
12
9
4

8/1/22/17/23
5

14/2
7
13
16
18
20
15

9 Time Frames

For this second set of data, a specific time period, noted by the FBI, was more 
significant than the rest of the data. To see how this time period would affect 
the rest of the data, the same methods were used to rank the data split into two 
categories. The first subset was from the beginning of the call logs to the start 
of the time period, the second subset was from the start of the time period to 
the end of it.

The results again were mediocre at best. For any given method, the most 
important people, according to the FBI Intelligence Analyst, were either entirely 
absent within the top ten or not close to the top. When comparing an important 
person’s ranking between the various time frames, it is equally inconsistent. 
Some important people rise while others fall.

Statistically with the same Kendall’s tau-b comparison across the board for 
all time frames and scopes, the algorithms performed much worse in predicting 
the rank order of the gang data set. None of the algorithms were statistically
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significantly related to the FBIs overall rankings at the p < .05 level. The top
performers, however, were the Massey (FL) model (τB = 0.206, p = 0.190) and
the Massey (FW) and Elo models (all τB = 0.157, p = 0.323). It is worth noting
that the small sample size (n = 23) in these analyses is potentially a key reason
why the p-values are comparatively large.

10 Network Properties

To understand why the ranking methods performed so much better on the first
network than they did on the second, we analyzed various properties of the two
networks. Several properties were computed and compared, including average
degree, degree distribution, clustering coefficients, and average clustering coeffi-
cient [2]. The degree of a node is how many links are associated with the node.
Average degree is the sum of the degrees for each node divided by total number
of nodes (people)

1

n

n∑
i=1

degi,

where n is the number of nodes. The density of a network is how many connec-
tions there are divided by the number of potential connections, given by

density =
Li

n(n− 1)
.

The clustering coefficient of a node is defined as

Ci =
2Li

ki(ki − 1)
,

where Li represents the number of links between the ki neighbors of node i. The
Average Clustering Coefficient is the sum of all clustering coefficients divided
by the number of nodes.

The following are the values for the first data set consisting of members in
a drug ring.

Density = 0.0268
Average Clustering Coefficient 0.00085352
Average Degree = 3.4264

391



Degree Distribution:

The following are the values for the second data set consisting of members
in a gang.

Density = 0.3735

Average Clustering Coefficient 0.0125

Average Degree = 8.2174

Degree Distribution:

These key network properties tell us that the first data set is much more 
sparse. This more closely resembles the network structure of the Internet for
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which the PageRank method is used, which may be why it performed so well.
Nodes are less clustered, have a lower density, and have a lower average degree.
There are simply fewer connections per node in the first data set than there
are in the second. The high ranking individuals in the first set have much
higher degrees than the rest of the members. This can be seen from the degree
distribution charts above. Meanwhile, in the second data set, the difference in
degrees from node to node is not nearly as large. This helps explain why the
rankings in the first data set more closely resemble the true rankings than in
the second set.

11 Conclusion

Despite the promising results of the rankings for the first data set, no conclusion
can be drawn in favor of any particular method for all types of networks. For
sparse networks, the PageRank method is likely to be more effective and the
best for determining a ranking. Future analysis could be done on the network(s)
such as k-means analysis to look at the clusters more closely and examine prop-
erties of those clusters in the network and their relative importance. These
ranking methods can be applied to many more data sets to get a more complete
comparison of their effectiveness.
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