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Abstract. We demonstrate an application of the closest point method to numerically computing
the truncated spectrum of the Laplace–Beltrami operator. This is known as the “Shape DNA” and it
can be used to identify objects in various applications. We prove a result about the null-eigenvectors
of the numerical discretization. We also investigate the effectiveness of the method with respect
to invariants of the Shape DNA. Finally we experiment with clustering similar objects via a multi-
dimensional scaling algorithm.
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1. Introduction. The Laplace–Beltrami operator is widely used in geometric
modelling and computer graphics for applications such as smoothing, segmentation
and registration of 2D or 3D shapes [9], [13]. Another novel application is character-
izing shapes by extracting their “fingerprints” or “Shape DNA”, as first introduced
by Reuter, Wolter and Peinecke [10]. Storing and processing the Shape DNA enables
fast retrieval and identification in a database of shapes and has applications in areas
such as machine learning. The full spectrum of the Laplace–Beltrami operator on a
surface is able to identify distinct shapes because it contains intrinsic information,
such as volume and surface area [10]. Also, identification via Shape DNA is robust
since it is isometry invariant (isometries include rotation, translation and reflection)
and independent of parametrization, reducing the preprocessing of the shapes.

In this project, the robustness of Shape DNA is improved further by using the
closest point method [12], a numerical technique which represents surfaces without
using a parametrization. Building on previous work [7, 16, 1], we use the closest point
method to discretize the Laplace–Beltrami eigenvalue problem and Matlab to solve
the resulting matrix eigenvalue problem on various surfaces. Figure 1 shows some
eigenfunctions computed with this method. We measure the numerical errors and
compare to expectations in the literature. Furthermore, we analyze the effectiveness
of the default Matlab “eigs” algorithm and compare its performance with our in-
direct approach. We improve the numerical analysis of the closest point method by
proving that the numerical discretization is singular with a constant eigenvector in
cases where the Laplace–Beltrami operator is itself singular (that is, closed surfaces
and the Neumann problem), and that it does not have a constant eigenvector for the
Dirichlet problem. Finally, we use multidimensional scaling plots to represent the
similarities between different surfaces based on their Shape DNA.

Fig. 1: Eigenfunctions on surfaces: pig, Stanford bunny, apple, Möbius strip and
hemisphere.
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2. The Laplace–Beltrami Eigenvalue Problem. The Laplace–Beltrami op-
erator on curved surfaces is analogous to the standard Laplacian operator. For ex-
ample, it can model in-surface diffusion. To compute the spectrum of the Laplace–
Beltrami (LB) operator ∆s on a surface S, we need to find eigenpairs (λ, u) which
solve the functional problem

(1) −∆su(x) = λu(x) for x ∈ S,

where the eigenvalue λ is a scalar number and the eigenfunction u : S → R is a
nonzero function defined on S. For example, this eigenvalue problem (1) appears
when doing separation of variables on the wave equation. The eigenfunctions can
then be interpreted as vibration patterns (standing waves) of the domain, and the
eigenvalues are associated with the frequency of those waves.

The famous paper by Kac [5] poses the question whether one can identify the
shape given the eigenvalues of the Laplacian operator. In fact, two different mem-
branes can give an identical set of eigenvalues as shown through what are known
as “isospectral domains”, constructed by Gordon et al. [4]. Given that we can infer
some information of the surfaces using the spectra, if we are given a frequency of a
membrane, can we guess which shape of the drum it is most “similar” to? Also, in
what ways are the surfaces “similar”?

In this paper, we attempt to classify surfaces using the LB spectra by automati-
cally clustering them, where similarities are optimally determined through a clustering
algorithm which uses the Euclidean dissimilarity metric, which will be discussed in
Section 6. We measure the success of the clustering empirically, by observing how
close the generated clusters are from the expected clustering based on intuitive char-
acteristics of the surfaces. The characteristics include roundness of the surface and
presence and treatment of boundaries. To do this, we use the following notion of
Shape DNA defined by Reuter et al. [10].

Definition 2.1. For a given surface, the Shape DNA is the list of the first 50
smallest-in-magnitude eigenvalues of the Laplace–Beltrami operator, scaled by the first
nonzero eigenvalue such that the first nonzero number in the Shape DNA is 1.

The nonzero scaling factor makes the Shape DNA invariant to scaling. Appendix A
demonstrates the derivation of the Shape DNA for a circle.

3. The Closest Point Method. Suppose we have a surface S and a function
defined on it u : S → R. For each grid point in a narrow band near the surface,
an extension operator maps the function value from the point on the surface that is
closest to the grid point. That is, the closest point extension is a map from a function
defined on S to a function defined on a narrow band of S, where the function defined
on the narrow band is constant along the normals to the surface S. It can be used to
express derivatives on the surface in terms of derivatives in the embedding space.

3.1. Mathematical formulation. We begin with some definitions before for-
mulating eigenvalue problems in the embedding space.

Definition 3.1 (Closest point function [12]). Let S be a smooth surface in Rd.
Then cp(x) refers to a point belonging to S which is closest to x.

Knowing values of this function is how we represent the surface in our method. For
example, the closest point representation of the circle is illustrated in Figure 2.

Definition 3.2 (Closest point extension [12]). Let S be a smooth surface in Rd.
The closest point extension of a function u : S → R to a neighborhood Ω ⊂ Rd of S
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Fig. 2: Closest point function for a circle. In practice, we need this mapping only for
a uniform grid, as shown. If the closest point is not unique (such as the centre of the
circle), we choose any closest point.

is the function v : Ω → R defined by v(x) = u(cp(x)). E is the operator which maps
u to v: v(x) = u(cp(x)) ⇐⇒ v = Eu.

If v = Eu then the intrinsic surface gradient ∇su(x) is same as ∇v(x) evaluated
at x ∈ S, because the closest point extension of u is constant in the normal direction
[12]. Similar results hold for other surface differential operators [12, 8], including the
Laplace–Beltrami operator, which is the surface divergence of the surface gradient.

Theorem 3.3 ([12]). Let S be a smooth surface in Rd and u : S → R be a
smooth function. Assume the closest point function cp(x) is uniquely defined in a
narrow neighbourhood Ω ⊂ Rd of S and that v(x) = u(cp(x)). Then

∆su(x) = ∆v(x) for x ∈ S.

Following the approach of [16], we start with (1) and extend both sides of the equation
to obtain −E∆su = Eλu. Applying Theorem 3.3 gives −E∆v = λEu = λv, where
v = Eu. This also means v = Ev [16]. Based on this result, we consider an eigenvalue
problem not on the surface, but rather on Ω, the narrow band of Rd surrounding the
surface:

(2)
−E∆v = λv for x ∈ Ω,

subject to v = Ev for x ∈ Ω.

To recover the eigenfunction on the surface we evaluate v on the surface, that is,
restrict u = v|s.

Notably, the eigenvalue problem (2) is not the same as solving the Laplacian
eigenvalue problem −∆v = λv; the constraint v = Ev enforces the constant-along-
normal constraint on the solution. Also, because of the E on the left-hand side,
the embedded space eigenvalue problem (2) does not require imposing additional
boundary conditions at the edges of Ω [12, 7].

To deal with the constraint, we use the method-of-lines penalty approach [16] by
von Glehn et al. This is an equivalent formulation to (2), with a penalty parameter
γ which controls the constraint. It gives the eigenvalue problem

(3) −
(
E∆v − γ(v − Ev)

)
= λv, for x ∈ Ω.
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Combining the arguments of [7] and [16] we can show solutions of (1) solve (3). For
|λ| < |γ|, solutions of (3) restricted to the surface solve (1).

3.2. Numerical discretization. To solve the Laplace–Beltrami eigenvalue prob-
lem, we use finite difference schemes to approximate the problem (3) on uniform
Cartesian grids of the embedding space Ω. Let ∆x be the grid size. Let v be the
discretized vector consisting of samples of the function v at discrete grid points. We
construct a sparse matrix L, the discretized Laplacian using standard Cartesian cen-
tered approximations of the second derivative with second-order accuracy [6].

In the implementation of the closest point method, we use a sparse matrix Ep
to approximate the closest point extension operator E. The matrix Ep interpolates
the function values of v onto the closest points of each grid point. This is done using
Lagrange polynomial interpolation of degree p using the neighbouring grid points.

Combining these, we discretize the Laplace–Beltrami operator ∆S using (3) to
obtain

(4) M = E1L− γ(I − E3).

Here I is the identity matrix and E1 and E3 are the discretizations of the closest point
extension operator using polynomial interpolation of degree 1 and 3. These choices
are suggested in [3] for a second-order accurate method.

The parameter γ is chosen according to [16, 3] as γ = 2d
∆x2 , where ∆x is the

grid-spacing and d is the dimension of the embedded space.

3.3. Open surfaces with boundaries. When the surface has a boundary ∂S,
the eigenvalue problem (1) is different depending on what boundary conditions are
imposed. Common boundary conditions include the Dirichlet problem:

(5)
−∆su(x) = λu(x) for x ∈ S,

u(x) = 0 for x ∈ ∂S,

and the Neumann problem:

(6)
−∆su(x) = λu(x) for x ∈ S,

∂u

∂n
(x) = 0 for x ∈ ∂S,

where ∂u
∂n is the derivative in direction normal to ∂S and tangential to the surface.

If no changes are made to the closest point method as described above in Sec-
tions 3.1 and 3.2, the Neumann boundary condition will be imposed at any boundaries
∂S and we will solve (6). This is because the extension E extends the solution constant
in the normal direction [12].

To instead solve the Dirichlet problem (5), the method can modified [12] as follows:
• consider the extension operator at each grid point xi;
• if cp(xi) is not on the boundary ∂S, we extend the value u(cp(xi)), as usual;
• if cp(xi) is on ∂S, we extend the negative value of u(cp(xi)).

In practice this corresponds to “flipping the signs” of some rows of the matrices E1

and E3.
Imposing either Dirichlet or Neumann boundary conditions as just described will

reduce the accuracy of the method to first-order. To recover second-order accuracy
for surfaces with boundaries, we make minor modification to the extension operator
following [7, §5]. This involves looking up a function value from a “mirror point” in
the interior of S (instead of the closest point on the boundary); this gives a smoother
extension [7].

4



COMPUTING SHAPE DNA USING THE CLOSEST POINT METHOD

3.4. On the Invertibility of the Closest Point Method. In this section, we
present new arguments that relate the invertibility of the matrix M to that of the
original functional problem.

Theorem 3.4. Let S be a smooth closed surface in Rd. Then, the Laplace–
Beltrami operator has a constant eigenfunction and the matrix discretization M from
(4) has a constant eigenvector. Consequently, both the Laplace–Beltrami operator and
M are singular.

Proof. Assume u : S → R is a nonzero constant function, u(x) = c where c 6= 0.
We want to show that (u, 0) is an eigenpair of ∆s such that ∆su = 0. Applying
Theorem 3.3, we have ∆su = ∆Eu for x ∈ S. But Eu = c, since the extension of a
constant c is c itself. Therefore,

∆Eu =
d∑
j=1

∂2c

∂x2
j

= 0.

We have shown that the constant function u is an eigenfunction of ∆s corresponding
to the zero eigenvalue, λ = 0. Therefore, the operator ∆s is singular.

For the matrix problem, let v = 〈c, c, . . . , c〉, a vector of constants in Rd. Consider

Mv = (E1L− γ(I − E3))v = E1Lv − γv + γE3v.

Here L is the discrete Laplacian, and v is a constant vector, so Lv = 0. Also, E3v = v
because each row of E3 corresponds to a cubic polynomial interpolation which is exact
for constant data (from the uniqueness of the polynomial interpolant [14]). Therefore,

Mv = E10− γv + γv = 0.

We have shown that (v, 0) is an eigenpair of M such that Mv = 0. Therefore, M is
a singular matrix.

The presence of boundary conditions modifies the matrix M and the extension
operators. The case of Neumann boundary conditions is similar to Theorem 3.4 and
the proof is unchanged. However for Dirichlet boundary conditions, the results are
quite different as the next theorem shows.

Theorem 3.5. Let S be a smooth open surface in Rd. Then, the Laplace–Beltrami
Dirichlet problem (5) on S does not have a constant eigenfunction. Furthermore, the
constant vector is not an eigenvector of the matrix discretization M from (4).

Proof. For the first part, we note that u(x) = c, a constant, satisfies the condition
−∆su = 0, similarly to the proof in Theorem 3.4. However, the boundary condition
u = 0 (on ∂S) implies that c = 0 whereas eigenfunctions must be nonzero.

By way of contradiction, assume the vector of constants v = 〈c, c, . . . , c〉 is an
eigenvector of M . As in the proof of Theorem 3.4, Lv = 0. Consider a grid point xi
for which cp(xi) ∈ ∂S. As noted in Section 3.3, this ith row of matrix E3 will now
correspond to the negative interpolant. Thus E3(i, :)v = −c; in fact all entries of E3v
are either c or −c (with at least one −c). We calculate

Mv = E1Lv − γv + γE3v = E10− γv + γ〈±c,±c, . . . ,±c〉 = w,
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where the vector w has jth component

wj =

{
0 if cp(xj) /∈ ∂S,
−2γc if cp(xj) ∈ ∂S.

since γ 6= 0, Mv 6= 0.

Figure 3 illustrates the difference between Theorem 3.4 and 3.5.
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Fig. 3: Narrow bands of grid points surrounding the open black curve S. Left: The
figure shows a vector v of ones at each grid point. Middle: with Neumann boundary
conditions, the figure shows −Mv = 0 = 0v at each grid point. It is a multiple of
v and thus v is an eigenvector. Right: with Dirichlet boundary conditions (right),
the figure shows −Mv = −w, evidently not a multiple of v, and hence v is not an
eigenvector. The computations are done with negative sign −Mv, to relate back to
the original eigenvalue problem (1).

Note Theorem 3.5 does not itself imply that M is nonsingular in the case of an
open surface with Dirichlet boundary conditions. Nevertheless, we hypothesize that
M is nonsingular in such cases based on numerical observations such as a reasonable
condition number of the matrix. In the next section, we will see that the explicit
inverse of M is not required in our implementation, further avoiding any issues that
may occur if M is close to being singular.

4. Implementation. Once the matrix M in (4) is computed, we can use the
Matlab command “eigs” to compute the eigenvalues and the corresponding eigen-
vectors (u in vector form). Note that the matrix M is a sparse, nonsymmetric matrix.
The eigs command calls the ARPack software which uses Arnoldi iteration to com-
pute the eigenvectors. The idea is similar to power iteration, where we start with a
random vector v, and iteratively compute Mv,M2v,M3v, ...,Mn−1v. These form a
Krylov matrix [

v Mv M2v · · · Mn−1v
]
.

Arnoldi iteration orthogonalizes this column space through Gram–Schmidt orthogo-
nalization [15]. This sequence converges to the largest eigenvector vmax corresponding
to the largest eigenvalue. However, we want the 50 smallest-in-magnitude eigenvalues,
which forces us to compute the largest eigenvectors for the inverse of M . This requires
us to solve the subproblem Mvn = vn−1 every step of the Arnoldi iteration. In the
implementation, the shifted inverse iteration method is used and solves

(7) (M − σI)vn = vn−1

every iteration. The shift σ alleviates the complication associated with singular M .
The default method used by eigs for solving the linear system (7) is Matlab’s

backslash operator. Since M is a nonsymmetric matrix, the LU solver is used. This
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direct method does not take advantage of the sparsity of M , and exhausts available
memory for a modest ∆x = 0.0125 for solving the eigenvalue problem on a sphere
of radius 1. To resolve finer grids for accurate computation using smaller memory
space, we implemented an iterative solver using GMRES to solve the subproblem (7).
Incomplete LU (ILU) factorization was performed for preconditioning, which was
essential for the solution to converge in a reasonable amount of time. Note that the
algorithm was applied to −M since we have −∆s from (1). The difference in runtime
of computing the Shape DNA of a sphere with ILU preconditioner is tabulated in
Table 1. The modified iterative solver was tested on a Linux machine with a 4-core
Intel Core Processor (Haswell) with 16 GB of RAM.

Table 1: Runtime of computing Shape DNA of a sphere. ILU includes the total of
pre-computing the preconditioner as well as solving the system.

∆x No preconditioner GMRES + Incomplete LU
0.05 1047.5 s 132.7 s
0.1 139.8 s 21.6 s
0.2 29.8 s 7.5 s

Table 2: RAM usage percentage when computing sphere Shape DNA.

∆x Direct solver (%) Iterative solver (%)
0.0111 N/A 88
0.0125 96.4 71.9
0.025 40.9 17.6
0.05 9 7.4
0.1 6.7 5.9
0.2 6.6 7.2
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Fig. 4: Log-log scale plot of runtime comparison between indirect and direct eigenvalue
solvers. The direct solver outperforms the indirect solver in terms of speed. However,
for ∆x = 0.0125, the direct solver runs out of memory and fails to complete the
computation.
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Fig. 5: Memory usage comparison between indirect and direct eigenvalue solvers. The
indirect solver outperforms the direct solver for ∆x ≤ 0.05. However in both cases, as
∆x becomes finer, the memory usage increases rapidly.

We emphasize the trade-off between runtime and memory usage for the smaller
∆x. As plotted in Figure 4, the iterative approach is slower than the default direct
approach. In Figure 5, we compare the percentage of RAM usage of each solver. The
direct solver uses almost all the available memory when ∆x = 0.2/16, whereas the
indirect solver exhibits a slower increase for finer values of ∆x.

5. Numerical Experiments.

5.1. Error convergence study. We hypothesize that the error in computing
the nth eigenvalue λn of the LB operator using the closest point method behaves like
C(n)∆x2. Here ∆x is the grid size used in the finite difference scheme, and C(n)
is some constant associated with nth eigenvalue. The constant C(n) grows with n
because higher eigenvalues are associated with more oscillatory eigenfunctions, so finer
grid is required to resolve the increasing oscillations. Therefore, for a fixed ∆x, we
expect the error to increase as n increases. On the other hand, for a fixed truncated
spectrum of λ1, . . . , λ50 (the Shape DNA), we expect second-order convergence of
errors as ∆x decreases. This is because the closest point method is based on a second-
order accurate discrete Laplacian and on the choices described in [12, 3].

For our first experiment, we computed the Shape DNA of a unit sphere numer-
ically, and compared with the analytic values, which are known to be n(n + 1) with
multiplicities 2n+ 1 for n ∈ N [2]. Figure 6 shows second-order convergence when the
error on the vector of Shape DNA is computed in the max norm ‖·‖∞ in R50. Similar
results are observed in other norms or for the errors in individual eigenvalues (e.g.,
[7]).

5.2. Rotational Invariance. We also test the rotational invariance, which is
one of the isometry properties of the spectrum. However, the closest point method
uses a uniform Cartesian grid and it is possible the numerical solutions are influenced
by that grid. As far as we know, this question has not been carefully studied in
the literature. We experiment with rotating both open and closed surfaces (which
are represented via the closest point method) by π

5 ,
π
4 ,

π
3 and π

2 . We compute the
Euclidean difference (in R50) between the truncated spectrum of the rotated and
non-rotated case. We expect that this error converges at second-order (the design
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Fig. 6: Log-log scale plot of ‖·‖∞ error in computing the Shape DNA of a sphere. The
errors align with the red dotted line of slope 2, indicating second-order convergence.

order of the method) as ∆x→ 0
Figures 7 and 8 show the results for an ellipsoid and hemisphere. These confirm

the expected second-order accuracy. In almost all cases, no significant effect on the
rotation angle is observed. The one slightly anomolous case is π

2 of the ellipsoid; where
the errors are very similar to no rotation. We suspect that this is due to the fact that
the grid rotated by π

2 aligns well with the grid with no rotation.
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Fig. 7: Ellipsoid spectrum exhibits a second-order convergence for various angles,
demonstrating rotational invariance.

5.3. Scaling Invariance. As mentioned in Definition 2.1, we scale the eigen-
value spectra by the first nonzero vector to ensure the Shape DNA is invariant to
different scales of shapes. For example, as ∆x→ 0, a sphere of radius 1 should have
the same Shape DNA as the sphere of radius 2.

We test this in practice: the error convergence plot over ∆x was generated using
a torus of minor radius 0.5 and major radius 1, and a torus of minor radius 1 and
major radius 2. The Euclidean norm of the difference between the two Shape DNA
vectors was calculated over varying grid sizes ∆x. In Figure 9, we observe second-order
convergence.
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Fig. 8: Rotational invariance test for a hemisphere with Neumann (left) and Dirichlet
(right) boundary conditions. The results exhibit the expected second-order convergence
of error.
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Fig. 9: Computation illustrating scale invariance on torus. The error between the
Shape DNA of two Tori of different scales shows second-order accuracy. The red
dotted line indicates slope 2.

6. Multidimensional Scaling Plots. It is not clear how to visualize the sim-
ilarities between surfaces if we are given vectors of Shape DNA of different surfaces.
Therefore, we examine the similarities through multidimensional scaling. Multidi-
mensional scaling is a non-supervised learning algorithm that takes in objects with
many features and clusters them through nonlinear dimension reduction, as discussed
in the paper by Roweis and Saul [11]. The algorithm achieves this by minimizing the
cost function

(8) f(Ẑ) =
n∑
i=1

n∑
j=1

d3(d2(ẑi − ẑj)− d1(x̂i − x̂j)).

Ẑ denotes a m×n matrix composed of n vectors ẑi in Rm. This algorithm directly
minimizes the distance between objects in Rm (ẑ-space which is the space we want
to visualize, typically R2 or R3) and the objects in the original space x̂ (R50 since
Shape DNA vectors in R50). We can use different metrics when measuring distances
in the x̂-space and ẑ-space. This is reasonable because often the two spaces are in
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different dimensions (x̂-space will usually be in a higher dimension). In (8), d1 is the
high dimensional distance function that measures the pairwise distance of objects in
the original space (R50). The distance function d2 measures in the visualization space
(either R2 or R3). Another distance function d3 compares the objects in the original
space and the visualization space.

First we compute the spectra of different surfaces. Then we can compute the
dissimilarity matrix D which contains pairwise distances between every spectrum. In
other words, D contains the distances between objects in the original space x̂. For the
results below, the standard Euclidean distances were used for all three metrics d1, d2

and d3. Then, we use the Matlab command mdscale to run the multidimensional
scaling algorithm and obtain the objects’ locations on the 2D or 3D plot such that
the vector distances in R50 between the Shape DNA’s are reflected on the plot.

6.1. Torus Experiment. We test a simple notation of similarity: the thickness
of tori. We expect tori of similar thickness to be clustered together in the MDS plot.
The tori were labelled form 1 to 6, thickest to thinnest. Major radius was fixed to
1 and minor radii were 0.4, 0.3, 0.2, 0.15, 0.1 and 0.05. The shapes were computed
using the grid size ∆x = 0.05 such that the thinnest torus can be properly resolved
by the closest point method.
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Fig. 10: Torus MDS Plot. We observe the thickness of the torus varying on the
horizontal axis – from the thickest torus on the left-most corner to the circle on the
far right.

The MDS plot of this experiment is shown in Figure 10. Between ‘torus 1’, ‘torus
2’, ‘torus 3’, and ‘torus 4’, the minor radius decrements by 0.1 where as for the rest,
it decrements by 0.05. However, we observe a more distinct clustering for the thicker
tori. One hypothesis is that the thickness of ‘torus 5’ and ‘torus 6’ is still poorly
resolved by the given grid size, ∆x = 0.05. Also note that the vertical dissimilarity
distance scale is smaller than the horizontal scale by magnitudes. While it may seem
that 4 and 5 are oddly far apart, their horizontal distance is reasonable. The thinnest
‘torus 6’ is closest to the circle, which is an expected clustering. This experiment
demonstrates that the MDS plots are able to capture thickness of objects.

6.2. Holes on Sphere Experiment. We test various sizes of holes on a unit
sphere. We call these shapes “sphere rings”; examples are shown in Figure 11 (left).
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Sphere ring 1 and 2 are spheres with small punctures with radii 0.05 and 0.1. Sphere
ring 4 and 5 have big holes with radii 0.90 and 0.95, close to that of a unit hemisphere.
Sphere ring 3 has a medium sized hole with radius 0.5. The surface labelled ‘ring’
is created by removing top and bottom caps from a sphere, with radii 0.3 and 0.5
respectively. Neumann boundary conditions were imposed on the open surfaces.1 Our
hypothesis is that Shape DNA of the sphere rings with Neumann boundary conditions
will be closer to that of the closed sphere. Thus we expect that 1 and 2 will cluster
with the sphere, 4 and 5 with the hemisphere, 3 in the middle and the ring with the
Möbius strip.

In Figure 11, MDS better recognizes global similarities than particularities. For
example, the general shape of a sphere, hemisphere and ring is distinguished whereas
the differences in the openness and the orientation of objects are more subtle.
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Fig. 11: Sphere Ring experiment. Left: example surfaces. Right: MDS plot. Sphere
rings with small holes are clustered with the sphere. Sphere rings with big holes are
clustered with the hemisphere. Möbius strip and ‘ring’ are clustered together.

6.3. 2D versus 3D multidimensional scaling. We demonstrate the potential
effectiveness of a 3D plot. With higher dimensional plots, the optimized location of
each surface in the corresponding space contains more information about Shape DNA,
although it may be harder to visualize. Our hypothesis is that adding a third axis
to the plots will capture additional characteristics of the surfaces as they can vary
along more axes, with each axis representing a characteristic. In the 2D MDS plot of
Figure 12 (left), the horizontal axis scale is much more significant. We observe that
the closed surfaces (apple and sphere) are at the left and the open surfaces scatter to
the right. However, the boundary conditions are not distinguished and it is unclear
how the surfaces vary along the vertical axis. Distinguishing boundary conditions is
crudely achieved by the 3D plot in Figure 12 (right) as each axis shows a unique type
of characteristic that the surfaces vary upon. Note that in the 3D plot, “apple” and

1Open surfaces with Neumann boundary conditions and closed surfaces both have zero as their
first eigenvalue in the Shape DNA. This is not true of open surfaces with fixed Dirichlet boundary
conditions. The different boundary condition can be distinguished in MDS plots. How this affects
clustering will be explored in the next section.
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Fig. 12: 2D MDS plot (left) and 3D MDS plot (right). In the 2D plot, closed surfaces
are on the left and open surfaces scatter to the right. The 2D MDS plot captures
the openness of the surfaces along the horizontal axis. In the 3D plpt, on the z-axis,
boundary conditions of open surfaces are roughly distinguished.

“sphere” are not applicable when distinguishing different boundary conditions along
the z-axis.

The results in Figure 13 show how the MDS plot roughly captures three char-
acteristics. The tested shapes are two sphere rings with Dirichlet and Neumann
conditions, two hemispheres with Dirichlet and Neumann conditions, a sphere and an
apple. These surfaces differ by their openness, boundary conditions and the general
geometry.

6.4. Collection of Shapes. Finally, we compute the spectra of seemingly un-
related objects and try to uncover similarities using MDS. Figure 14 shows outlines of
shapes of some triangulated animals. Figure 15 shows the 2D and 3D MDS plots for a
collection of various shapes including some of the animals. The hypothesis given this
collection of shapes was that the objects with boundaries (Möbius strip and sphere
ring) would cluster as would round objects (torus, apple). This is indeed the case
in Figure 15. The triangulated ‘pigloop2’ (a coarsely-trangulated pig that has been
smoothed twice by the Loop triangle subdivision procedure) stands somewhat alone,
in between the two clusters.

To investigate further, we add more triangulated objects (the original coarse pig–
‘annie’, ‘pigloop1’ smoothed by one Loop subdivision, and the reasonably-smooth
Stanford bunny). We also add a sphere which we expect to cluster with the closed,
round objects. The result in Figure 16 is as expected, except that the shape ‘annies’ is
far from the other animal shapes. One speculation is that since this particular coarse
triangulation has many sharp edges and corners, it cannot be properly resolved by
the closest point method. Hence, it lies away from the rest of the other pig shapes,
and further away from the round objects. The other reasonably-smooth triangulated
animals lie in between.

7. Conclusions. In this work, we used the closest point method to classify
shapes using their Laplace–Beltrami spectra. We reviewed how the closest point
method is used to discretize the LB operator to obtain a matrix. We showed that the
singularity of that matrix is related to the singularity of the LB operator for closed
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Fig. 13: In the top-left plot of y-x projection of the 3D plot, the x-axis (vertical) distin-
guishes the shapes. In the second y-z projection plot, the z-axis (vertical) distinguishes
the Neumann or Dirichlet boundary conditions. In the third x-z projection plot, the
y-axis (horizontal) distinguishes the open and closed surfaces.

Fig. 14: Triangulated animal shapes

and open surfaces. In practice, we solve the LB eigenvalue problem using Matlab
eigs. We implemented an iterative solver within eigs to handle fine grid sizes in our
computations, without running out of memory.

We performed various numerical experiments to demonstrate the accuracy of
computing the Shape DNA using the closest point method. Then, we used a non-
supervised clustering algorithm known as multi-dimensional scaling (MDS) to cluster
shapes based on their Shape DNA. We observed that the resulting clusters are qual-
itatively reasonable. Using 3D MDS plots, we were able to extract three distinct
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Fig. 16: Clustering a collection of shapes with additional triangulated animal shapes.
The triangulated animals mostly lie in between two main clusters.

qualities of shapes that were chosen artificially in a set of input shapes.
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Appendix A. Shape DNA of a unit circle. We show a simple analytic
calculation of the Laplace–Beltrami spectrum on a circle. The Laplacian operator of
a function v of two variables in polar coordinates is

vrr +
1

r
vr +

1

r2
vθθ
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If consider v as the extension of u : S → R from the unit circle then v is constant in
the r direction. On the unit circle, r = 1 and u is dependent on θ only. So we find the
Laplace–Beltrami operator for the unit circle is uθθ. The eigenvalue problem is thus

u′′ + λu = 0.

For a circle, we impose a periodic boundary condition u(0) = u(2π). Then,

(9)
u(θ) = A cos(

√
λnθ), B sin(

√
λnθ),

λn = n2, n = 0, 1, 2, ...

The Laplace–Beltrami spectrum of a circle is has multiplicity two: 0, 1, 1, 4, 4, 16, 16, ....
These are also the first few entries of the Shape DNA. They are consistent with our
numerical results.
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