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Abstract

Assessing the model fit quality of statistical models for network data is an ongoing and under-
examined topic in statistical network analysis. Traditional metrics for evaluating model fit on tabular data
such as the Bayesian Information Criterion are not suitable for models specialized for network data. We
propose a novel self-developed goodness of fit (GOF) measure, the “stratified-sampling cross-validation”
(SCV) metric, that uses a procedure similar to traditional cross-validation via stratified-sampling to se-
lect dyads in the network’s adjacency matrix to be removed. SCV is capable of intuitively expressing
different models’ ability to predict on missing dyads. Using SCV on real-world social networks, we
identify the appropriate statistical models for different network structures and generalize such patterns.
In particular, we focus on conditionally independent dyad (CID) models such as the Erdos Renyi model,
the stochastic block model, the sender-receiver model, and the latent space model.

1 Introduction

Social networks are ubiquitous in our society, and they represent important interactions among individuals.
The interdependency of entities makes social networks compelling, yet complicated and difficult to analyze.
Many statistical models for network data have been proposed and their mathematical properties have been
examined. For example, the Erdos-Renyi model assumes that every pair of nodes has an equal probability of
forming an edge, while the sender-receiver model assumes each node has its own probability of sending an
edge and that of receiving an edge. However, whether these models actually fit well on real-world network
datasets remains an unsolved issue. In fact, quantitative goodness of fit (GOF) measures for statistical
models on network data have not been considered to a great extent. Current GOF metrics on models for
non-network data fail to capture features of network data. For example, the Akaike Information Criterion
and the Bayesian Information Criterion penalize model complexity, but not only is it difficult to settle on
suitable criteria for complexity but also undesired to penalize for an essential feature of social network data.
Therefore, in this paper, we identify appropriate conditionally independent dyad (CID) models for different
network structures and propose a metric of GOF assessment to evaluate the developed statistical models for
network data.

This paper first introduces, in Section 2, basic concepts and properties of graphs as a data structure,
specifically those frequently used throughout this study. In Section 3, four CID models for network data
analysis are discussed: the Erdos-Renyi model, the stochastic block model, the sender-receiver model, and
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the latent space model. Section 4 describes our initial attempt of developing a GOF metric using cross-
validation and its limitations, followed by our remedy, the “stratified-sampling cross-validation” (SCV)
metric. Section 5 introduces a set of real-world social networks that were analyzed throughout the study.
Section 6 discusses the SCV accuracy results for each network, and Section 7 reports the fit of the best model
chosen according to the results in Section 6. Section 8 generalizes the conclusions of this study. Lastly, we
propose potential future work in Section 9 considering the limitations in our research.

2 Graph Terminology

In this section, we introduce a set of basic graph terminologies to help understand the applications mentioned
in the following sections. A network is mathematically represented as a graph G = (V,E), where V is the set
of vertices (nodes or actors) and E is the set of edges (links or ties) that are either directed or undirected. In
social networks, entities are usually represented as nodes, and a social relationship between any two entities
is denoted as an edge connecting those two corresponding nodes. Note that an undirected edge i− j can
be viewed as two directed edges i→ j and j→ i. For completeness, we note that network datasets often
include weights for edges, which can indicate the strength or valence of the relationships between the nodes.
However, we will not consider weights in this paper.

Furthermore, the adjacency matrix, also known as incidence matrix or sociomatrix, is often used to
represent a finite graph. Let |S| denote the number of elements in set S (i.e. cardinality), and let Ai j denote
the ith row, jth column entry of matrix A. Then, the adjacency matrix is defined as an |V | × |V | matrix A
such that Ai j = 1 if there exists an edge from node i to node j and 0 otherwise. A diagonal entry represents
whether a node has an edge to itself, which we assume does not happen in our study, as we focus on social
networks that represent relationships between people. In fact, often it does not make sense in context for
social networks to have self-edges: e.g. a network about friendships. The following is a simple network: it
has five nodes (‘A’, ‘B’, ‘C’, ‘D’, and ‘E’), and edges are undirected but weighted.

A B C

D E

1 4

2 1

2

3 2

Reciprocity and density are two commonly used descriptive statistics for networks. A dyad is a random
variable defined for each pair of distinct nodes that indicates whether or not there is an edge. We define
a connected dyad as one that has at least one directed edge. Then, reciprocity is simply the fraction of
connected dyads such that it has an edge in both directions. This can be computed as:

Reciprocity =
∑

n
i=1 ∑

n
j=1 Ai jA ji

∑
n
i=1 ∑

n
j=1 Ai j

(1)

where n = |V |. Note that in this paper, if no additional description is provided, n always denotes |V |, the
number of nodes in the network. Reciprocity is frequently used to study complex networks as it gives a sense
of how likely the relationships are mutual rather than one-directional. By definition, an undirected graph has
reciprocity of 1 since a pair of nodes having an undirected edge is equivalent to having two directed edges
in both directions and thus the relationship is mutual.

Density measures how close the number of edges is to the maximum possible number of edges, which
is determined by the number of nodes. The formula for graph density is:
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Density =

{ 2|E|
|V |(|V |−1) undirected graph
|E|

|V |(|V |−1) directed graph
(2)

The higher the density of a network, the more the nodes are likely to be linked to one another. With this
measure we can not only assess how closely knitted a network is, but also easily compare networks against
each other or at different regions within a single network.

3 Conditionally Independent Dyad (CID) Models

In this section, we examine a family of statistical models specifically developed for network data, namely
the conditionally independent dyad (CID) models where dyads are assumed to be conditionally independent
given the model parameters. We denote the probability that an edge from node i to node j exists by pi j.
Again, throughout this study we assume that a node cannot have an edge to itself. That is: for any node i,
pii = 0. Then the likelihood is:

P(A = A(obs)|θ) =

 ∏i< j p
A(obs)

i j
i j (1− pi j)

1−A(obs)
i j undirected graph

∏i6= j p
A(obs)

i j
i j (1− pi j)

1−A(obs)
i j directed graph

(3)

where A(obs) is the observed adjacency matrix, and θ denotes the set of model parameters (so each pi j

depends on θ ).

3.1 Erdos-Renyi Model

The Erdos-Renyi model (ER)1 is the simplest CID model. The model assumes that each pair of distinct
nodes in a network has equal probability p of having an edge. That is: for every pair of nodes i and j where
i 6= j,

pi j = p (4)

When we fit the Erdos-Renyi model to network data, the optimal value of p, the only parameter, is estimated.

3.2 Stochastic Block Model

The stochastic block model (SBM)2 is commonly used for detecting block structures in networks. The SBM
is defined by three components:

1. A number k, representing the number of blocks to be fitted

2. An n-dimensional vector~z, where the ith component zi denotes block assignment of node i

3. A k×k stochastic block matrix M, where Mi j denotes the probability that there is an edge from a node
assigned to block i to a node assigned to block j

where k is a hyperparameter that must be pre-specified, while~z and M are model parameters to be estimated.
The diagonal entries of M are probabilities that nodes assigned to the same block have an edge, while

the non-diagonal entries are probabilities that nodes assigned to different blocks have an edge. In most
applications of the SBM, especially for community detection, it is desired that entries on the diagonal of M
are large and those on the off-diagonal blocks are small. In this case, nodes within the same block are more
likely to be connected compared to those in different blocks. However, there are exceptions (opposite case)
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where nodes in the same block are not expected to be connected while those in different blocks are. In the
scenario of describing marriage relationship between a group of men and a group of women, if each group is
represented as a block in an SBM (so total 2 blocks), then the opposite case holds. What the CIDnetworks
R package does when fitting an SBM is to first, for each node, compute the probability that this node should
be assigned to each of the k blocks (so total k probabilities that sum to 1), and then select the block with the
highest probability as the final block assignment for that node.

3.3 Sender-Receiver Model

The sender-receiver model (SR), which is a special case of the p1 models introduced in Holland & Leinhardt
(1981)3, takes into consideration each node’s tendency to send edges towards others and also that to receive
edges from others. In social network context, these can be thought of as how outgoing an entity is and how
popular to other people an entity is, respectively. The model has two parameters associated to each node i:
β
(send)
i and β

(receive)
i , which represent how likely this node sends edges to others and receives from others,

respectively. The model also has an intercept parameter β0, so there are total 2n+1 model parameters to be
estimated. There are two versions of the edge probability formula for the SR model:

pi j =

 Φ(β0 +β
(send)
i +β

(receive)
j ) probit version

exp{β0+β
(send)
i +β

(receive)
j }

1+exp{β0+β
(send)
i +β

(receive)
j }

logistic version
(5)

where Φ(·) denotes the cumulative distribution function (CDF) of the standard Gaussian distribution.

3.4 Latent Space Model

In some networks, the probability of an edge between two nodes may decrease proportional to some measure
of dissimilarity. Thus, a subset of entities with high number of edges between them may be indicative of a
group of nodes who have adjacent positions in the “social space” of characteristics.

The latent space model (LSM)4 takes account of this factor, assigning each node i to a position in
the Euclidean space z(i) in such a way that the potential strength of a dyad of nodes i and j decreases
proportionally to the distance between z(i) and z( j). So the edge probability between nodes i and j depends
on their positions in the (unobserved) latent space. The LSM also has two versions of edge probability
formulas:

pi j =

{
Φ(µ +Xi j +Ui j) probit version

exp(µ+Xi j+Ui j)
1+exp(µ+Xi j+Ui j)

logistic version
(6)

where Xi j denotes edge covariates (though we do no consider them in this paper), Ui j =−||z(i)− z( j)||, and
again Φ(·) denotes the standard Gaussian CDF.

An advantage of this method is that it can provide visual (if the dimension of the latent space is ≤ 3)
and interpretable model-based spatial representations. Figure 1 shows a nice example5: the left shows the
fitted latent space positions zi, and the right shows the original network data. Note that the latent space’s
dimension is a hyperparameter which should be pre-specified.

3.5 Suitability of Cross-validation for CID Models

From CID models, we have an advantage of learning about how nodes relate to one another. For example,
entity relations are modelled probabilistically in an LSM. That is, the observation of an edge from node i to
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Figure 1: Latent Space Model Example Plot

node j and also from node j to node k suggests that nodes i and k are not too far apart in the social space,
making them more likely to have an edge.

Likewise, the interdependence between edges is implicit in CID models. If a subset of edges in the graph
are missing at random, we do not need further imputation to estimate the model parameters. Again referring
to the LSM, we assume that each node i has position z(i) on the unobserved latent space. The edges in
the network are presumed to be conditionally independent given the model parameter (positions), and the
probability of an edge connecting two entities can be modelled as a function of their positions. Without any
additional computation, we can utilize this function to predict the missing entries in the adjacency matrix of
a graph.

For this reason, cross-validation or out-of-sample prediction can be considered a natural approach to
assess GOF for CID models. There are some previous work that introduce cross-validation methods for
statistical models for network data. For example, Dabbs (2016)6 introduces latinCV that assigns each edge
indicator, or dyad, to one of the K folds, and then run the traditional K-fold cross-validation, where for each
fold, that fold acts as the test set and the others are used for training. The fold assignment in latinCV is done
by:

1. Construct a fixed n× n fold assignment matrix where each row and column has an equal number of
occurrences of each fold.

2. Then, permute the rows and columns randomly to get the finalized fold assignment matrix.

Note that the latinCV metric does not explicitly take the original graph’s density into consideration, but
rather focuses on having each row and column appear in the same number of times in each fold. As we
discuss in Section 4, many real-world social networks have extremely low density, so purely random fold
assignments might not reasonably maintain the original density. Under this motivation, we chose to base
our GOF metric on a cross-validation approach, introduced in the following section.

4 GOF Measure: Stratified-sampling Cross-validation (SCV)

In this section, we propose a self-developed goodness of fit measure for statistical models on network data.
As previously mentioned, defining a criterion for model fit on network data is a difficult problem.

First, we discuss a self-developed procedure naiveCV that is similar to traditional K-fold cross-validation
and its shortcomings. In this method, around 20% of the entries of the adjacency matrix are randomly sam-
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pled and set to be missing entries (NA). Then, the model is fit on the remaining entries and estimates of the
model parameters are obtained. Based on the probabilistic output of the fitted model, for each node, predic-
tion on whether or not there should be an edge is performed using the edge probability. More specifically,
for each missing entry, we compute the estimated edge probability of the corresponding pair of nodes using
the parameter estimates and formula according to the model, and predict by running a Bernoulli trial using
that probability. This 3-step procedure of deleting, fitting, and predicting is repeated K times, and then the
model’s prediction accuracy is computed as the average of the K prediction accuracies.

This naiveCV approach, which is similar to latinCV but does not necessarily assign each dyad to exactly
one fold, is simple and intuitive, but it had a limitation. Since the majority of the collected data and real-
world social networks in general are sparse, most entries of their adjacency matrices were 0’s. To take
account of this fact we compared the previously-mentioned prediction to zero imputation which simply
always predicts as 0, and observed that the latter yields a much higher prediction accuracy. One problem is
that an extremely high proportion of the deleted entries were 0’s: making most of the entries in the test set
to be non-edges, which artificially increases the density of the subnetwork corresponding to the training set.
So a model fitted on an extremely sparse (sub)network inevitably does well in the prediction task. Another
issue was that the density of the subnetwork is not reasonably similar to that of the original network since
the sampled entries are randomly selected from a bucket where 0’s are dominant over 1’s. Hence the model
fitted on the subnetwork is not a good approximation, or simulation, of the model being fitted on the original
network.

Notice that the only difference between latinCV and naiveCV is that the former ensures disjoint training
set assignment. That is: in naiveCV, it is possible that a dyad is assigned to multiple folds. The folds being
disjoint does not help in maintaining the density of the original graph, so either metric suffers from the
issue of the test set being overly sparse. Such limitations motivate our “stratified-sampling cross-validation”
(SCV) metric, which incorporates an alteration in the sampling procedure. The main objective is to retain
a balanced proportion of the 0’s and 1’s in the sample, so that density is reasonably preserved even for the
subnetwork. For every iteration, we randomly select an equal proportion of edges (i.e. 1’s) and non-edges
(i.e. 0′s) from the adjacency matrix, using approximately 20% in our simulation. Again, the sampled entries
are set to be missing values, and the model is fit on the remaining dyads. Prediction is performed in the same
way as before of running a Bernoulli trial using the estimated edge probability for the corresponding pair of
nodes. Using this method, the dominance in overall prediction accuracy of zero imputation was moderately
controlled for. The procedure of SCV is shown in Figure 2.

To examine the large contrast between prediction on edges compared to non-edges, we recorded results
separately for the two cases. Also, due to the randomness involved in the process of sampling the entries
and fitting the models, the ranking of accuracies across models can differ among iterations. Therefore,
we designed our metric in such a way that each trial runs 10 iterations of this process, and the average
of the 10 accuracy values is computed as the final result of that trial. We use this prediction accuracy
as a representative measure of how well the model fits the network. Note that since we are predicting
probabilities, perhaps the log-loss metric would be more critical, or evaluative, because it incorporates
the uncertainty in our predictions. But we also think that a model evaluation metric should be easy to
interpret, especially because we will compare across several models. Hence we use prediction accuracy as
our performance metric. The results shown hereafter are based on five such trials, which contain total 50
iterations.

5 Network Data Description

In the following section, we introduce the six real-world social networks analyzed in this study. Table 1
contains the summary statistics for each of the six networks. Three out of the six networks have reciprocity
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Figure 2: Stratified-sampling Cross-validation (SCV) Procedure

of 1 and thus are undirected, while the other three are directed. Most of the networks are extremely sparse,
and the Freshmen Network is the only graph that has density not below 0.15. This feature is not surprising
since the majority of real-world social networks have very low density. The following subsections report the
contexts and exploratory data analyses of the networks.

Network Number of Nodes Number of Edges Density Reciprocity
Highschool Network 70 366 0.076 0.503
Karate Club Network 34 78 0.139 1

Oxford Preschoolers Network 19 41 0.120 0.195
Freshmen Network 29 282 0.347 0.567
Dolphins Network 62 159 0.084 1

Twitter Retweet Network 96 117 0.026 1

Table 1: Summary Statistics of Each Social Network

5.1 Highschool Network

The Highschool Network7 describes friendships among boys in a small high school in Illinois. Each of the
70 boys was asked in Fall 1957 and then later in Spring 1958 to report the boys whom he considers his
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friends. For each of the directed edges, the weight is 1 if that report was made only once, and 2 if that report
was made in both surveys. The cited paper contains information about weights, and again, in this paper, we
will not consider edge weights in our visualizations and modeling.

Figure 3 shows a plot of the network. Note that among the 366 edges, 226 edges have weight 1, and
the other 140 have weight 2, so it is relatively rare for a relationship to exist in both surveys: that is, to last
longer. Moreover, the network has a triangular structure in such a way that visually each node can be seen
as being in one of the three vertices of the triangle.

Figure 3: Highschool Network

5.2 Karate Club Network

The Karate Club Network data8 were collected by Wayne Zachary in 1977. They describe an absence or a
presence of friendship outside of the university karate club activities between each pair of members. The
34 nodes represent the members of this karate club, and the 78 non-weighted edges represent the friendship
between the corresponding two members.

By the nature of this network which aims to determine the existence of mutual friendship, each edge in
this network is undirected. Figure 4 shows a plot of this network.

5.3 Oxford Preschoolers Network

The Oxford Preschoolers Network9 was obtained from a series of ethological observations over preschool
children in Oxford, England. These data were derived from observing a group of 19 boys competing for
a toy. Each competition occurred between two individuals, and results recorded a “loser” and a “winner”
in each incidence, where the “winner” won the toy. This network contains multiple occurrences of such
competitions. Every node is labelled by the corresponding child’s initials. Each of the 41 directed edges
represents a dominance relationship between the two children who competed for a toy. This network con-
tains weights showing how many times the same incidence (the competition between the same two kids with
the same winner) happened, which we do not consider here.

The reciprocity of the network is also very low (see Table 1), meaning that relationships described in this
network are barely mutual, so it is hardly likely that a child i who has lost to another child j in a competition
has beat j in a different competition. Hence, we believe the hierarchical structure for dominance is highly
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Figure 4: Karate Club Network

consolidated in this society; “winners” tended to remain their status and this relationship was not likely to
be overturned. In Figure 5, we can also observe that some boys, NP and RC, decided not to engage in the
competition at all.

Figure 5: Oxford Preschoolers Network

5.4 Freshmen Network

The Freshmen Network10 describes friendship relationships among freshmen studying Sociology in the Uni-
versity of Groningen during 1998-1999. These social network data contain information about 34 freshmen
and how intimate each of them considers the other 33 colleagues.

Each directed edge has weight defined as (When collecting the data, each student reported each relation-
ship by choosing one of these five): 1 for “Best friendship”, 2 for “Friendship”, 3 for “Friendly relationship”,
4 for “Neutral relationship”, and 5 for “Troubled relationship”.

Note that edges with weight 4 or 5 indicate non-intimate relationships that are neutral or hostile. So
we only analyze the network only containing edges with weight 1, 2, or 3, which all indicate intimacy of
different levels, and do not consider those weights. In this paper, the term “Freshmen Network” (including
those in Table 1 and Figure 6) refers to this subnetwork, and not the original network. Figure 6 shows a plot
of the subnetwork.
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Figure 6: Freshmen Network

5.5 Dolphins Network

The Dolphins Network11 describes the associations among 62 bottlenose dolphins. Each of the undirected
and unweighted edges indicates frequent associations between the corresponding two dolphins, where for a
pair of dolphins a and b, the strength of their association is depicted by the half-weight index (HWI):

HWI(a,b) =
X

X +0.5× (Ya +Yb)
(7)

where X is the number of schools where dolphins a and b were seen together, Ya is the number of schools
where dolphin a was sighted but not dolphin b, and Yb is the number of schools where dolphin b was sighted
but not dolphin a. More specifically, whether or not a pair of dolphins has an edge was determined by the
following 3-step process12:

1. Randomly permute individuals within schools (20000 times), keeping the school size and the number
of times each individual was seen constant.

2. After each permutation the HWI for each pair is calculated, the observed HWI is compared to the
20000 expected HWI values.

3. If more than 95% of the expected HWI values are smaller than the observed HWI, the pair of dolphins
was defined as a preferred companionship and has an undirected edge. Otherwise, the pair does not
have an edge.

Figure 7 shows a visualization of this network, in which the node size reflects the degree of each node
in this network graph.

5.6 Twitter Retweet Network

The Twitter Retweet Network13 contains information about 96 Twitter users and 117 retweets. The network
data were collected over social and political hashtags on a social networking site, Twitter. Each edge in this
graph is undirected and unweighted, indicating that the corresponding two users have retweeted each other
on posts.

79



Figure 7: Dolphins Network

One significant structural feature in the network are cliques (Figure 8), which are groups of users that
have all mutually retweeted each other. They potentially represent an interest cartel, which can be important
information for applications like personalized recommendations.

Figure 8: Twitter Retweet Network

6 Stratified-sampling Cross-validation Results

For each of the networks discussed in Section 5, four CID models were tested in SCV: the Erdos-Renyi
model (ER), the stochastic block model (SBM), the sender-receiver model (SR) and the latent space model
(LSM). Each fit had five SCV trials, where each trial runs 10 iterations of the procedure of sampling, fitting,
and predicting. As mentioned before, the ER model has only one parameter p and hence is considered
the simplest CID model. Therefore, it is expected that non-ER models, if appropriate for a network, have
better prediction accuracy than the ER model’s since they should identify certain structures or patterns in
the network that the ER model is not capable of capturing.

Figure 9 shows the SCV results for all six networks. Each boxplot is showing five SCV trials, where
each of the five values is an average of ten iterations. Note that the red boxplots represent prediction ac-
curacies on non-edges, and the blue boxplots describe those on edges. We observe a big difference in the
prediction accuracies on edges from those on non-edges. Notice that the typical accuracy for non-edges
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range approximately from 0.6 to 1, while that for edges range only from 0 to 0.45. Overall, there was a
tendency of this discrepancy to decrease as the network is more dense. Considering the high sparsity of the
examined networks, we find it more meaningful to examine prediction on edges. Moreover, our primary in-
terest lies on the existence of interaction between nodes to understand how entities are related to each other.
Therefore, we focus on the prediction accuracy on edges (i.e. 1’s in the adjacency matrix) when choosing
the final model to fit for each network.

Figure 9: SCV Results on Each Social Network (Red: prediction on non-edges, Blue: prediction on edges)

The top leftmost plot in Figure 9 displays the SCV results for the Karate Club Network. We first fit the
SBM with both 2 and 3 blocks and visualized the block assignments for comparison. It turns out that the
SBM with 3 blocks looked relatively more reasonable than than the SBM with 2 blocks, which did not tell a
sensible story about the formations of the relationships. Hence, 3 was selected as the number of blocks for
the SBM in the SCV for this network. The prediction accuracies on edges range from 0.15 to 0.3, with those
for the SBM and the SR model overlapping with each other. The relatively low prediction accuracies yielded
by the ER model suggests the existence of a clear pattern or structure in the network. It is also interesting
that the ER model has the highest mean prediction accuracy on non-edges but the lowest on edges. Overall,
both the SBM (3 blocks) and the SR model work similarly well compared to the other two. However, since
the SR model has larger variation, we consider the SBM the winner model.

The Freshmen Network is the only network among the six analyzed in this study in which the density
is greater than 0.3. An interesting result is that the overall gap between the prediction accuracies on the
non-edges (red) and those on the edges (blue) is considerably small compared to the other networks, which
are much more sparse. This feature indicates that SCV tends to yield better prediction accuracies on edges
for denser networks. Another important fact is that unlike most of the networks (except for the Highschool
Network), this network has a clear winner according to the prediction accuracy on edges: the SR model.
The SR model not only has the highest mean accuracy but also the smallest variation, suggesting that the
parameter estimates are stable relative to other models. So compared to block structures (SBM) or similarity
among nodes (LSM), personal tendencies of forming friendships with other entities have a huge influence
on the formation of all the relationships within this social network.

In the SCV result plot for the Twitter Retweet Network, we observe that the mean prediction accuracy
on edges is extremely low. Overall, the boxplots for all four models overlap each other, indicating that there
is no significant difference between prediction performance across the models. Even so, we observe that the
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mean accuracy of the ER model is one of the lowest. This result suggests that the Twitter Retweet Network
has a clearly defined network structure. The SBM fit on 2 blocks also seems to perform as bad in terms of
mean prediction accuracy, with larger variance and wider range. From this we can infer that there might
not be a conspicuous community or block structure within this network. On the other hand, the LSM with
2 dimensions and the SR model seem to perform relatively better. Although the mean prediction accuracy
for these two models are moderately similar, we must take note that in the simulations, the LSM produced
the largest variance. Not only is the spread wide within the interquartile range, but also the longer upper tail
implies that the distribution of the prediction accuracies are skewed.

The bottom leftmost plot in Figure 9 shows the result for the Dolphins Network. The prediction ac-
curacies on edges range from 0.08 to 0.14, excluding outliers. Since the LSM has lowest mean prediction
accuracy on edges and largest variation for accuracies on non-edges, it fits badly on this network. The
relatively high prediction accuracies of the ER model may suggest that there is no clear structure for this
network. The SBM and the SR model have similar mean accuracies to the ER model’s. Since no model out-
performs the ER model, one might conclude that there is no clear structure in the Dolphin Network that the
non-ER CID models can capture and produce good fits. But for the sake of selecting the final model, con-
sidering the relatively small variation for prediction accuracies on edges and the high prediction accuracies
on non-edges of the SBM, we finally decide to fit an SBM (2 blocks) on the Dolphins Network.

Just like for the Freshmen Network, there is a clear winner model for the Highschool Network, at least
according to the SCV accuracies: the SBM with 3 blocks. As shown in the plot of the original network
(Figure 3), there is a clear triangular structure within the graph, and thus it is not surprising that the 3-
block SBM outperforms the other models. Furthermore, the ER model has the lowest mean accuracy for
prediction on edges. Such a result suggests that there is some clear structure within the interactions among
the highschool students in this network, and as just mentioned, it turned out that the SBM captures that
structure the best among the non-ER models. Another interesting fact is that this network is the only one
where the SBM outperforms the SR model in prediction on edges. This network is an exception to the
general trend of the SR model performing at least as well as the SBM for most cases, which will be discussed
more later on.

For the Oxford Preschoolers Network, in general the prediction accuracies range from 0.1 to 0.2, except
for the ER model’s. For this network, the ER’s performance is notably low compared to rest of the models.
So, we may infer that structural components in the Oxford Preschoolers Network are considerably clear.
Simulations of the SBM were conducted using 2 blocks since we observed that doing so produces a better
fit than using 3 blocks on the original network. Nevertheless, the SBM does not show high performance
when compared to the LSM and the SR model. Although the ranges of the three boxplots for the LSM, the
SBM and the SR model overlap, we observe distinct difference in the mean prediction accuracy. The SR
model performs second best, but the boxplot displays a large degree of variation which could be an indicator
that model fit is actually bad and induces very unstable parameter estimates. The LSM with 2 dimensions
outperforms the rest of the models for the Oxford Preschoolers Network. It not only has the highest mean
prediction accuracy, but also has the smallest variation within the computed accuracies although there is an
outlier in the upper tail.

7 Model Fit Results

For the non-ER models (i.e. SBM, SR, and LSM), given the parameter estimates, we display the model fit
via the following plots:

• SBM: We set a color for each block, and color each node using the color corresponding to the block
it is assigned to. It is expected that nodes with the same colors are somehow clustered so that block
divisions are clearly visible.
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• SR: We draw two plots, where in the first plot the node size is proportional to the fitted sender
parameters, and in the second plot the node size is proportional to the fitted receiver parameters. It
is expected that each node has node size reasonably proportional to the number of incoming edges
(receivers plot) or that of outgoing edges (senders plot).

• LSM (2-dimensional): We plot the latent space positions in two dimensions, and add a line between
every pair of points that correspond to a pair of nodes that have an edge. It is expected that points
close to each other in the latent space tend to be connected, while points far away are not.

Based on the SCV results displayed in the boxplots, we chose one winner model for each network. The final
model fit results are shown in the following.

7.1 SBM (3 Blocks) Fit on Highschool Network

According to Figure 3, the Highschool Network has a reasonably clear cluster structure. The entire network
has a shape similar to a right triangle, where nodes located near each of the three points of the triangle
naturally form a community. Together with the SCV result of the SBM with 3 blocks being the clear winner,
we decided the 3-block SBM as the final model for this network.

Unsurprisingly, an SBM with k = 3 blocks was a good choice: the fitted block assignments are similar
to what we expected when we visually saw the original data, as shown in Figure 10 below. The three
communities are formed near the three points of the triangle that we thought of, and more importantly,
nodes in the same blocks are connected much more frequently compared to nodes in different blocks. One
interesting result is that most of the 70 probabilistic block assignments are of probability 1, so the block
memberships were assigned with great levels of certainty.

Figure 10: Block Assignments (k = 3) on Highschool Network

7.2 SBM (3 Blocks) Fit on Karate Club Network

As mentioned in Section 6, the choice of 3 as the number of blocks in the SBM for this network was only
because the 3-block fit looked relatively better than the 2-block fit, not because the former captured clear
clusters. The visualization denoted by 3 different colors (Figure 11) does show a cluster pattern at the upper
right corner (denoted by blue nodes); however, we fail to detect cluster patterns for pink and green nodes.

Based on the model fitting plots and block assignments obtained so far, the SBM with 3 blocks is not
suitable for identifying clusters for the Karate Club Network. Instead, it identifies club members who are in
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the core of this network from those who are in the periphery. For example, within-group edge density for
group 1 (pink nodes), group 2 (blue nodes) and group 3 (green nodes) are 1, 0.25 and 0.077, respectively. It
is also interesting to look at the edge probabilities. In this 3-Block SBM, the within-group edge probability
for group 1 (1.00) is the highest, and that for group 2 and group 3 respectively decreases to 0.293 and 0.099.
The lowest between-group edge probability exists between group 2 and group 3, 0.013; while the highest
between-group edge probability is for group 1 and group 3, with a probability of 0.318. These quantitative
measures well present the plot structure but with higher accuracy than visual estimation.

Figure 11: Block Assignments (k = 3) on Karate Club Network

7.3 LSM (2 Dimensions) Fit on Oxford Preschoolers Network

After fitting an LSM with 2 dimensions on the Oxford Preschoolers Network, we plotted the obtained mod-
els parameters: positions on dimension 1 and dimension 2. To enhance interpretability, arrows indicating
directed edges in the original network were added to the plot (Figure 12).

One eye-catching trait in Figure 12 is that nodes placed close on the latent space tend to be actually con-
nected in the original network. On the bottom right corner of the plot, we observe a cluster of nodes placed
close to each other. Toward this corner of the plot, there is an increase in the number of observed edges.
However, as nodes get placed further away from this corner, the number of edges decreases. Two nodes
that have no connections in the network are indeed located furthest away from the rest of the preschoolers.
Therefore, the LSM captures this network structure well and thus produces good model fit results.

7.4 SR Fit on Freshmen Network

Figure 13 shows the two plots corresponding to the fit of the SR model on the Freshmen Network. A
structural feature of this network is that most of the nodes are highly interconnected among one another
at the central part of the plot, and the remaining few nodes such as Node 9 and Node 26 are in the outer
boundary. Those few nodes in the outer boundary do not have many outgoing edges compared to the central
nodes, meaning that they are less outgoing than the majority of the entities.

According to Figure 13, the sender parameter estimates of the central nodes are considerably large
compared to the few outer nodes. On the other hand, the relative gap of the receiver parameter estimates is
very small. These plots suggest that the central nodes are much more active in sending (i.e. request social
relationships), while both the central and outer nodes are similarly active in receiving such requests. This
implication can indeed be verified by the degrees of each node, and thus the SR model successfully conveys
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Figure 12: Latent Space Positions for Oxford Preschoolers Network

a story behind the formation of the interactions in this social network. Such a result is consistent to our
common sense in the real world as well. This network deals with college freshmen in the same department,
so it has not been long since these students met one another in school. Common sense indicates that at such
an early time point, individual tendency of initially forming social relationships (which an SR model seeks)
is more influential than clique structures among the students (which an SBM seeks) and common interests
or similarities (which an LSM seeks).

Figure 13: Sender and Receiver Parameter Estimate Plots for Freshmen Network

7.5 SBM (2 Blocks) Fit on Dolphins Network

As mentioned in section 6, we fit an SBM with 2 blocks on the Dolphins Network. According to the initial
plot, there is a two-cluster pattern in the Dolphins Network. When we fit a 2-block SBM on the Dolphins
Network, not surprisingly, the visualization (Figure 14) where the 2 colors represent the block assignments

85



for each node tells a sensible story about the distribution of blocks; namely, there does exist an obvious
display of two clusters just as what we have assumed. In addition, the block assignment probabilities are
mostly near 1 so the model has a high confidence in choosing one group over the other one for each node
and is highly confident in its model fit. We can therefore conclude that the SBM with 2 blocks is a good
model to fit on the Dolphins Network.

Figure 14: Block Assignments (k = 2) on for Dolphins Network

7.6 LSM (2 Dimensions) Fit on Twitter Retweet Network

Figure 15 shows the estimated model parameters, which are the positions of the nodes in the 2-dimensional
Euclidean space, together with lines between nodes that have an edge. Since the Twitter Retweet Network
is an undirected graph, each edge in the original network was represented as lines, not arrows, on the latent
space.

Similarly to Figure 12, Figure 15 shows that nodes positioned close on the latent space were indeed
connected in the original graph. This enforces the transitive relationship between the nodes. Each edge
represents an instance of a retweet, for which we expect to occur between posts of similar content. Therefore,
it is reasonable that users who posted similar content are placed closer on the latent space and are connected
to each other since it becomes more likely for them to retweet each other’s posts. Another feature we observe
is that there seems to be clusters of nodes that connect to a central node. We conjecture that this represents
an influential popular user at the center and several followers who share the same interest at its periphery.
Moreover, node connectivity increases at the center of Figure 15, and decreases toward the outskirts of the
plot.

8 Conclusions and Discussions

Based on our SCV procedures and final model fit results, we conclude the following major findings.
Considering how social relationships existent in a network were generated, the more there were clear

patterns or factors that affected each relationship, the less it is likely the ER model performs well. That is,
a model would produce a good fit on structured networks only if it is capable of capturing that pattern that
generated the edges between nodes. For example, in the Highschool Network, the SBM was able to capture
the three-block structure that led to the formations of the edges in the graph reasonably well. However, the
ER model assumes that there is no such pattern in this network. Instead, it argues, or hopes, that every edge
is simply a result of a random coin toss with a constant probability of heads, and thus it cannot capture the
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Figure 15: Latent Space Positions for Twitter Retweet Network

significant structures, if any, in a network. This result is verified by the SCV accuracies (Figure 9); there is
no network such that the ER model and another non-ER model are the two winners. So if there is a non-ER
model, which seeks to capture some type of structure (depending on the model definition), that performs
reasonably well, then it is very unlikely that the ER model will do similarly good.

Another interesting pattern is that for most networks, the prediction accuracies on edges of the SR model
are at least as good as those of the SBM. The only exception is the Highschool Network in which the SBM
outperformed all other models. Recall that the SR model captures the individual tendency of sending and
receiving requests for social relationships, and the SBM seeks to find an optimal group assignment for each
of the entities. Note that the formations of groups among people are influenced by the personal tendencies
in the first place. For example, if most of the people are outgoing (sender) and/or popular (receiver), it is
more likely that groups will be actively formed. Therefore, we observe this pattern that if capturing personal
tendencies can be done well, then so can capturing group formations among the entities.

Moreover, the more clear the definition of ‘similarity’ of entities is, the higher the LSM’s prediction
accuracies on edges tend to be. The LSM tries to map each node to a latent space position in such a way
that the distance between two nodes is inversely proportional to how likely they are connected. Therefore,
the model needs a clear notion of ‘similarity’ between nodes that are connected by an edge to produce a
good fit. In this study, two networks had good LSM fits: the Oxford Preschoolers Network and the Twitter
Retweet Network. In the former, similarity can be represented as the common interest towards the same toy.
That is: the fact that two nodes have a connecting edge means that the two kids competed for a single toy,
which implies that both of them had a desire for the same toy. In the Twitter Retweet Network, the notion of
similarity is even more explicit. The existence of an edge between two nodes implies that the corresponding
Twitter users retweeted each other’s posts, meaning that they have some common interest or thought about
an issue.

We also observed two major limitations in our self-developed GOF measure. The first is that the SCV
tends to yield higher prediction accuracies on edges when the network is more dense. This characteristic
is not surprising since higher density implies that the model has more information about how the existent
edges were formulated. However, most real-world social networks are (extremely) sparse. Realistically
speaking, considering the numerous entities around a person, it is difficult for him or her to initialize and
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maintain social interactions with all (or the majority) of them. Therefore, in order for the SCV metric to
be applied well in real-world social network datasets, it should be improved so that it works well even on
sparse networks.

The second limitation is the variability in the SCV results. The boxplots in Figure 9 show that some
model fits have very large difference in the mean prediction accuracy across different trials. One conjecture
about this trend is that the particular model chosen for a certain network is not the optimal one and thus the
fits themselves turn out to be unstable. In other words, the better the model fits on the network, the more
stable the estimation on the parameters and the SCV results will be.

9 Future Work

Based on the limitations of our study, we propose the following directions for future work. The first is
to try more models and also more networks. For example, we chose the SBM with 3 blocks as the final
model to fit on the Karate Club Network. However, we can hardly conclude that the SBM is the best model.
Rather, the reason why we chose this model is that it works better than other three models considering
the higher variation and lower prediction accuracies of the results of other models. Trying more types of
models, or even trying different hyperparameter values for the models already explored in this study, can
help find a better one. The CIDnetworks R package14 currently supports the following other models: the
covariate model15, the hierarchical block model16, the latent vector model17 and the mixed membership
stochastic block model18. Another possible model is the degree-corrected stochastic block model19, which
is a combination of the SBM and the SR model. Similarly, performing these comparisons on more real-
world social networks would give us much more insights. In this study, we analyzed six networks and did
find some interesting patterns. But in terms of generalizing such patterns, results on more social networks
would be helpful.

Another possible approach is to incorporate generative process in our GOF measure. Sample networks
can be generated via the estimated parameter values from the best model based on the SCV accuracies.
More specifically, for each pair of nodes in the original network, we compute the estimated edge probability
using the parameter estimates and the formula defined by the model, and then run a Bernoulli trial to decide
whether or not to put an edge. But if such newly-generated networks are considerably different from the
original network, then either the model or the SCV itself as metric is problematic. Utilizing these generative
capabilities could provide more insights. Note that we must specify a criterion of the difference between
two networks in order to use this approach.

Finally, we suggest identifying appropriate prior distributions used in Bayesian inference for each net-
work involved in estimation process. The CIDnetworks R package performs Bayesian estimation on model
parameters and requires a prior distribution to be pre-specified. Using Gibbs sampling, the CID.Gibbs func-
tion in the package performs Markov Chain Monte Carlo that generates a sample from the distribution that
is expected to be close to that of the parameters and takes the mean as the parameter estimate. In our study,
we mainly used the default prior distributions given in the package. We believe that finding more network-
specific prior distributions will improve the estimation process and yield better model fit quality. In addition,
we firmly believe in the need to lift the computational constraint on the time-consuming simulation process.
Optimizing the current source code in the CIDnetworks R package can make the model fitting process more
efficient and quick so that we can examine multiple trials within a smaller time window.
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