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Abstract

We develop a fast implementation of the mixed finite element method for the Darcy’s problem discretized by
lowest-order Raviart-Thomas finite elements using Matlab. The implementation is based on the so-called vector-
ized approach applied to the computation of the finite element matrices and assembly of the global finite element
matrix. The code supports both 2D and 3D domains, and the finite elements can be triangular, rectangular,
tetrahedral or hexahedral. The code can also be easily modified to import user-provided meshes. We comment
on our freely available code and present a performance comparison with the standard approach.

1 Introduction

Understanding and modeling flow in porous media is important in many areas including managing groundwater
reserves, maintaining CO2 storage facilities, and simulating petroleum reservoirs. This has created a growing need
to efficiently describe flow in porous media. Models are typically given by partial differential equations (PDEs) and
the basic law at the center of most of the models is Darcy’s law, named after Henry Darcy to honor his observations
of fountains in Dijon in 1856. We refer, for example, to [3, 7] for a thorough discussion of modeling of porous media.
The Darcy’s law applied to a single phase flow in porous media will also be the core of our model problem. For the
discretization we use the mixed finite element method. This is a type of finite element method which uses a couple
of independent variables. In our model problem, we introduce velocity (or equivalently flux) and pressure variables.
Specifically, our discrete model is built using the lowest-order Raviart-Thomas elements (RT0). These elements were
proposed in [14] and have become quite popular for discretizations of mixed problems. For a concise overview of
mixed and hybrid method we refer, for example, to the monographs [5, 10]. They are edge (or face) elements, and
they are commonly used in discretizations of flow in porous media among other problems.

In this paper, we describe an efficient, vectorized implementation of the finite element method for the lowest
order Raviart-Thomas elements (RT0). For the implementation we chose to use Matlab, which is a popular
environment for prototyping and implementing numerical methods for several reasons. Code written in Matlab is
easy to read, and the environment contains many built-in functions, particularly for matrix operations, that make
coding faster and easier. However, it is also known that some standard programming techniques, such as loop
structures, are computationally inefficient compared to other programming languages such as C or Fortran. To
avoid relying on loops, code in Matlab can be modified by replacing loops with array operations. This process
is called vectorization, and it can significantly improve speed. Using vectorized code enables us to interact with
multiple matrices simultaneously, which can allow us to work with much larger sets of data at the same time. While
vectorized code is memory intensive, the increase in the speed of the code makes it worthwhile. Our code is written
as an extension of the fast Matlab implementation of the edge/face elements (RT0 and Nedelec elements for div
and curl problems, respectively) provided in [1], see also [13]. The code is available at

https://www.mathworks.com/matlabcentral/fileexchange/68926-fast-implementation-mixed-fem

The main purpose of this contribution is to provide an efficient finite element implementation of RT0 elements to
the community. The code can generate some elementary meshes, and we also provide a function to import meshes
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generated by NGSolve [11]. Moreover, the code can be also easily modified to import meshes provided by users.
We note that implementations of the lowest-order Raviart-Thomas finite elements for mixed problems in Matlab
for triangular meshes are discussed in [2]. We would also like to mention that Matlab Reservoir Simulation Toolbox
(MRST) is available for advanced simulations of flow in porous media [12], but it is based predominantly on other
discretizations.

The paper is organized as follows. In Section 2 we introduce the model problem, in Section 3 we describe the
finite element discretization, in Section 4 we discuss the Matlab implementation, in Section 5 we present results of
numerical experiments, and in Section 6 we conclude our work.

2 Model problem

Let Ω be an open, bounded polygonal or polyhedral domain in Rd, d = 2, 3. We consider the model problem

−∇ · (k∇p) = f, in Ω, (1)

where k is a symmetric, positive definite coefficient matrix, the right-hand side f ∈ L2 (Ω), and the problem is subject
to sufficiently smooth boundary conditions on the boundary ∂Ω. We introduce an auxiliary velocity variable

~u = −k∇p,

and p will be called pressure. Now we may rewrite (1) as a first-order system, known as the Darcy’s problem

k−1~u+∇p = 0, in Ω, (2)

∇ · ~u = f, in Ω, (3)

satisfying on ∂Ω = ΓN ∪ ΓE the boundary conditions

p = gN , on ΓN ,

~u · ~n = gE , on ΓE ,

where ~n is the unit outward normal of Ω, and the functions gN and gE representing natural and essential boundary
data, respectively, are sufficiently smooth. We note that if ΓN = ∅ an additional compatibility condition is required∫

Ω

f dx+

∫
∂Ω

gE dx = 0,

and in such case the pressure p is unique up to an additive constant.
Let us define spaces

L2(Ω) =

{
q :

∫
Ω

q2 dx <∞
}
,

H(Ω; div) =
{
~v : ~v ∈

[
L2(Ω)

]d
;∇ · ~v ∈ L2(Ω)

}
.

In the mixed variational formulation of (2)–(3) we wish to find (~u, p) ∈ (UE , Q) such that∫
Ω

k−1~u · ~v dx−
∫

Ω

p∇ · ~v dx = 0, ∀~v ∈ U, (4)

−
∫

Ω

∇ · ~uq dx = −
∫

Ω

fq dx, ∀q ∈ Q, (5)

where the pair of spaces (U,Q) is selected so that U ⊂ H (Ω; div) and Q ⊂ L2 (Ω), and UE is an extension of U
containing velocities that satisfy the essential boundary condition, see [4, 5, 7, 10] for more details.

3 Finite element discretization

Let us consider a triangulation Th of the domain Ω using triangles or quadrilaterals in 2D and tetrahedrons or
hexahedrons in 3D. For simplicity, edges of elements in 2D will be called as faces, and faces in both 2D and 3D will
be denoted by fj . The discrete velocity space is defined as

Uh =
{
~u | ~u|K ∈ RT0(K), K ∈ Th and ~u ∈ U

}
,
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where RT0 is the lowest-order Raviart-Thomas space on the element K. Let the basis (shape) functions for the
velocity and pressure spaces be denoted ϕi and ψj , respectively. The pressures are approximated by piecewise
constant basis functions, and we denote by Qh the discrete pressure space. For the velocity degrees of freedom we
consider the average values of the normal components over the element faces. Specifically, the velocity degrees of
freedom are defined as

1

|fj |

∫
fj

ϕi (xj) · nj ds = δij , (6)

where δij is the Kronecker delta, nj is the unit outward normal of face and xj is its coordinate. In the calculations
of the basis functions below, we use centers of the corresponding faces.

In matrix terminology, the discretization of (4)–(5) can be written as a saddle-point linear system[
A BT

B 0

] [
u
p

]
=

[
0
f

]
, (7)

where

A = [aij ] , aij =

∫
Ω

k−1 ϕi · ϕj dx,

B = [bk`] , bk` = −
∫

Ω

∇ · ϕk ψ` dx,

f = [f`] , f` = −
∫

Ω

fψ` dx

In this paper, we present an efficient implementation of problem (4)–(5) in Matlab leading to the setup of system (7).

3.1 The basis functions

We derive basis functions for the RT0 reference finite elements corresponding to quadrilaterals and triangles in 2D,
and hexahedrons and tetrahedrons in 3D, see Figure 1 for the plots of reference elements. The basis functions and the
spatial variables for the reference elements will be denoted by an additional hat symbol as ϕ̂i, x̂i, etc., and symbol f̂i
will denote face i of a reference element. The transformation from the reference element K̂ to an element K will be
denoted by FK(x̂) = BK x̂+ bK with BK ∈ Rd×d and bK ∈ Rd. The mapping is illustrated by Figure 2 for a triangle
in 2D. In this case the transformation is[

x1

x2

]
= BK

[
x̂1

x̂2

]
+ b =

[
x2

1 − x1
1 x3

1 − x1
1

x2
2 − x1

2 x3
2 − x1

2

] [
x̂1

x̂2

]
+

[
x1

1

x1
2

]
,

and similar transformations can be easily found for the other types of elements.

Quadrilateral The basis functions are defined as

ϕ̂i (x̂) = a+ bx̂ =

(
a1 + b1x̂1

a2 + b2x̂2

)
, i = 1, 2, 3, 4.

Definition (6) is used on the reference square [−1, 1]
2

to enforce this condition for each basis function. We also note

that |f̂j | = 2 for every face of this element. For example, for the first face

1∣∣∣f̂j∣∣∣
∫
f̂1

ϕ̂i (x̂1) · n̂1 ds =
1

2

∫
f̂1

(
a1 + b1 · 1
a2 + b2 · 0

)T
·
(

1
0

)
ds

=
1

2
(a1 + b1)

∫
f̂1

ds = (a1 + b1)

and repeating the calculation for all faces and accounting for the length of each face, we get a system of equations
1 0 1 0
0 1 0 1
−1 0 1 0

0 −1 0 1



a1

a2

b1
b2

 = I,

which is solved for each basis function with right-hand side given by columns of an identity matrix to find the
coefficients of each basis function. The basis functions are

ϕ̂1 =

(
1
2 (1 + x̂1)

0

)
, ϕ̂2 =

(
0

1
2 (1 + x̂2)

)
, ϕ̂3 =

(
1
2 (−1 + x̂1)

0

)
, ϕ̂4 =

(
0

1
2 (−1 + x̂2)

)
.
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Figure 1: Reference elements.
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Figure 2: Finite elements K̂, K and a mapping FK (x̂) between them.

249



Triangle The basis functions are defined as

ϕ̂i (x̂) = a+ bx̂ =

(
a1 + bx̂1

a2 + bx̂2

)
, i = 1, 2, 3.

Definition (6) is used as before. For example, for the first face

1∣∣∣f̂1

∣∣∣
∫
f̂1

ϕ̂i (x̂1) · n̂1 ds =
1∣∣∣f̂1

∣∣∣
∫
f̂1

(
a1 + b 1

2 a2 + b 1
2

)
· 1√

2

(
1
1

)
ds

=
1∣∣∣f̂1

∣∣∣ · √2
(a1 + a2 + b)

∫
f̂1

1 ds =
1√
2

(a1 + a2 + b) = δi1.

After repeating this calculation for all faces, we get a system 1√
2

1√
2

1√
2

−1 0 0
0 1 0

 a1

a2

b

 = I,

which is solved for the coefficients of basis functions. The basis functions are

ϕ̂1 =
√

2

(
x̂1

x̂2

)
, ϕ̂2 =

(
−1 + x̂1

x̂2

)
, ϕ̂3 =

(
x̂1

−1 + x̂2

)
,

Hexahedron The basis functions are defined as

ϕ̂i (x̂) = a+ bx̂ =

 a1 + b1x̂1

a2 + b2x̂2

a3 + b3x̂3

 , i = 1, 2, 3, 4, 5, 6.

Definition (6) is used on the reference cube [−1, 1]
3

to enforce the conditions for each basis function. For example,
for the first face

1∣∣∣f̂1

∣∣∣
∫
f̂1

ϕ̂i (x̂1) · n̂1 ds =
1∣∣∣f̂1

∣∣∣
∫
f̂1

 a1 + b1
a2 + b2
a3 + b3

T

·

 1
0
0

 ds

=
1∣∣∣f̂1

∣∣∣ (a1 + b1)

∫
f̂1

ds = (a1 + b1) .

Repeating the calculation for all faces,, we get a system of equations

·


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
−1 0 0 1 0 0

0 −1 0 0 1 0
0 0 −1 0 0 1




a1

a2

a3

b1
b2
b3

 = I,

which is solved with right-hand side given by columns of an identity matrix to find the coefficients of each basis
function. The basis functions are

ϕ̂1 =

 1
2 (1 + x̂1)

0
0

 , ϕ̂2 =

 0
1
2 (1 + x̂2)

0

 , ϕ̂3 =

 0
0

1
2 (1 + x̂3)

 ,

ϕ̂4 =

 1
2 (−1 + x̂1)

0
0

 , ϕ̂5 =

 0
1
2 (−1 + x̂2)

0

 , ϕ̂6 =

 0
0

1
2 (−1 + x̂3)

 .
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Tetrahedron The basis functions are defined as

ϕ̂i (x̂) = a+ bx̂ =

 a1 + bx̂1

a2 + bx̂2

a3 + bx̂3

 , i = 1, 2, 3, 4.

Definition (6) is used on the reference tetrahedron to enforce the conditions for each basis function. For example, for
the first face

1∣∣∣f̂1

∣∣∣
∫
f̂1

ϕ̂i (x̂1) · n̂1 ds =

∫
f1

(
a1 + b 1

3 a2 + b 1
3 a3 + b 1

3

)
· 1√

3

 1
1
1

 ds

=
1∣∣∣f̂1

∣∣∣ 1√
3

(a1 + a2 + a3 + b)

∫
f̂1

1 ds =
1√
3

(a1 + a2 + a3 + b) = δi1.

The remaining three faces all involve near identical calculations. For example, definition (6) applied to the second
face is

1∣∣∣f̂2

∣∣∣
∫
f̂2

ϕ̂i (x̂1) · n̂1 ds =
1∣∣∣f̂2

∣∣∣
∫
f̂2

(
a1 a2 + b 1

3 a3 + b 1
3

)
·

 −1
0
0

 ds

=
1∣∣∣f̂2

∣∣∣ (−a1)

∫
f̂2

1 ds = −a1 = δi1.

After repeating the calculation, we get a system
1√
3

1√
3

1√
3

1√
3

−1 0 0 0
0 −1 0 0
0 0 −1 0



a1

a2

a3

b

 = I,

and the basis functions are

ϕ̂1 =
√

3

 x̂1

x̂2

x̂3

 , ϕ̂2 =

 −1 + x̂1

x̂2

x̂3

 , ϕ̂3 =

 x̂1

−1 + x̂2

x̂3

 , ϕ̂4 =

 x̂1

x̂2

−1 + x̂3

 .

3.2 Finite element matrices

A finite element is defined by a triplet {K,P,N}, where K is the geometric configuration, P is the finite dimensional
space of shape functions on K, and N is the set of their degrees of freedom [4, 8]. It it well known (see, for

example [15]), that the mapping F defined by F(ϕi) = ϕi ◦F−1
K is not an isomorphism from H(K; div) to H(K̂; div),

since F does not preserve continuity of the normal components of the reference basis functions. Instead, the function
values and the divergence are mapped using Piola transformation as

ϕ
∣∣
K

(x) =
1

detBK
BK ϕ̂

(
F−1
K (x)

)
, divϕ

∣∣
K

(x) =
1

detBK
d̂ivϕ̂

(
F−1
K (x)

)
.

Next, global velocity basis functions are related to more than one element. It is necessary to decide about the
orientation of global normals of element faces in order to produce global velocity basis functions whose normal
components are continuous at element interfaces. While the orientation can be decided arbitrarily, we utilize the
convention from [1] with more details given in the next section.

The global matrix consists of blocks A and B, which are obtained by assembling contributions from the element
matrices consisting of blocks AK = [aKij ] and BK = [bKj ], i, j = 1, . . . , 3 or 4 or 6, obtained by evaluating integrals
on each element K, where

aKij =
1

|detBK |

∫
K̂

([
signKi

]
BK ϕ̂i (x̂) ·

[
signKj

]
BK ϕ̂j (x̂)

)
kK dx̂, (8)

bKj = − 1

|detBK |

∫
K̂

[
signKj

]
∇ · ϕ̂j (x̂) dx̂, (9)
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where
[
signKi

]
is +1 if the orientation of the (local) normal of face i in element K is in agreement with the orientation

of the global normal and −1 otherwise. The permeability coefficients are assumed to be available as a d-dimensional
vector for each element k = [kKd ], and specifically in element K they are used as a d-dimensional weight in the inner
product. That is, the notation in (8) should be interpreted as (a · b)α = (α1a1b1 + · · ·+ αdadbd).

Finally, we note that in case of structured grids using rectangular and block finite elements, a single finite
element matrix may be replicated and multiplied by the corresponding coefficients k. Since our purpose is to allow
for unstructured meshes using triangular and tetrahedral elements, we do not use this approach. However, we use
only affine mappings for the rectangular and block finite elements, which then limits their use to structured grids.

4 Implementation

We discuss the Matlab implementation. Let us denote the set of finite elements by {Ei}, the set of nodes by {Ni}
and the set of faces by {Fi}, with the symbol # denoting the size of a given set. We generate (or import) a usual
nodal mesh, and the code subsequently generates a description of the face-based mesh for the RT0 discretization.
The nodal mesh is described by the following fields:

elems2nodes #E × (3 or 4 or 8) elements and their global nodes (3 or 4 in 2D, and 4 or 8 in 3D)
nodes2coord #N × d global nodes and their coordinates in 2D or 3D

The face based mesh is then described by the following fields:

elems2faces #E × (3 or 4 or 6) global elements defined by global faces (3 or 4 in 2D, 4 or 6 in 3D)
faces2nodes #F × (2 or 3 or 4) global faces defined by global nodes (2 in 2D, and 3 or 4 in 3D)

and, additionally the code uses the following fields:

signs #F × (3 or 4 or 6) +1 or −1 for every face of an element, corresponding to elems2faces

coeffs d× E coefficients for each element in each dimension
ngdofs 1 total number of degrees of freedom (velocity and pressure)

The orientation of the global normals of faces is assigned following a convention from [1], which is based on the orien-
tation of a face and, for example, in 2D suggests to assign signs(i,1)=1 if elems2nodes(i,2)>elems2nodes(i,3)
and -1 otherwise.

4.1 Vectorized computation of element matrices

In the non-vectorized code, we iterate in a for-loop over each element and then iterate in another for-loop through
the integration points to find sequentially each local element matrix. In the the vectorized code, we instead iterate
in a for-loop through the integration points and then iterate in another for-loop to calculate each entry of the local
element matrices simultaneously. With the vectorized code, we also take advantage of the symmetry of the matrix
and thus only need to solve for the upper right half of the matrix, which we then duplicate into the bottom left half.
In both the non-vectorized and vectorized code, we determine the A and B parts of the local matrices separately.
We use Gaussian quadrature rules for the integration of basis functions. Specifically, we use 4 integration points for
quadrilateral elements and 8 integration points for block elements. These are found by a simple extension of the
one-dimensional case. For the integration of basis functions over triangular and tetrahedral elements, we use the
quadrature rules from [9] and [16], respectively. Specifically, we use 3 integration points for triangular elements and
4 integration points for tetrahedral elements.

The core of the non-vectorized version of the 2-dimensional quadrilateral code is as follows:
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1 for e = 1:nelem % loop over elements
2 A = zeros(nelf);
3 B = zeros(1,nelf);
4 xcoord = nodes2coord(1,elems2nodes(:,e));
5 ycoord = nodes2coord(2,elems2nodes(:,e));
6 for intx = 1:nglx
7 x = point2(intx,1);
8 wtx = weight2(intx,1);
9 for inty = 1:ngly

10 y = point2(inty,2);
11 wty = weight2(inty,2);
12 [sqhape,divsqhape,dhdr,dhds] = feisoquad2D4n RT0(x,y);
13 J = [ (xcoord(2)-xcoord(1))/2 0;
14 0 (ycoord(4)-ycoord(1))/2 ]; %Jacobian
15 detJ = det(J);
16 sqhape1 = spdiags(signs(:,e),0,nelf,nelf) * 1/(detJ) * (sqhape*J) * ...
17 spdiags(coeffs(:,e),0,dim,dim);
18 sqhape2 = spdiags(signs(:,e),0,nelf,nelf) * 1/(detJ) * (sqhape*J);
19 A = A + (sqhape1*sqhape2')*wtx*wty*detJ;
20 B = B + ( signs(:,e)' .* divsqhape )*wtx*wty*detJ;
21 end
22 Kloc(:,:,e) = [ A B';
23 B 0 ];
24 end
25 end

In line 1, we iterate over each element. On lines 2 and 3 we initialize the A and B parts of an element matrix.
Even in non-vectorized code, pre-allocating our matrices is essential to maintaining reasonable runtimes. On lines 4-
11 we prepare the coordinates and weights that will be needed. Point2 and weight2 are variables defined earlier in
the code that provide the 2D quadrature rules. At line 12, we calculate the basis functions and the divergence. At
lines 13-15, we calculate the Jacobian and the determinant. Then in lines 16-18, we determine the contributions to
the A and B part of the local stiffness matrix for a particular integration point. At line 21, we add our new data to
the list of local stiffness matrices.

The vectorized code relies on matrix operations to avoid the outermost for-loop iterating through each element:

1 Kloc = zeros(nbasis+1,nbasis+1,nelems);
2 for i=1:nip
3 for m=1:nbasis
4 for k=m:nbasis
5 Kloc(m,k,:) = squeeze(Kloc(m,k,:))' + ...
6 w(i) .* B K detA'.ˆ(-1) .* ...
7 sum( squeeze( astam(signs(:,m), ( amsv(B K, val(i,:,m)) .* ...
8 reshape(coeffs,size(coeffs,1),1,size(coeffs,2)) ) ) ).* ...
9 squeeze( astam(signs(:,k), amsv(B K, val(i,:,k))) ) ...

10 );
11 end
12 Kloc(m,nbasis+1,:) = squeeze(Kloc(m,nbasis+1,:)) + ...
13 w(i) .* B K detA.ˆ(1) .* ...
14 (signs(:,m) .* dval(i,:,m) );
15 end
16 end
17 Kloc = copy triu(Kloc);

In line 1 we pre-allocate for the set of local matrices Kloc. In lines 2-4, we set up the loop structure described
above: we iterate through the integration points and the basis functions for each face. This gives us one entry of the
matrix for each pair of faces. However, we only iterate through half of the pairs. This is because, for example, a pair
of faces 1 and 4 is the same as a pair of faces 4 and 1, which is why the local matrices are symmetric. In lines 5-14,
we calculate entries of the local matrix. The calculations are done simultaneously using matrix operations as the
code is vectorized. The code inside the third loop gives the A part of the matrix, whereas the part after the loop
gives the B part. Note that B k detA is the determinant of the Jacobian, and B k is the determinant itself. In line 17,
we call upon a command copy triu, which copies the upper-left triangular part of the matrix into the lower-right
triangular part.

For reference, the astam and amsv functions used in our calculation were created in [1]. Function astam is a
simple helper function that takes a m× 1 matrix and an n× p×m matrix as inputs, and then multiplies each level
on the third index by the corresponding elment in the first matrix. In this case, it is being used to multiply each
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element matrix by its matching sign. For 0 < i ≤ m,

C(:, :, i) = a(i) ∗B(:, :, i).

Function amsv is being used to take weighted sums of each row in each layer of matrices. The second matrix must
have the same number of elements as the first has columns, so that any element in that column is given that weight
in the summation.

C(:, 1, i) = A(:, :, i) ∗B(:).

4.2 Vectorized assembly of the matrix

There are several approaches to assemble the global matrix. That is, in the standard approach the contribution
of each element is determined using nested for loops. In the standard method, we set up an outer loop to iterate
through the elements and two inner loops to iterate through the pairs of edges or faces. It then adds the contribution
of the local matrix to the global matrix. This method thus requires three for loops and each additional element
requires another set of iterations through the inner two loops. This becomes quite costly as the number of elements
increases.

1 K = sparse(ndofs,ndofs);
2 for k = 1:size(elems2faces,2)
3 for j = 1:size(elems2faces,1)
4 for i = 1:size(elems2faces,1)
5 K(elems2faces(i,k),elems2faces(j,k)) = K(elems2faces(i,k),elems2faces(j,k)) + Kloc(i,j,k);
6 end
7 end
8 end

We also implemented a vectorized approach for this project. We still iterate over a list of elements, but there
are two primary differences. First, we take advantage of sparse matrices. This is essential as with greater number of
elements the full matrices can consume singnificant amounts of memory. It also allows the computation to determine
all contributions of an element simultaneously, reducing the runtime. It is also important to remove for loops due to
their inefficiency in Matlab. By handling entire elements at once and constructing the sparse global matrix only at
the end, the process of assembly becomes significantly faster as will be seen in numerical experiments.

1 temp = cell(length(elist),1);
2 for e = elist(:)'
3 faces = elems2faces(:,e);
4 faces = faces(faces>0); % omit 0's
5 dofs = faces2dofs(:,faces)';
6 dofs = dofs(dofs(:)>0); % stack grouped by face, omit 0's
7 [k,l,m] = find(Kloc(:,:,e));
8 temp{e} = [dofs(k),dofs(l),m]; % and insert it into the global and get indeces of the entries
9 end

10 temp = cell2mat(temp);
11 K = sparse(temp(:,1),temp(:,2),temp(:,3),ndof,ndof);

5 Numerical experiments

We present a comparison in terms of computational time of the standard and vectorized implementations of both
computation of local finite element matrices and assembly of the global matrix. For testing we used a computer with
two 8-core 2.10 GHz CPUs with 1 TB of memory running Linux openSUSE 42.3 and Matlab version 9.2.0.538062
(R2017a). The results for a sequence of 2D quadrilateral meshes and 3D hexahedral meshes are summarized in
Table 1. From the results it can be seen that for smaller meshes there is no advantage, but the speed up of the
vectorized approach is quite significant for larger meshes for both 2D and 3D. Compared to the code implemented
in iFEM [6] for 2D triangles, our vectorized code is somewhat slower (roughly one order of magnitude). Both codes
scale near linearly, and as the sizes of problems increase our code has a consistently lower scaling factor.

As the number of elements increases the vectorized code becomes significantly faster since the number of iterations
in for loops does not depend on the number of elements. Based on the amount of time the non-vectorized code took
to run, it was not feasible to run for very large meshes.
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Table 1: Timing [s] of the two implementations for quadrilateral meshes in 2D and hexahedral meshes in 3D: nelem is
the total number of finite elements, ndof is the total number of degrees of freedom, te is the time needed to compute
the element matrices, ta is the time needed to assemble the global stiffness matrix, and te + ta is the total time.

problem setup : standard vectorized
partitioning nelem ndof te ta te + ta te ta te + ta

2D
4× 4 16 56 0.1614 0.0250 0.1864 0.0879 0.0358 0.1237
8× 8 64 208 0.0371 0.0151 0.0522 0.248 0.0168 0.0416

16× 16 256 800 0.0816 0.0276 0.1092 0.0193 0.0181 0.0374
32× 32 1024 3136 0.2842 0.1117 0.3959 0.0295 0.0435 0.073
64× 64 4096 12,416 1.0820 0.9044 1.9864 0.0605 0.1439 0.2044

128× 128 16,384 49,408 4.2735 11.344 15.618 0.1559 0.5199 0.6758
256× 256 65,536 1.9712× 105 17.135 197.24 214.375 0.5034 1.9920 2.4950
512× 512 2.6214× 105 7.8745× 105 66.915 5320.7 5387.625 2.0455 7.9219 9.9674

1024× 1024 1.0486× 106 3.1478× 106 - - - 5.698 34.516 40.214
2048× 2048 4.1943× 106 1.2587× 107 - - - 22.642 140.89 163.532
4096× 4096 1.6777× 107 5.0340× 107 - - - 90.471 566.95 657.421
8192× 8192 6.7109× 107 2.0134× 108 - - - 355.58 2650.0 3005.58

16384× 16384 2.6844× 108 8.0534× 108 - - - 1452.0 10,888.0 12,340.0
3D

4× 4× 4 64 448 0.0197 0.0348 0.0545 0.0663 0.0387 0.1050
8× 8× 8 512 3584 0.3439 0.0957 0.4396 0.0399 0.0334 0.0733

16× 16× 16 4096 28,672 2.5233 2.4434 4.9667 0.1562 0.1569 0.3131
32× 32× 32 32,678 2.2938× 105 20.073 141.210 161.283 0.9351 1.1340 2.0691
64× 64× 64 2.6214× 105 1.835× 106 157.47 19,114.0 19,271.47 7.6207 8.6154 16.2361

128× 128× 128 2.0972× 106 1.468× 107 - - - 62.197 71.878 134.075
256× 256× 256 1.6777× 107 1.174× 108 - - - 498.56 600.31 1098.87
512× 512× 512 1.3422× 108 9.395× 108 - - - 3898.3 5060.1 8958.4

Figure 3: Number of elements versus total time (te+ ta) in minutes for quadrilateral (2D) and hexahedral (3D) finite
elements. In both cases a linear scaling can be observed, based on the slopes of the lines being 1.
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6 Conclusion

We presented an efficient implementation of the lowest order Raviart-Thomas finite elements in Matlab. We
observed that the vectorized implementation scaled linearly with the number of elements, as can be seen by the
slopes of both lines being 1 in Figure 3. The setup of the local element matrices was faster compared to the non-
vectorized version by a constant factor, and the assembly for larger meshes was feasible only using the vectorized
code. In the largest comparable case for 2D elements, the non-vectorized code took almost 1.5 hours, whereas the
vectorized took under 10 seconds. Even just comparing the setup of the local element matrices, it took over a minute
for the non-vectorized while only taking under 3 seconds for the vectorized. The results in the 3D case were similar.
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