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Abstract

The Susceptible-Infected-Virus (SIV) model is a compartmental model to describe
within-host dynamics of a viral infection. We apply the SIV model to the human
immunodeficiency virus (HIV); in particular, we present analytical solutions to two
versions of the model. The first version includes only terms related to the susceptible
cell-virus particle interaction and virus production, while the second includes those
terms in addition to the infected cell death rate. An analytical solution, although more
challenging and time-consuming than numerical methods, has the advantage of giving
exact, rather than approximate, results. These results contribute to our understanding
of virus dynamics and could be used to develop better treatment options. The approach
used to solve each model involved first isolating one of the dependent variables, that is,
deriving an equation that involves only one of the variables and its derivatives. Next,
various substitutions were used to bring the equation to a more easily solvable form.
For the first model, an exact solution is obtained in the form of an implicit equation.
For the second model, we give an analytical solution generated by an iterative method.

1 Introduction

The Susceptible-Infected-Virus (SIV) model is a system of ordinary differential equations
that describes the interaction of virus particles with the cells of a living organism. We apply
the SIV model to the human immunodeficiency virus (HIV). To begin, it will be useful to
outline the basic concepts of virus-cell dynamics, which are described in more detail in [7].
A virus is essentially genetic material enclosed in a protein shell. The virus particle enters
an organism and then infects a cell by attaching to the cell wall and inserting its genetic
material, either DNA or RNA. This genetic material makes its way to the cell’s nucleus and
reprograms the cell to make copies of the virus. After many copies have been made, the cell
undergoes either bursting or budding, releasing new virus particles that can go on to infect
other cells. In the case of HIV, the new viruses are released through the budding process, so
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Parameter Value Units Description
k 1.179× 10−3 1/(virions·day) Infection Rate Constant
δ 0.3660 1/day Infected Cell Death Rate Constant
NT 4246.4 virions/cell Virus Production Rate Constant

(per infected cell)

Table 1: Values of Constants (obtained from [7])

that the infected cell remains intact. The cells targeted by HIV are CD4+ T-cells, which are
helper cells that aid in immune system responses. In simple terms, HIV impairs the body’s
ability to fight off viruses and bacteria.

Various HIV models and their properties have been studied. The most common is the
basic model of virus dynamics (SIV model), given by

dS

dt
= λ− dS − kV S, (1.1)

dI

dt
= kV S − δI, (1.2)

dV

dt
= NT δI − cV, (1.3)

where S is the number of healthy cells, I is the number of infected cells, and V is the number
of free virus particles. The other symbols (λ, d, k, δ, NT , and c) are positive constants. Many
researchers have analyzed this model. For example, [1] determines equilibria for the system
and analyzes their stability using Lyapunov functions, finding that stability depends on
whether the basic reproduction number R0 = kλNT/dc is greater than, less than, or equal
to unity. Similarly, [7] uses the same model, first showing existence and uniqueness, then
analyzing equilibria, and finally reworking the system as a stochastic problem. The article
[11] seeks to understand the impact of errors in estimating model parameters; the above
model was used, excluding the λ and −dS terms in (1.1).

Using (1.1)-(1.3) as a basis, most researchers find that the model as given is too simple
for their purposes. Accordingly, more terms must be added to better approximate virus-cell
dynamics. Several sources, including [3], [5], [4], [10], and [12], analyze the effects of various
treatments on the progression of viruses, with some modelling HIV and others modeling other
viruses, such as the Hepatitis B virus (HBV). [10] and [12] also take into account immune
system responses. In addition, [12] analyzes the effects of logistic growth, time delays, and
infection age on the model. Finally, [2] is interesting in that it replaces the infection rate k
above with a generic function f(V ) and then analyzes the generalized system.

In each of the sources mentioned above, it should be noted that solutions to the system
were obtained from numerical methods; that is, none of the sources attempted to find an
exact solution to the system. The goal of this paper is to present analytical solutions to two
versions of the model, one including only the interaction and virus production terms, and
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another which introduces a death rate for the infected cells. Our two models are given by

dS

dt
= −kV S, (1.4)

dI

dt
= kV S, (1.5)

dV

dt
= NT δI, (1.6)

and

dS

dt
= −kV S, (1.7)

dI

dt
= kV S − δI, (1.8)

dV

dt
= NT δI, (1.9)

where
d

dt
indicates differentiation with respect to time. Here k, NT , and δ are positive

constants. Values for the constants were obtained from [7] and are given in Table 1. Below
we briefly discuss the significance of each equation in the system.

First, examine (1.4). Note that there are no positive terms on the right hand side of the
equation, so the number of susceptible cells must always be decreasing. The term kV S is
the infection rate, or the rate at which healthy susceptible cells are converted into infected
cells. This rate is proportional to the product of the virus particles and susceptible cells
V S, with proportionality constant k. Next, examining (1.5), we see that dI/dt is always
positive, so that the number of infected cells is increasing. In fact, I increases at the same
rate that S decreases. Finally, note (1.6). The number of free virus particles V increases at a
rate proportional to the number of infected cells I, with proportionality constant NT δ. The
second system is nearly identical to the first. The only difference here is that we have added
in the term −δI, representing the infected cell death rate. Note that, since HIV-infected
cells undergo the budding process, −δI does not represent the rate at which infected cells
are destroyed by virus particles, as one might be tempted to assume. Instead, the infected
cells are left in tact after virus particles are released, which is why there is no problem with
excluding this term from the first model.

These systems should show the same general trend as the full system early on in the course
of the disease; namely, S decreases in time and I and V increase in time. Comparison of the
three systems using numerical methods reveals that the approximations are not particularly
accurate; nonetheless, solving the simplified models is a useful exercise and provides insight
into the interactions of terms in the system.
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2 Solution of the First Model

Recall that our first version of the SIV model is given by

dS

dt
= −kV S, (2.1)

dI

dt
= kV S, (2.2)

dV

dt
= NT δI. (2.3)

Before attempting to solve this system, we take a moment to verify that a unique solution
exists. To do so, we use the Picard-Lindelöf Theorem, which is given in [8].

Theorem 2.1 (Picard-Lindelöf Theorem). Let n ∈ N and y0 ∈ Rn be given. Assume
the function f : Rn ×R→ Rn is locally Lipschitz in its first argument and continuous in its
second argument. Then there exist t∗ > 0 and a unique function y : [0, t∗]→ Rn satisfying

y′(t) = f(y(t), t)

for every t ∈ [0, t∗] and the initial condition y(0) = y0.

For our system,

y =

SI
V

 , f(y) =

−kV SkV S
NT δI

 ,
where the system is said to be autonomous since it does not explicitly depend on the inde-
pendent variable t. Computing the Jacobian matrix gives

J =

−kV 0 −kS
kV 0 kS
0 NT δ 0

 ,
from which we see that the partial derivatives of f exist and are continuous for any values of
S, I, V , and t. It follows that f is Lipschitz continuous, and hence a unique solution exists
on some interval [0, t∗].

Having verified the existence of a unique solution, we are now ready to solve the system.
First note

d

dt
(S + I) = 0,

which implies

S + I = P, (2.4)

where P is a constant determined by the initial conditions. It follows that

dV

dt
= NT δP −NT δS.
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Applying the chain rule,

dS

dV
=
dS/dt

dV/dt
= − k

NT δ
V

S

P − S
,

separating variables and integrating,

P ln |S| − S = − k

2NT δ
V 2 +D.

Solving for V gives

V = ±
√
C − 2NT δP

k
ln |S|+ 2NT δ

k
S.

Here, C and D are constants determined by the initial conditions and related by C =
2NT δD/k. To simplify, we assume that S and V are non-negative, yielding

V =

√
C − 2NT δP

k
lnS +

2NT δ

k
S. (2.5)

Substituting this expression for V into the derivative for S gives

dS

dt
= −k

(√
C − 2NT δP

k
lnS +

2NT δ

k
S

)
S.

Now, separating variables and integrating,∫ S

S0

1

ξ

(
C − 2NT δP

k
ln ξ +

2NT δ

k
ξ

)−1/2
dξ = −k

∫ t

t0

dξ = −kt, (2.6)

where we have set t0 = 0. The integral above implicitly gives S as a function of t. I and V
are then found from Equations (2.4) and (2.5), respectively. Under the initial conditions

S(0) = S0, I(0) = I0, V (0) = V0,

the constants P and C are

P = S0 + I0 and C = V 2
0 +

2NT δP

k
lnS0 −

2NT δ

k
S0.
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Figure 1: Plot of S and I (left, in number of cells per cubic milliliter) and V (right, in
number of free virus particles per cubic millimeter) over time (in days).

Figure 1, created in MATLAB, gives plots of the solution for the initial conditions
S(0) = 500, I(0) = 0, and V (0) = 0.1. The plots were generated using the implicit an-
alytical solution, under the assumption that S strictly decreases from its starting value to
its equilibrium value.

3 Solution of the Second Model

Next, we introduce the δI term in Equation (2.2), giving our second version of the SIV
model,

dS

dt
= −kV S, (3.1)

dI

dt
= kV S − δI, (3.2)

dV

dt
= NT δI, (3.3)

with the initial conditions

S(0) = S0, I(0) = I0, V (0) = V0.

Once again, we start by verifying the existence and uniqueness of a solution. Computing the
Jacobian matrix for the second system gives

J =

−kV 0 −kS
kV −δ kS
0 NT δ 0

 .
As before, the partial derivatives exist and are continuous for any S, I, V , and t. Therefore,
a unique solution exists on [0, t∗] for some t∗ ∈ R.
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Having verified existence and uniqueness, we are now ready to solve the system. Firstly,
note that

d

dt

(
S + I +

V

NT

)
= 0,

which implies

S + I +
V

NT

= P, (3.4)

where P is a constant determined by the initial conditions. In fact,

P = S0 + I0 +
V0
NT

.

Now, from Equation (3.4), we find

I = P − S − V

NT

(3.5)

and

S = P − I − V

NT

. (3.6)

Substituting for I in Equation (3.3), differentiating, and applying (3.5) and (3.6) gives

d2V

dt2
= NT δkPV − kV

dV

dt
− δkV 2 − δdV

dt
.

Thus, we have reduced the system to a single differential equation,

V ′′ = NT δkPV − kV V ′ − δkV 2 − δV ′, (3.7)

where the prime indicates differentiation with respect to t. We next use a series of sub-
stitutions to bring (3.7) to a more easily solvable form. Using a transformation from [9],
let

u =
dt

dV
=

1

V ′
, (3.8)

with the initial condition

u(V0) =
1

NT δI0
.

Then we find

du

dV
= (δkV 2 −NT δkPV )u3 + (kV + δ)u2. (3.9)
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Equation (3.9) is an Abel equation of the first kind; that is, it has the form

du

dV
= f3(V )u3 + f2(V )u2 + f1(V )u+ f0(V ), (3.10)

where in this case

f3(V ) = δkV 2 −NT δkPV,

f2(V ) = kV + δ,

f1(V ) = 0,

f0(V ) = 0.

In [9], an iterative method is used to solve an equation of this type. Essentially, we obtain
a sequence of approximate analytical solutions to the equation. The exact solution is given
by the limit of the sequence at infinity. To start, let

φ = lnu, (3.11)

or in other words,

u = eφ. (3.12)

We then have the initial condition

φ(V0) = − ln(NT δI0).

The differential equation then becomes

dφ

dV
= (δkV 2 −NT δkPV )e2φ + (kV + δ)eφ. (3.13)

The expression eφ can be expanded in a Taylor series as

eφ =
∞∑
n=0

φn

n!
= 1 + φ+

φ2

2
+
φ3

6
+ · · · ,

so we may write (3.13) as

dφ

dV
=(δkV 2 −NT δkPV )

(
1 + 2φ+

(2φ)2

2
+ · · ·

)
+ (kV + δ)

(
1 + φ+

φ2

2
+ · · ·

)
.

(3.14)

As a first approximation, φ1(V ), use only the first two terms of the Taylor series; that is, let

dφ1

dV
= (δkV 2 −NT δkPV )(1 + 2φ1) + (kV + δ)(1 + φ1)

=
[
δkV 2 + (k −NT δkP )V + δ

]
+ [2δkV 2 + (k − 2NT δkP )V + δ]φ1.

(3.15)
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The above is a first order, linear differential equation and can be solved with an integrating
factor. Let

F = exp

[
−2

3
δkV 3 −

(
k

2
−NT δkP

)
V 2 − δV

]
.

Then

φ1(V ) =
1

F (V )

{
− ln(NT δI0)F (V0) +

∫ V

V0

F (ξ)
[
δkξ2 + (k −NT δkP )ξ + δ

]
dξ

}
, (3.16)

where we have taken φ1(V0) = φ(V0). Note that (3.14) can also be written as

dφ

dV
=(δkV 2 −NT δkPV )

[
1 + 2φ+

∞∑
n=2

(2φ)n

n!

]

+ (kV + δ)

[
1 + φ+

∞∑
n=2

φn

n!

]
,

or rearranging,

dφ

dV
=
[
2δkV 2 + (k − 2NT δkP )V + δ

]
φ+

[
δkV 2 + (k −NT δkP )V + δ

]
+
∞∑
n=2

[
(δkV 2 −NT δkPV )

(2φ)n

n!
+ (kV + δ)

φn

n!

]
.

For a second approximation, φ2(V ), plug into the infinite sum the expression for φ1 obtained
previously; that is, let

dφ2

dV
=
[
2δkV 2 + (k − 2NT δkP )V + δ

]
φ2 +

[
δkV 2 + (k −NT δkP )V + δ

]
+
∞∑
n=2

[
(δkV 2 −NT δkPV )

(2φ1)
n

n!
+ (kV + δ)

φn1
n!

]
.

Just as before, this is a first order, linear equation and can be solved with an integrating
factor. The coefficient of φ2 is the same as the coefficient of φ1 in Equation (3.15), so we
may use the same integrating factor. Thus,

φ2(V ) =− 1

F (V )
ln(NT δI0)F (V0) +

1

F (V )

∫ V

V0

F (ξ)
[
δkξ2 + (k −NT δkP )ξ + δ

]
dξ

+
1

F (V )

∫ V

V0

F (ξ)
∞∑
n=2

{
(δkξ2 −NT δkPξ)

[2φ1(ξ)]
n

n!
+ (kξ + δ)

[φ1(ξ)]
n

n!

}
dξ,

where, as before, we have taken φ2(V0) = φ(V0). Continuing this process gives successively
more accurate estimates for φ(V ). In general, for any integer m ≥ 1,

φm+1(V ) =
−1

F (V )
ln(NT δI0)F (V0) +

1

F (V )

∫ V

V0

F (ξ)
[
δkξ2 + (k −NT δkP )ξ + δ

]
dξ

+
1

F (V )

∫ V

V0

F (ξ)
∞∑
n=2

{
(δkξ2 −NT δkPξ)

[2φm(ξ)]n

n!
+ (kξ + δ)

[φm(ξ)]n

n!

}
dξ,
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or in a more compact form,

φm+1(V ) = φ1(V ) +
1

F (V )

∫ V

V0

F (ξ)(δkξ2 −NT δkPξ)
[
e2φm(ξ) − 1− 2φm(ξ)

]
dξ

+
1

F (V )

∫ V

V0

F (ξ)(kξ + δ)
[
eφm(ξ) − 1− φm(ξ)

]
dξ.

In light of (3.16), this simplifies to

φm+1(V ) =− ln(NT δI0)F (V0)

F (V )
+

δk

F (V )

∫ V

V0

F (ξ)(ξ2 −NTPξ)
[
e2φm(ξ) − 2φm(ξ)

]
dξ

+
1

F (V )

∫ V

V0

F (ξ)(kξ + δ)
[
eφm(ξ) − φm(ξ)

]
dξ.

(3.17)

With each iteration, the approximation φm(V ) should become closer to φ(V ), the solution
of (3.13); that is, lim

m→∞
φm(V ) = φ(V ). Having outlined a method to obtain φ, we may now

work backwards to find V (t). By (3.12) and (3.8), we have

dt

dV
= eφ(V ),

or integrating both sides, ∫ t

t0

dξ =

∫ V

V0

eφ(ξ)dξ.

Taking t0 = 0, V (t) is given implicitly by

t =

∫ V

V0

eφ(ξ)dξ. (3.18)

Now, by Equation (3.1),

dS

dt
= −kV S.

Separating variables and integrating,∫ S

S0

1

ξ
dξ = −k

∫ t

t0

V (ξ)dξ,

which implies (for t0=0)

S = S0 exp

[
−k
∫ t

0

V (ξ)dξ

]
. (3.19)

Finally, by (3.5),

I = P − S0 exp

[
−k
∫ t

0

V (ξ)dξ

]
− V (t)

NT

. (3.20)
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This completes the analytical solution of the second simplified model, with V given implicitly
by (3.18) and S and I given in terms of V by (3.19) and (3.20), respectively.

Figure 2 shows several approximations for φ, V , S, and I, obtained by iterating 1200,
2400, 3600, 4800, and 6000 times. The initial conditions S(0) = 500, I(0) = 0.1, and
V (0) = 0.1 were used. Due to the complexity of the analytical solution, the calculations were
quite time-consuming; accordingly, the solutions were only computed on a small interval.
The curves for φ and V have the distinctive behavior of coinciding almost perfectly with the
exact solution (in light blue) at first and then abruptly branching off; with each successive
approximation, the branching point moves farther to the right. To analyze the system’s
behavior on a larger interval, Euler’s method was used to generate Figure 3.

Figure 2: Plots for φ (top left), V (top right), S (bottom left), and I (bottom right) using
the analytical solution. The dark blue, orange, yellow, purple, and green curves show the
approximations obtained from φ1201, φ2401, φ3601, φ4801, and φ6001, respectively. The light
blue curve represents the exact solution (computed from Euler’s method). Note that the
green and light blue curves overlap.
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Figure 3: Plot of S and I (left, in number of cells per cubic milliliter) and V (right, in
number of virus particles per cubic milliliters) over time (in days) for the second model.

4 Discussion

It is interesting to compare the results of the two models. Examining Figures 1 and 3, we
see that the models start out similarly, with a level period followed by a sharp decrease in S
and with sharp increases in I and V . One noticeable difference is that I experiences more
moderate growth in the second model, which is to be expected since we have incorporated
its death rate. The same can be said for V , whose increase depends on I. The long term
behaviors of the models, on the other hand, are quite different. In both models, S eventually
reaches the same equilibrium value of zero. Whereas in the first model, I eventually leveled
off to a positive value (the same as the starting value for S), in the second, I eventually
drops to zero. In the second model, rather than continuing to grow linearly as it does in
the first, V eventually reaches an equilibrium value. This occurs because there are no more
infected cells to produce virus particles. To extend on this work, it would be interesting to
next incorporate the viral clearance rate. This should give more realistic short term and
long term outputs. On the whole, our two models give a great deal of insight into the roles
of the infection term, virus production term, and infected cell death rate in the SIV model.
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