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Abstract. We construct a global conservative weak solution to the Cauchy problem for

the non-linear variational wave equation vtt−c(v)(c(v)vx)x+ 1
2g(v) = 0 where g(v) is de�ned

in (2.5) and c(·) is any smooth function with uniformly positive bounded value. This wave

equation is derived from a wave system modelling nematic liquid crystals in a constant

electric �eld.

1. Introduction

1.1. Physical background.

In this paper, we study a wave equation modelling the nematic liquid crystal in one space

dimension with electric �eld applied. In the nematic phase, the orientation of the molecules

can be described by a �eld of unit vector n(x, t) ∈ S2, the unit sphere. The famous Oseen-

Frank potential energy density W associated with the director �eld n is de�ned by

W (n,∇n) = α|n× (∇× n)|2 + β(∇ · n)2 + γ(n · ∇ × n)2,

where α, β and γ are positive elastic constants of the liquid crystal. α represents the splay

phenomenon of the nematic liquid crystal, β represents the bend phenomenon, and γ rep-

resents the twist phenomenon. When the kinetic energy are neglected in studies of nematic

liquid crystals, by variational principle, we obtain an elliptic partial di�erential equation [11].

When we include the kinetic energy on modelling the nematic liquid crystal in one space

dimension without any �elds applied, we can formulate it as a non-linear wave equation

which is derived in [7]:

(1.1) utt − c(u)[c(u)ux]x = 0,

with smooth function u.

We study the nematic liquid crystal under the a constant electric �eld with the electric

energy density described by

felectric = −1

2
P · E =

1

2
ϕE2 +

1

2
η(E · n)2,

where P is the polarization, E is the electric �eld. We assume that the applied �eld is neither

parallel nor perpendicular to n. ϕ and η are positive constants related to permittivity and

dielectric constants [12].

1.2. Known results.

For the equation (1.1), Glassey, Hunter, and Zheng [7] showed that the smooth solutions
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develop singularities in �nite time. Also, Zhang and Zheng [19] studied that under weak

conditions on the initial data which allow the solutions to have blow-up singularities and

they established approximate solutions with estimates along precompactness using Young

measure methods.

Our main reference is [5]. For the Cauchy problem for (1.1) with initial data u(0, x) =

u0(x), ut(0, x) = u1(x), Bressan and Zheng [5] proved the existence of a conservative weak

solution by method of characteristics. They constructed conservative weak solution by in-

troducing new sets of dependent and independent variables and showed that the solution

can be obtained as the �xed point of a contraction transformation. See also [8]. Compared

with [5], our energy equation has new terms from the applied electric �eld. These terms can

be expressed as G(v) where G(v) is de�ned in (2.6). To solve this problem, we need to do

some modi�cation on the proof in [5] based on the observation that v ∈ H1 and G(v) is the

lower order term in the energy equation.

For the Cauchy problem for (1.1) with initial data, Bressan, Chen and Zhang [3] proved

the uniqueness of conservative solutions. Brassan and Huang [4] constructed dissipative so-

lutions for c′ > 0 relying on Kolmogorov's compactness theorem. Zhang and Zheng studied

the existence and regularity properties of classical and weak solutions using the Young mea-

sure theory in [18] and proved the global existence of weak solutions in [20]. For C3 initial

data, Bressan and Chen [1] showed that the conservative solutions are piecewise smooth in

t-x plane. In [2], Bressan and Chen constructed a metric that renders the �ow uniformly

Lipschitz continuous on bounded subsets of H1(R). Zhang and Zheng [21] studied the ex-

istence of global weak solutions to the initial value problem (1.1) with general initial data

(u(0), ut(0)) = (u0, u1) ∈ W 1,2 × L2 with wave speed satisfying c′(·) ≥ 0 and c′(u0(·)) > 0.

For a wave system modelling nematic liquid crystals in one space dimension, Chen and

Zheng [6] studied the global existence and singularity formation. Huang and Zheng [9] es-

tablished the global existence of smooth solutions. Zhang and Zheng [13] constructed a weak

global solutions to the Cauchy problem for a system of two variational wave equations on the

real line and [14] showed the global weak solutions to the initial value problem for a complete

system of variational wave equations modelling liquid crystals in one space dimension.

[10] shows that the weakly nonlinear unidirectional waves satisfying (1.1) are discribed

asymptotically by

(1.2) (ut + unux)x =
1

2
nun−1(ux)

2,

derived by Hunter and Saxton via weakly nonlinear geometric optics. In [15]-[17], Zhang

and Zheng studied the global existence, uniqueness, and regularity of the dissipative and

conservative solutions to (1.2)(n = 1, 2) with L2 initial data.

1.3. Main theorems.

Our main results are stated as follows. For the nematic liquid crystal under electric �eld,
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we obtain a Cauchy problem

(1.3) vtt − c(v)(c(v)vx)x +
1

2
g(v) = 0,

with the initial data

(1.4) v(0, x) = v0(x), vt(0, x) = v1(x),

and g(v) is de�ned in (2.5).

For the smooth function c(·), we assume that c : R 7→ R+ is a bounded and uniformly

positive function.

De�nition 1.1. The de�nition of weak solution.

We say that for all test function φ ∈ C1
c , the function v ∈ H1 satis�es the following

integral:

(1.5)

∫∫
φtvt − [c(v)φ]x[c(v)vx]−

φ

2
g(v) dxdt = 0,

is a weak solution to the equation (1.3).

De�nition 1.2. The de�nition of energy conservative weak solution.

For v1 and v0 de�ned in (1.4) and G(v) is de�ned in (2.6), we de�ne the ground state

energy E0 as:

(1.6) E0 :=
1

2

∫ {
v2

1(x) + c2(v0(x))[v2
0(x)]x +G(v0(x))

}
dx.

The function v ∈ H1 is a energy conservative weak solution if it satisfying

(1.7) E(t) :=
1

2

∫ {
v2
t (t, x) + c2(v(t, x))v2

x(t, x) +G(v(t, x))
}
dx = E0,

for almost every t ∈ R.

Theorem 1.1. Assume that c: R 7→ [K−1,K] is a smooth function for some K > 1. v0(x)

and v1(x) are stated in (1.4). Also assume that the initial data v0(x) is absolutely continuous,

(v0(x))x ∈ H1, and v1(x) ∈ H1. Then (1.3)-(1.4) can be considered as a Cauchy problem

admitting a weak solution v(t, x) de�ned for all (t, x) ∈ R× R. Moreover, in the t-x plane,

v(x, t) is locally Hölder- 1
2
continuous. For all 1 ≤ p < 2, the map t 7→ v(t, ·) is continuously

di�erentiable with values in Lploc. The weak solution v(t.·) is Lipschitz continuous with respect

to L2 distance. So, for all t, s ∈ R,

(1.8) ‖v(t, ·)− v(s, ·)‖L2 ≤ L|t− s|.

For all test function φ ∈ C1
c , the equation (1.3) satis�es (1.5).

Theorem 1.2. A family of weak solutions to the Cauchy problem (1.3)-(1.4) can be obtained

with the properties:

(1.9) E(t) ≤ E0.
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Let a sequence of initial condition satis�es:

‖(vn0 (x))x − (v0(x))x‖L2 → 0,

‖vn1 (x)− v1(x)‖L2 → 0.

Also, un → u uniformly on bounded subsets of the t-x plane and vn0 → v0 on compact sets as

n→∞.

Theorem 1.3. There exists a continuous family of positive Radon measures {µt : t ∈ R} .
This family of positive Radon measure is de�ned on the real line and it satis�es the following

properties:

(i) µt(R) = E0 for any time t.

(ii) With respect to Lebesgue measure, the absolutely continuous part of µt has density
1

2
(v2
t +

c2(v)v2
x +G(v)).

(iii) The singular part of µt has measure zero on the set where c′(v) = 0.

The paper is organized as follows. In section 2, we derive the energy equation and introduce

a new set of dependent variables. Based on those dependent variables, we formulate a set

of equations in terms of the new variables. This set of equations is equivalent to (1.3). In

section 3, we use a transformation in a Banach space. In the transformation, we �nd the

suitable weighted norm. This shows that there is a unique solution to the set of equations

in terms of the new variables. In section 4, we show that the integral (1.5) holds and the

Hölder-1
2
continuous condition holds. In section 5, we show that (1.9) holds and the Lipschitz

condition on the map t 7→ v(t, ·) and provide a proof of Theorem 1.2. On section 6, we study

the maps of t 7→ ux(t, ·) and t 7→ ut(t, ·), and complete the proof of Theorem 1.1. We provide

a proof of Theorem 1.3 in section 7.

2. Variable Transformations

2.1. Derivation of (1.3). Equation (1.3) has some physical origins. In the context of

nematic liquid crystals, we introduce the famous Oseen-Frank potential energy density W is

given by

(2.1) W (n,∇n) = α|n× (∇× n)|2 + β(∇ · n)2 + γ(n · ∇ × n)2.

As stated in [12], in a electric �eld, the electric energy of the liquid crystal per unit volume

is given by

(2.2) felectric = −1

2
P · E =

1

2
ϕE2 +

1

2
η(E · n)2.

We discuss that when the electric energy is low when the applied electric �eld is normal

to the liquid crystal director. And ϕ and η are some positive constants related to the

permittivity so that (2.2) is equivalent to |n ·E⊥|2 + 1. And we denote E⊥ as a vector such

that E · E⊥ = 0 and E⊥ = (1, 0). So, the electric energy can be described as |n · E⊥|2. By
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the property of the potential energy, the action can be describe as

S =

∫∫
|nt|2 −W (n,∇n)− |n · E⊥|2dx dt

.

By plug in n = (cosu, sinu), the action can be describe as:

(2.3) S =

∫∫
u2
t − (c(u))2u2

x − (cosu)2dx dt.

We let v = u− π

2
so that cosu = sin v. By the principle of least action,

δS = 0 =

∫∫
δ[v2

t − (c(v))2v2
x − (sin v)2]dx dt.

A straightforward computation shows that

(2.4) vtt − c(v)(c(v)vx)x +
g(v)

2
= 0,

where

(2.5) g(v) = 2 sin v cos v.

And de�ne G(v) as two times the anti derivative of g(v) ,

(2.6) G(v) = 2(sin v)2.

2.2. Derivation of the energy equation.

From (2.4), we can compute that∫
vtvtt − vtc(v)[c(v)vx]x +

g(v)

2
vtdx = 0∫

(
1

2
v2
t )t + (

c2(v)v2
x

2
)t + (

1

2
G(v))tdx = 0.

(2.7)

And from (2.7), the energy equation can be described as

(2.8) E :=
1

2

(
v2
t + c2(v)v2

x +G(v)
)
.

2.3. Variables transform. In this section we derive identities that holds for smooth so-

lutions. The variable transformations are inspired by Bressan-Zheng [5]. We �rst denote

variables:

(2.9)

{
R := vt + c(v)vx,

S := vt − c(v)vx.

Thus, we can write vt and vx as follows

(2.10)


vt =

R + S

2
,

vx =
R− S

2c
.
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By (1.3), the following identities are valid :

(2.11)


St + cSx =

c′

4c
(S2 −R2)− 1

2
g(v),

Rt − cRx =
c′

4c
(R2 − S2)− 1

2
g(v),

by the following calculation

Rt − cRx = (vt + cvx)t − c(vt + cvx)x

= g(v) +
c′

4c
(R2 − S2).

We can compute St+ cSx in the similar way to get (2.11) and denote energy and momentum

as

(2.12) E :=
1

2

(
v2
t + c2(v)v2

x +G(v)
)

=
R2 + S2

4
+
G(v)

2
,

(2.13) M := −vtvx =
S2 −R2

4c
.

The analysis of (1.3) has a main di�cult that the possible breakdown of the regularity

solutions. The quantities vx and vt can blow up in �nite time even with smooth initial

data. Thus we need to introduce a new set of dependent variables to deal with the possible

unbounded value R and S:

(2.14) w := 2 arctanR, z := 2 arctanS.

Thus

(2.15) R = tan
(w

2

)
, S = tan

(z
2

)
.

By (2.11),

(2.16) wt − cwx =
2

1 +R2
(Rt − cRx) =

c′

2c

R2 − S2

1 +R2
− g(v)

1 +R2
,

(2.17) zt + czx =
2

1 + S2
(St + cSx) =

c′

2c

S2 −R2

1 + S2
− g(v)

1 + S2
.

In order to reduce the equation to a semi-linear system, we need to have a further change

of variables. The forward characteristics equation and the backward characteristics equation:

ẋ+ = c(v), ẋ− = c(v).

And we denote the characteristics lines pass through the point (t, x) as

s→ x+(s, t, x), s→ x−(s, t, x).

So we can use a new coordinate system (X, Y ) to represent point (t, x) by

(2.18) X :=

∫ x−(0,t,x)

0

(1 +R2(0, x))dx,

(2.19) Y :=

∫ 0

x+(0,t,x)

(1 + S2(0, x))dx.
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x

t

s

X Y

(t, x)

Figure 1. The characteristic curves.

(2.18) and (2.19) implies that

(2.20) Xt − c(v)Xx = 0, Yt + c(v)Yx = 0,

(2.21) (Xx)t − (c(v)Xx)x = 0, (Yx)t + (c(v)Yx)x = 0.

Thus, given any smooth function f , by using (2.20),

(2.22)
ft + c(v)fx = 2c(v)XxfX ,

ft − c(v)fx = 2c(v)YxfY .

From (2.20), Xt + c(v)Xx = 2c(v)Xx. To get (2.22) we compute directly

ft + c(v)fx = fXXt + fY Yt + c(v)fXXx + c(v)fY Yx = (Xt + c(v)Xx)fX = 2c(v)XxfX ,

ft − c(v)fx = fXXt + fY Yt − c(v)fXXx − c(v)fY Yx = (Yt − c(v)Yx)fY = 2c(v)YxfY .

Introducing new variables

(2.23) p :=
1 +R2

Xx

, q :=
1 + S2

−Yx
.

From (2.23),

(2.24)

1

Xx

=
p

1 +R2
= p cos2(

w

2
) =

p(1 + cosw)

2
,

1

−Yx
=

q

1 + S2
= q cos2(

z

2
) =

q(1 + cos z)

2
.

By applying (2.16)-(2.17) to (2.17),

wt − cwx = 2c
1 + S2

q
wY =

c′

2c

R2 − S2

1 +R2
+

g(v)

1 +R2
,

zt + czx = 2c
1 +R2

p
zx =

c′

2c

S2 −R2

1 + S2
+

g(v)

1 + S2
.

Thus, wY and zX can be write as

wY =
c′

4c2

R2 − S2

1 +R2

q

1 + S2
− q

2c

1

1 + S2

g(v)

1 +R2
,

zX =
c′

4c2

S2 −R2

1 + S2

p

1 +R2
− p

2c

1

1 + S2

g(v)

1 +R2
.
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So

(2.25)


wY =

c′

8c2
(cos z − cosw)q − q

8c
g(v)(1 + cos z)(1 + cosw),

zX =
c′

8c2
(cosw − cos z)p− p

8c
g(v)(1 + cos z)(1 + cosw).

By using (2.21) and (2.24),

pt − cpx =
1

Xx

2R(Rt − cRx)−
1

X2
x

[(Xx)t − c(Xx)x](1 +R2)

=
c′

2c

p

1 +R2
[S(1 +R2)−R(1 + S2)]− p

1 +R2
Rg(v),

qt + cqx =
1

−Yx
2S(St − cSx)−

1

−Y 2
x

[(−Yx)t + c(−Yx)x](1 + S2)

=
c′

2c

q

1 + S2
[R(1 + S2)− S(1 +R2)]− q

1 + S2
Sg(v).

By applying (2.22),

pt − cpx = −2cYxpY ,

qt + cqx = 2cXxqX .

And thus,

pY = (pt − cpx)
1

−2cYx
= (pt − cpx)

1

2c

q

1 + S2

=
c′

8c2
[sin z − sinw]pq − 1

8c
pq sinw g(v)(1 + cos z),

qX = (qt + cqx)
1

2cXx

= (qt + cqx)
1

2c

p

1 +R2

=
c′

8c2
[sinw − sin z]pq − 1

8c
pq sin z g(v)(1 + cosw).

So, the following identities hold:

(2.26)


pY =

c′

8c2
[sin z − sinw]pq − 1

8c
pq sinw g(v)(1 + cos z),

qX =
c′

8c2
[sinw − sin z]pq − 1

8c
pq sin z g(v)(1 + cosw).

Also, we plug in f = v into the equation (2.22) and get

(2.27)


vX = (vt + cvx)

1

2c

p

1 +R2
=

1

2c
(tan

w

2
cos2 w

2
)p = p

1

4c
sinw,

vY = (vt − cvx)
1

2c

q

1 + S2
=

1

2c
(tan

z

2
cos2 z

2
)q = q

1

4c
sin z.

Combining (2.25), (2.26), and (2.27), we obtain a semi-linear hyperbolic system from the

non-linear equation (1.3). This system uses X, Y as independent variables with smooth
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coe�cients for the variables v, w, z, p, q

(2.28)


wY =

c′

8c2
(cos z − cosw)q − q

8c
g(v)(1 + cos z)(1 + cosw),

zX =
c′

8c2
(cosw − cos z)p− p

8c
g(v)(1 + cos z)(1 + cosw),

(2.29)


pY =

c′

8c2
[sin z − sinw]pq − 1

8c
pq sinw g(v)(1 + cos z),

qX =
c′

8c2
[sinw − sin z]pq − 1

8c
pq sin z g(v)(1 + cosw),

(2.30)


vX =

p

4c
sinw,

vY =
q

4c
sin z,

The system (2.28)-(2.30) should have non-characteristic boundary conditions related to

(1.4). From (1.4), v0 and v1 determine the initial values of R and S at time t = 0. We denote

the curve γ as the line in (X, Y ) plane at time t = 0, say

Y = ϕ(X), X ∈ R.

And Y = ϕ(X) if and only if for some x ∈ R,

X =

∫ x

0

(1 +R2(0, x))dx, Y =

∫ 0

x

(1 + S2(0, x))dx.

By the assumptions of the Theorem 1.1, v0 ∈ H1, v1 ∈ H1. This implies that R ∈ H1 and

S ∈ H1. Moreover, in this case, we let

(2.31) E0 :=
1

4

∫
[R2(0, x) + S2(0, x)]dx <∞.

Thus,

(2.32) X(x) :=

∫ x

0

(1 +R2(0, y))dy, Y (x) :=

∫ 0

x

(1 + S2(0, y))dy.

are absolutely continuous and well de�ned functions. Further more, by observing (2.32), X

is increasing and Y is decreasing. So, we conclude that the map X 7→ ϕ(X) is continuous

and decreasing. And from (2.31),

|X + ϕ(X)| ≤ 4E0.

Since (t, x) ∈ [0,∞) × (−∞,∞), so our new independent variables (X, Y ) ∈ Ω+, and the

domain is de�ned as

Ω+ := {(X, Y ) : Y ≥ ϕ(X)},

along the curve

γ := {(X, Y ) : Y = ϕ(X)}.
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We can have the following boundary data (w̄, z̄, p̄, q̄, v̄) ∈ L∞,

(2.33)

 w̄ = 2 arctan(R(0, x)),

z̄ = 2 arctan(S(0, x)),

(2.34)

{
p̄ ≡ 1,

q̄ ≡ 1,

(2.35) v̄ = v0(x).

3. Construct the integral solution

We prove the global existence and uniqueness for the semi-linear system (2.28) - (2.30) in

this section.

Theorem 3.1. If the assumptions of Theorem 1.1 holds, then the semi-linear system (2.28)

- (2.30) with the boundary conditions (2.33) - (2.35) has a unique solution for all (X, Y ) ∈
R× R.

We construct the solution on the region Ω+ which is the case that Y ≥ ϕ(X). The proof of

the solution on the Ω− which is the case that Y ≤ ϕ(X) can be construct in the similar way.

We show the Lipschitz condition for the system (2.28) - (2.30). To make sure the solution

is de�ned in the region Ω+, we need to construct some priori bounds. So that we can show

that p, q are bounded. The Lipschitz condition can be derived as follows. From the energy

conservation equations (1.7), (1.6) and the assumption that v ∈ H1, we denote the following

constants:

C1 := sup
v(x,t)∈R

∣∣∣∣ c′(v)

4c2(v)

∣∣∣∣ <∞,
K1 := sup

t≥0

∫
G(v)dx <∞,

K0 := sup
x,t

∣∣∣∣g(v)

∣∣∣∣ <∞.
(3.1)

The variable transformation from (x, t) to (X, Y ) changes the independent variable of v not

the dependent variable. Thus the boundedness of K1 and K0 remains.

From (2.29),

qX + pY =
1

2
[G(v)q(1 + cos z)]X +

1

2
[G(v)p(1 + cosw)]Y

− 1

2
G(v)

c′

8c
(sinw − sin z)(cos z − cosw)

(
1

c
+ 1

)
.

(3.2)

We construct a closed curve Σ for every (X, Y ) ∈ Ω+ with the vertical line segment connect

(X, Y ) with (X,ϕ(X)), the horizontal line segment connect (X, Y ) with (ϕ−1(Y ), Y ), and

a part of the boundary γ = Y = ϕ(X) connecting (X,ϕ(X)) with (ϕ−1(Y ), Y ). The closed
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Y

X

(X, Y )

Figure 2. The closed curve Σ.

curve Σ = Γ1 + Γ2 + Γ3. From (3.1), we compute

∫∫
qX + pY dA =

∫
−pdX +

∫
qdY

and denote that ∫∫
qX + pY dA =

∫
−pdX +

∫
qdY,(3.3)

QX :=
1

2
[G(v)q(1 + cos z)]X ,(3.4)

PY :=
1

2
[G(v)p(1 + cosw)]Y ,(3.5)

ξ := G(v)
c′

8c
(sinw − sin z)(cos z − cosw)

(
1

c
+ 1

)
.(3.6)

So ∫∫
Ω

py + qXdXdY =

∫
Σ

−pdX +

∫
Σ

qdY

=

∫∫
Ω

QX + PY −
1

2
ξdXdY,

By Green's Theorem,∫
Σ

−pdX +

∫
Σ

qdY =

∫
Σ

−PdX +

∫
Σ

QdY − 1

2

∫∫
Ω

ξdXdY.

Thus,

1

2

∫∫
Ω

ξdXdY =

∫
Σ

p− PdX +

∫
Σ

Q− qdY,

=

∫
Σ

p− G(v)

2
p(1 + cosw)dX +

∫
Σ

−q +
G(v)

2
q(1 + cos z)dX.
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Since Σ = Γ1 + Γ2 + Γ3 is a closed curve, so we compute the integral of Γ1 directly and in

the way Γ1 = −(Γ2 + Γ3).

(3.7)

∫
Γ1

1− G(v)

2
(1 + cosw)dX +

∫
Γ1

−1 +
G(v)

2
(1 + cos z)dY,

and from (2.24)

dX =
2

1 + cosw
dx, dY =

2

1 + cos z
dx.

Thus (1 + cosw)dX = 2dx, and (1 + cosw)dY = 2dx.

So (3.8) becomes∫
Γ1

1− G(v)

2
(1 + cosw)dX+

∫
Γ1

−1 +
G(v)

2
(1 + cos z)dY

≤ 2(|X|+ |Y |+ 4E0) +K1.

And also, ∫
Γ2

1− G(v)

2
(1 + cosw)dX+

∫
Γ2

−1 +
G(v)

2
(1 + cos z)dY

≤ 0− Y + ϕ(X) +
K1

2
,∫

Γ3

1− G(v)

2
(1 + cosw)dX+

∫
Γ3

−1 +
G(v)

2
(1 + cos z)dY

≤ ϕ−1(Y )−X − 0 +
K1

2
.

As a result,

(3.8)

∫ X

ϕ−1(Y )

p(X ′, Y )dX ′ +

∫ Y

ϕ(X)

q(X, Y ′)dY ′ ≤ 2(|X|+ |Y |+ 4E0) +K1.

By observing the boundary conditions (2.33) - (2.35), p, q > 0. And by (2.29),

pY =
1

8c
pq

{
c′

c
[sin z − sinw]− sinw g(v)(1 + cos z)

}
,

p(X, Y ) = exp

{∫ Y

ϕ(X)

1

8c

c′

c
[sin z − sinw]− sinw g(v)(1 + cos z)q(X, Y ′)dY ′

}
≤ exp

{
C1

∫ Y

ϕ(X)

q(X, Y ′)dY ′
}

≤ exp { 2C1(|X|+ |Y |+ 4E0) + C1K1} .

Similarly, we have

q(X, Y ) ≤ exp{ 2C1(|X|+ |Y |+ 4E0) + C1K1}.

Now, we show that on any bounded sets in X-Y plane, we can construct the solution for

the system of the equations (2.28) - (2.30) with boundary condition (2.33) -(2.35) by the

�xed point of a constructive map. For any r > 0, we can construct a bounded domain

Ωr := {(X, Y ) : Y ≤ ϕ(X), X ≤ r, Y ≤ r}.
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And also introduce the function space :

(3.9) Λr := {f : Ωr 7→ R : ‖f‖∗ := esssup
(X,Y )∈Ωr

e−K(X+Y )|f(X, Y )| <∞}.

Where K is a suitably big constant and it will be determined later. And for (w, z, p, q, v) ∈
Λr, we construct a map τ(w, z, p, q, v) = (w̃, z̃, p̃, q̃, ṽ). And this map is de�ne as follows.

(3.10) w̃(X, Y ) = w̄(X,ϕ(X)) +
∫ Y
ϕ(X)

c′

8c2
(cos z − cosw)q − q

8c
g(v)(1 + cos z)(1 + cosw)dY,

z̃(X, Y ) = z̄(ϕ−1(Y ), Y ) +
∫ X
ϕ−1(Y )

c′

8c2
(cosw − cos z)p− p

8c
g(v)(1 + cos z)(1 + cosw)dX,

(3.11)

 p̃(X, Y ) = 1 +
∫ Y
ϕ(X)

1
8c
pq
{
c′

c
[sin z − sinw]− sinw g(v)(1 + cos z)

}
dY,

q̃(X, Y ) = 1 +
∫ X
ϕ−1(Y )

1
8c
pq
{
c′

c
[sinw − sin z]− sin z (g(v)(1 + cosw)

}
dX,

(3.12) ṽ(X, Y ) = v̄(X,ϕ(X)) +

∫ Y

ϕ(X)

1

4c
sin zqdY.

We want to prove the uniform Lipschitz condition by showing that Φr is a contracting map.

First, we de�ne

Φr := Λr × Λr × Λr × Λr × Λr.

For some properly chosen distance D : Φr × Φr 7→ R, we want to show that

D((w̃1, z̃1, p̃1, q̃1, ṽ1), (w̃2, z̃2, p̃2, q̃2, ṽ2)) < L×D((w1, z1, p1, q1, v1), (w2, z2, p2, q2, v2)).

The Lipschitz constant L satis�es L ≤ 1. In fact, we de�ne the distance as:

D((w̃1, z̃1, p̃1, q̃1, ṽ1), (w̃2, z̃2, p̃2, q̃2, ṽ2)) := max{‖w̃1 − w̃2‖∗ , ‖z̃1 − z̃2‖∗ ,

‖p̃1 − p̃2‖∗ , ‖q̃1 − q̃2‖∗ , ‖ṽ1 − ṽ2‖∗},

and the norm ‖ · ‖∗ is de�ned in (3.9).

A straightforward computation shows that L =
C(E0,K)

K
, where C(E0,K) is a constant

depends on E0 and K. By choosing K su�ciently large, we can guarantee L < 1. Hence, the

uniform Lipschitz condition is proved. By the �xed point theorem, the solution in the X-Y

plane exists and is unique. �

If the initial data in (1.2) are smooth, then the solutions of (2.28) - (2.30) with boundary

condition (2.33) - (2.35) are smooth functions with variables (X, Y ). Also, if there is a

sequence of smooth functions (vm0 (x), vm1 (x))m≥1 with the following conditions:

vm0 (x)→ v0(x) , vm1 (x)→ v1(x), (vm0 (x))x → (v0(x))x,

uniformly on a compact subset of R. Then

(pm, qm, wm, zm, vm)→ (p, q, w, z, v),

uniformly on some bounded subsets of X-Y plane.
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4. Weak solutions

In this section, we construct a map v(X, Y )→ v(t, x). That is to write (X, Y ) in terms of

(t, x) so we obtain a solution to the Cauchy problem (1.3), (1.4). The map (X, Y ) 7→ (t, x)

can be obtain in the following way. We plug in f = x and f = t into the equation (2.22),

and get

(4.1)


c = 2cXxxX ,

−c = −2cYxxY ,

1 = 2cXxtX ,

1 = −2cYxtY .

And by applying (2.24) we have

(4.2)



Xx =
2

(1 + cosw)p
,

Yx =
−2

(1 + cos z)q
,

Xt =
2c

(1 + cosw)p
,

Yt =
−2c

(1 + cos z)q
.

We assume that the partial derivatives above valid for points that w, z 6= −π. Thus, we
have

(4.3)


xX =

1

2Xx

=
(1 + cosw)p

4
,

xY =
1

2Yx
=
−(1 + cos z)q

4
,

(4.4)


tX =

1

2cXx

=
(1 + cosw)p

4c
,

tY =
1

−2cYx
=

(1 + cos z)q

4c
.

A computation shows that xXY = xY X and tXY = tY X

xXY =
(1 + cosw)pY

4
− p sinwwY

4

=
c′pq

32c
[sin z − sinw + sin(z − w)],

xY X =
(1 + cos z)qX

4
− q sin zzY

4

=
c′pq

32c
[sin z − sinw + sin(z − w)].

So, xXY = xY X .

And similarly, we can compute that tXY = tY X . Thus, the two equation in (4.3) are

equivalent: xXY = xY X . And the two equation in (4.4) are equivalent since tXY = tY X . We
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can recover the solution in terms of (t, x) with function x = x(X, Y ) by integrating one of

the equation in (4.3). Also, we can write t = t(X, Y ) by integrating one of the equation in

(4.4).

Next, we prove that the function v is a weak solution to (1.3). From (1.5), we want to

show that

0 =

∫∫
φtvt − [c(v)φ]x[c(v)vx]−

φ

2
g(v)dxdt.

In fact, it is equivalent to prove:

0 =

∫∫
(vt + cvx)[φt − (c(v)φ)x] + (vt − cvx)[φt + (c(v)φ)x]− φg(v)dxdt

=

∫∫
−(

sinw

2
p)Y φ− (

sin z

2
q)Xφ+

c′pq

8c
[sinw

1 + cos z

2
− sin z

1 + cosw

2
]φ(tan

z

2
− tan

w

2
)dXdY

−
∫∫

φg(v)dxdt

:=I + II.

We de�ne I and II later, and where in the last step, we have used (4.2),

dxdt =

∣∣∣∣∣∣∣∣
dx

dX

dx

dY

dt

dX

dt

dY

∣∣∣∣∣∣∣∣ dXdY =
pq

2c(1 +R2)(1 + S2)
dXdY.

And used the following identities derived from (2.30),

(4.5)


1

1 +R2
=

1 + cosw

2
,

1

1 + S2
=

1 + cos z

2
,

(4.6)


R

1 +R2
=

sinw

2
,

S

1 + S2
=

sin z

2
.

We denote I and II as follows

(4.7)

I =

∫∫
−
(

sinw

2
p

)
Y

φ−
(

sin z

2
q

)
X

φ

+
c′pq

8c

[
sinw

1 + cos z

2
− sin z

1 + cosw

2

]
φ
(

tan
z

2
− tan

w

2

)
dXdY,

and

(4.8) II =

∫∫
φg(v)dxdt.

A computation on I with (2.28) - (2.30) shows that

I =

∫∫
−
(

cosw

2
wY p+

sinw

2
pY

)
φ−

(
cos z

2
zXq +

sin z

2
qX

)
φ+

c′pq

8c2
[cos(w + z)− 1]φdXdY

=

∫∫
pq

16c
φg(v)(cosw + cos z + 2 + 2 cos z cosw
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P

Q

P

Q

Case 1 Case 2

Figure 3. The paths of integration.

+ cos2w cos z + cosw cos2 z + sin2w cos z + sin2 z cosw)dXdY

=

∫∫
pq

8c
φg(v)(1 + cos z + cosw + cos z cosw)dXdY.

A computation on II shows that

II =

∫∫
φg(v)

pq

2c(1 + s2)(1 +R2)
dXdY

=

∫∫
pq

8c
φg(v)(1 + cos z + cosw + cos z cosw)dXdY.

Clearly, I = II. Thus the integral (1.5) holds since

0 =

∫∫
−
(

sinw

2
p

)
Y

φ−
(

sin z

2
q

)
X

φ

+
c′pq

8c

[
sinw

1 + cos z

2
− sin z

1 + cosw

2

]
φ
(

tan
z

2
− tan

w

2

)
dXdY −

∫∫
φg(v)dxdt

0 = I− II,

where I is de�ned in (4.7), and II is de�ned in (4.8).

Next, we de�ne v as a function in terms of the original variables (t, x). We invert the map

(X, Y ) 7→ (t, x) and then we have v(t, x) = v(X(t, x), Y (t, x)). Given arbitrary (t∗, x∗) in

the t-x plane, we choose arbitrary point (X∗, Y ∗) in X-Y plane such that t∗ = t(X∗, Y ∗) and

x∗ = x(X∗, Y ∗). We de�ne that v(t∗, x∗) = v(X∗, Y ∗) and assume that there are two di�erent

points (t(X1, Y1), x(X1, Y1)) = (t(X2, Y2), x(X2, Y2)) = (t∗, x∗). We consider two cases: case

1: X1 ≤ X2, Y1 ≤ Y2, and case 2: X1 ≤ X2, Y1 ≥ Y2. Case 1: X1 ≤ X2, Y1 ≤ Y2. We

consider the set

Γx∗ := {(X, Y ) : x(X, Y ) ≤ x∗}.

We denote ∂Γx∗ as the boundary of Γx∗ . By (4.3), we observe that x is increasing with X

increasing and x is decreasing with Y increasing. Thus, this boundary can be write as a

Lipschitz continuous function denoted as X − Y = φ(X − Y ). We construct the Lipschitz

continuous curve γ with the following properties:
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• a horizontal line segment connecting (X1, Y1) with a point P = (XP , YP ) ∈ ∂Γx∗ and

YP = Y1.

• a vertical line segment connecting (X2, Y2) with a point Q = (XQ, YQ) ∈ ∂Γx∗ and

XQ = X2.

• a part of ∂Γx∗ .

Thus, we obtain a Lipschitz continuous parametrization of the curve γ : [ξ1, ξ2] 7→ R × R
where the parameter ξ = X + Y . By observing, the map (X, Y ) 7→ (t, x) is constant along

the curve γ. And (4.3) - (4.4) implies that

(4.9) (1 + cosw)Xξ = (1 + cos z)Yξ = 0,

From (4.9),

(4.10) sinwXξ = sin zYξ = 0.

Thus, by (4.10)

v(X2, Y2)− v(X1, Y1) =

∫
γ

(vXdX + vY dY )

=

∫ ξ2

ξ1

(
p sinw

4c
Xξ −

q sin z

4c
Yξ)dξ = 0.

So our claim for case 1 is proved.

Case 2: X1 ≤ X2, Y1 ≥ Y2. We consider the set:

Γt∗ := {(X, Y ) : t(X, Y ) ≤ t∗}.

And we do the same process as we did in case 1. Construct γ connecting (X1, X2) and

(X2, Y2) as Figure 3 case 2 indicates.

Next, we prove the function v(t, x) = v(X(t, x), Y (t, x)) is Hölder-1
2
continuous on the

bounded sets. To prove this, we need to consider characteristic curve such that t 7→ x+(t)

with x̄+ = c(v). For some �xed Ȳ , this can be parametrized by the function X 7→
(t(X, Ȳ ), x(X, Ȳ )). By (2.20), (2.22), (2.24) and (2.30),∫ τ

0

[vt + c(v)vx]
2dt =

∫ Xτ

X0

(2cXxvX)2 1

2Xt

dX

=

∫ Xτ

X0

p

2c
sin2(

w

2
)dX ≤

∫ Xτ

X0

p

2c
dX ≤ Cτ .

Thus, we obtain that

(4.11)

∫ τ

0

[vt + c(v)vx]
2dt ≤ Cτ .

Similarly, we integrate along backward characteristics curves t 7→ x−(t) and �nd out that

(4.12)

∫ τ

0

[vt − c(v)vx]
2dt ≤ Cτ .
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Thus, since the speed of the characteristic curve is +c(v) or −c(v) and c(v) is uniformly

positive bounded. With the bounds (4.11) and (4.12), the function v(t, x) is Hölder-1
2
con-

tinuous. �

5. Conserved quantities

This section provides a proof of Theorem 1.2. Recalling (2.12) and (2.13), a straightforward

computation shows that

Et =

(
1

2
v2
t +

1

2
c2v2

x +
G(v)

2

)
t

= vttvt + cc′vtv
2
x + c2vxvxt + g(v)vt,

(c2M)x = (−c2vtvx)x = −2cc′v2
xvt − c2vtxvx − c2vtvxx,

Et + (c2M)x = vt(vtt − cc′vx − c2vxx +
1

2
g(v) = 0,

and

Mt = −vttvx − vtvxt,

Ex = vtvtx + cc′vxv
2
x + c2vxvxx +

1

2
g(v)vx,

Mt + Ex = −vx
(
vtt − cc′v2

x − c2vxx −
1

2
g(v)

)
= 0.

Thus,

(5.1)

{
Et + (c2M)x = 0,

Mt + Ex = 0.

Also,

(5.2) dx =
(1 + cosw)p

4
dX − (1 + cos z)q

4
dY,

(5.3) dt =
(1 + cosw)p

4c
dX +

(1 + cos z)q

4c
dY,

which is closed. We want to show that Edx − (c2M)dt, Mdx − Edt are closed. Recalling
(2.28) - (2.30), we write Edx− (c2M)dt, Mdx−Edt in terms of X, Y , and show that they

are closed.

Edx− (c2M)dt =[
(1− cosw)

8
+

(1 + cosw)

8
G(v)

]
pdX −

[
(1− cos z)

8
+

1 + cos z

8
G(v)

]
qdY,

(5.4)

Mdx+ Edt ={
(1− cosw)

8c
+

(1 + cosw)

8c
G(v)

}
pdX +

{
1− cos z

8c
+

1 + cos z

8c
G(v)

}
qdY.
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Y

X

D A

B

C

Figure 4. The region Γ.

And we compute that{[
(1− cosw)

8
+

(1 + cosw)

8
G(v)

]
p

}
Y

=
− sinwG(v)p

8

c′

8c2
(cos z − cosw)q +

(1 + cosw)g(v)p

16

1

4c
sin zq

+
1 + cosw

8
G(v)

c′

8c2
[sin z − sinw]pq

=−
{[

(1− cos z)

8
+

1 + cos z

8
G(v)

]
q

}
X

,

and {[
(1− cosw)

8c
+

(1 + cosw)

8c
G(v)

]
p

}
Y

=
sinwp

64c3
c′(cos z − cosw)q − sinwpq

64c2
g(v)(1 + cos z)(1 + cosw)

+
(1− cosw)c′

64c3
[sin z − sinw]pq − (1− cosw)pq

64c2
sinwg(v)(1 + cos z)

− sinw

8c
pG(v)

c′

8c2
(cos z − cosw)q +

(1 + cosw)

8c
G(v)

c′

8c2
[sin z − sinw]pq +

1 + cosw

8c
pg(v)

1

4c
sin zq

=

{[
1− cos z

8c
+

1 + cos z

8c
G(v)

]
q

}
X

.

Thus {Edx− (c2M)dt}, {Mdx− Edt} are closed.
To prove the inequality (1.9), We �xed some τ > 0, and the case τ < 0 is identical. We
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assume that for an arbitrary large r > 0. We de�ne the set

(5.5) Γ := {(X, Y ) : 0 ≤ t(X, Y ) ≤ τ,X ≤ r, Y ≤ r}.

We form the map (X, Y ) 7→ (t, x) in the following pattern:

A 7→ (τ, a), B 7→ (τ, b), C 7→ (0, c), D 7→ (0, d),

such that a < b and c > d. Then, we can integrate the (5.4) along ∂Γ, the boundary of Γ.∫
AB

{
(1− cosw)p

8
+

(1 + cosw)p

8
G(v)

}
dX −

{
(1− cos z)q

8
+

(1 + cos z)q

8
G(v)

}
dY

=

∫
DC

{
(1− cosw)p

8
+

(1 + cosw)p

8
G(v)

}
dX −

{
(1− cos z)q

8
+

(1 + cos z)q

8
G(v)

}
dY

−
∫
DA

{
(1− cosw)p

8
+

(1 + cosw)p

8
G(v)

}
dX

−
∫
CB

{
(1− cos z)q

8
+

(1 + cos z)q

8
G(v)

}
dY

≤
∫
DC

{
(1− cosw)p

8
+

(1 + cosw)p

8
G(v)

}
dX −

{
(1− cos z)q

8
+

(1 + cos z)q

8
G(v)

}
dY

≤
∫ c

d

1

2

[
v2
t (0, x) + c2(v(0, x))v2

x(0, x) +
1

2
(g(v(0, x))

]
dx.

Also, ∫ b

a

1

2

[
v2
t (0, x) + c2(v(0, x))v2

x(0, x) +
1

2
g(v(0, x))

]
dx

=

∫
AB∩{cosw 6=−1}

{
(1− cosw)p

8
+

(1 + cosw)p

8
G(v)

}
dX

−
{

(1− cos z)q

8
+

(1 + cos z)q

8
G(v)

}
dY

≤ E0.

Let r → ∞, a → −∞ and b → +∞. We conclude that E(t) ≤ E0. Thus, the inequity (1.9)

is proved.

Now, we prove the Lipschitz condition on the map t 7→ v(t, ·) in the L2 distance. First,

for any �xed time τ , we de�ne µτ := µ−τ + µ+
τ and µτ is the positive measure on the real

lines. We de�ne µ−τ , µ
+
τ as follows.

we de�ne Γτ := {(X, Y ) : t(X, Y ) ≤ τ} and let γτ be the boundary of Γτ .

For any open interval ]a, b[, we de�ne A = (XA, YA), B = (XB, YB) be points on the γτ

such that

x(A) = a, and XP − YP ≤ XA − YA for all points P ∈ γτ and x(P ) ≤ a,

x(B) = b, and XB − YB ≤ XP − YP for all points P ∈ γτ and x(P ) ≥ b.

Then we have

(5.6) µτ := µ−τ (]a, b[) + µ+
τ (]a, b[),
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Figure 5. Proving Lipschitz condition.

and de�ne that in the general case

(5.7) µ−τ (]a, b[) :=

∫
AB

{
(1− cosw)p

8
+

(1 + cosw)p

8
G(v)

}
dX,

(5.8) µ+
τ (]a, b[) :=

∫
AB

−
{

(1− cos z)q

8
+

(1 + cos z)q

8
G(v)

}
dY.

In the smooth case:

(5.9) µ−τ (]a, b[) :=
1

4

∫ b

a

R2(τ, x)dx,

(5.10) µ+
τ (]a, b[) :=

1

4

∫ b

a

S2(τ, x)dx.

Clearly, µ+ and µ− are bounded positive measure. For all τ , we have µτ (R) = E0 by (5.4).

By (5.9)- (5.10) and (2.13) we compute that∫ b

a

c2u2
xdx =

∫ b

a

c2(R− S)2

4c2
dx =

∫ b

a

R2 − 2RS + S2

4
dx

≤
∫ b

a

R2 + S2

2
dx = 2µ(]a, b[).

Thus, for arbitrary a, b with a < b,

(5.11) |v(τ, b)− v(τ, a)|2 ≤ |b− a|
∫ b

a

vx(τ, y)dy ≤ |b− a|2K2µτ (]a, b[).

For given y ∈ R and h > 0, our goal is to estimate the |v(τ + h, y) − v(τ, y)|. We �rst

denote that Γτ+h as the set Γτ+h := {(X, Y ) : t(X, Y ) ≤ τ + h} and denote that γτ+h to be

the boundary of the set Γτ+h.

Let P = (PX , PY ) be points on γτ+h (as the �gure 5(a) shows) such that x(P ) = y, and

XP̃ − YP̃ ≤ XP − YP for all P̃ ∈ γτ , x(P̃ ) ≤ x(P ).

Let Q = (QX , QY ) be points on γτ+h such that x(Q) = y and XQ̃ − YQ̃ ≤ XQ − YQ for all

Q̃ ∈ γτ+h, x(Q̃) ≤ x(Q).

So XP ≤ XQ and YP ≤ YQ. Let P
+ = (XQ, Y

+) ∈ γτ and P− = (X−, YQ) ∈ γτ .
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As shown in the �gure 5, since the point (τ, x(P+)) lies on some characteristic curve

with the speed c(v) ≤ K and go through the point (τ + h, y), so x(P+) ∈]y, y + Kh[.

Also, x(P−) ∈]y −Kh, y[, since point (τ, y) lies on some characteristic curve with the speed

−c(v) ≥ −K and go through the point (τ + h, y).

Thus, and by (2.30), we can compute that

|v(Q)− v(P+)| ≤
∫ YQ

Y +

|vY (XQ, Y )|dY

=

∫ YQ

Y +

(
1 + cos z

4c
q

) 1
2
(

1− cos z

4c
q

) 1
2

dY

≤
(∫ YQ

Y +

1 + cos z

4c
qdY

) 1
2
(∫ YQ

Y +

1− cos z

4c
qdY

) 1
2

≤
(∫ YQ

Y +

1 + cos z

4c
qdY +

1 + cosw

4c
pdX

) 1
2
(∫ YQ

Y +

1− cos z

4c
qdY +

1− cosw

4c
pdY

) 1
2

≤
(∫ τ+h

τ

1dt

) 1
2

(∫ P+

P−

1− cos z

4c
qdY +

1− cosw

4c
pdY

) 1
2

≤ h
1
2

(∫ P+

P−

1− cos z

4c
qdY +

1− cosw

4c
pdY

) 1
2

.

Thus

(5.12)
∣∣v(Q)− v(P+)

∣∣ ≤ h
1
2

(∫ P+

P−

1− cos z

4c
qdY +

1− cosw

4c
pdY

) 1
2

.

So, by (5.11) and (5.12) we compute that

|v(τ + h, x)− v(τ, x)|2 =|v(τ + h, x)− v(t(P+), x(P+)) + v(t(P+), x(P+))− v(τ, x)|2

≤2{v(τ + h, x)− v(t(P+), x(P+))}2 + 2{v(t(P+), x(P+))− v(τ, x)}2

≤2{v(Q)− v(P+)}2 + 2{v(P+)− v(P )}2

≤2

h 1
2

(∫ P+

P−

1− cos z

4c
qdY +

1− cosw

4c
pdY

) 1
2

2

+ 2
[
2K2(Kh)µτ (]x, x+ h[)

]
≤4hµτ (]x−Kh, x+Kh[) + 4K3hµτ (]x, x+ h[)

≤4hµτ (]x−Kh, x+Kh[)(1 +K3).

Thus, for all h > 0,

‖v(τ + h, ·)− v(τ, ·)‖L2 =

{∫
|v(τ + h, x)− v(τ, x)|2dx

} 1
2
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≤
{∫

4(1 +K3)hµτ (]x−Kh, x+Kh[)

} 1
2

≤
{

4(K3 + 1)h2µτ (R)
} 1

2

≤ h[4(K3 + 1)E0]
1
2

≤ |τ + h− τ |L,

(5.13) ‖v(τ + h, ·)− v(τ, ·)‖L2 ≤ h[4(K3 + 1)E0]
1
2 ,

where L = [4(K3 + 1)E0]
1
2 is the Lipschitz constant. So, this proves the uniform Lipschitz

continuous of the maps t 7→ v(t, ·). �

6. Regularity of trajectories

In this section, we show that continuity of functions t 7→ vt(t, ·) and t 7→ vx(t, ·) as

functions with function value in L2. It completes the proof of Theorem 1.1.

We consider the that the initial data (v0)x and v1 are smooth functions with compact

support. In this situation, the solution v(X, Y ) is smooth on the X-Y plane. Fix some time

τ and denote that Γτ := {(X, Y ) : t(X, Y ) ≤ τ}. γτ is the boundary of set Γτ . Then we

claim that

(6.1)
d

dt
v(t, ·)|t=τ = vt(τ, ·).

By (2.21), (2.24), and (2.30),

vt(τ, x) := vXXt + vY Yt

=
sinw

4c
p

2c

p(1 + cosw)
+

sin z

4c
q

2c

q(1 + cos z)

=
sinw

2(1 + cosw)
+

sin z

2(1 + cos z)
.

(6.2)

(6.2) de�ne the value of vt(τ, ·) at almost all the point of x ∈ R. By the inequity (1.9) and
c(v) ≥ K−1,

(6.3)

∫
R
|vt(τ, x)|2dx ≤ K2E(τ) ≤ K2E0.

Next, to prove (6.1), given ε > 0, there exists �nitely many disjoint intervals [ai, bi] subsets

of R with i = 1, 2...N . We call the Ai, Bi ∈ γτ with x(Ai) = ai, x(Bi) = bi. Then at every

point P in the arcs AiBi while 1 + cos(w(P )) > ε and 1 + cos(z(P )) > ε,

min{1 + cos(w(P )), 1 + cos(z(P ))} ≤ 2ε.

We call that J :=
⋃

1≤i≤N [ai, bi] as the points P along the curve γτ that does not contain in

any of the arcs AiBi and denote that J ′ := R\J . Since v(t, x) is smooth in a neighbourhood

of the set {τ} × J ′ and by the di�erentiability of v and apply the Minkowski's inequality,

lim
h→0

1

h

{∫
R
|v(τ + h, x)− v(τ, x)− hvt(τ, x)|pdx

} 1
p
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≤ lim
h→0

1

h

{∫
j

|v(τ + h, x)− v(τ, x)|pdx
} 1

p

+

{∫
J

|vt(τ, x)|pdx
} 1

p

.

Now, we estimate the measure of the bad set J . Since (1 + cosw) < 2ε(1 − cosw) and

(1 + cos z) < 2ε(1− cos z),

meas(J) =

∫
J

dx =
∑
i

∫
AiBi

(1 + cosw)p

4
dX − (1 + cos z)q

4
dY

≤ 2ε
∑
i

∫
AiBi

(1− cosw)p

4
dX − (1− cos z)q

4
dY

≤ 2ε

∫
γτ

(1− cosw)p

4
dX − (1− cos z)q

4
dY

≤ 2εE0.

Using Hölder's inequality with exponents
2

p
and q, we choose q =

2

2− p
so that

p

2
+

1

q
= 1.

By (5.13), ∫
J

|v(τ + h, x)− v(τ, x)|pdx ≤ meas(J)
1
q

{∫
J

|v(τ, x)− v(τ, x)|2dx
} p

2

≤ [2εE0]
1
q +

{
h[4(K3 + 1)E0]

1
2

}p
.

Thus,

lim
h→0

sup
1

h

{∫
J

|v(τ + h, x)− v(τ, x)|p dx
} 1

p

≤ [2εE0]
1
pq + h[4(K3 + 1)E0]

1
2 .

Similarly, and by (6.3) we estimate that∫
J

|vt(τ, x)|pdx ≤ [meas(J)]
1
q

{∫
J

|vt(τ, x)|2dx
} p

2

.

Thus, {∫
J

|vt(τ, x)|pdx
} 1

p

≤ [2εE0]
1
pq [K2E0]

1
2 .

Since ε > 0 is arbitrary, so we conclude that

lim
h→0

1

h

{∫
R
|v(τ + h, x)− v(τ, x)− hvt(τ, x)|pdx

} 1
p

= 0.

Next, we prove the continuity of the map t 7→ vt. First, we �x ε > 0 and consider disjoint

intervals [ai, bi] subsets of R with i = 1, 2...N . We call the Ai, Bi ∈ γτ with x(Ai) = ai ,

x(Bi) = bi. Since v is a smooth function on the neighbourhood of {τ} × J ′. By Hölder's

inequality and Minkowski's inequality, we estimate that

lim sup
h→0

∫
|vt(τ + h, x)− vt(τ, x)|pdx

≤ lim sup
h→0

∫
J

|vt(τ + h, x)− vt(τ, x)|pdx
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≤ lim sup
h→0

[meas(J)]
1
q

{∫
J

|vt(τ + h, x)− vt(τ, x)|2dx
} q

2

≤ lim sup
h→0

[2εE0]
1
q {‖vt(τ + h, ·)‖L2 + ‖vt(τ, ·)‖L2}

q
2

≤ [2εE0]
1
q [4E0]p.

Since the ε > 0 is arbitrary, so we prove the continuity.

For general initial data (v0)x, v1 ∈ H1, we consider a sequence of initial data vn0 → v0,

(vn0 )x → (v0)x, and v
n
1 → v1 in ∈ H1 for all n ∈ N, (vn0 )x, v

n
0 , v

n
1 ∈ C∞c . The continuity of the

map t 7→ vx(t, ·) with values in Lp and 1 ≤ p < 2 can be proved in the same way as above.

7. Energy conservation

In this section, we provide proof of Theorem 1.3. First, we de�ne the wave interaction

potential as

(7.1) Λ(t) := (µ−t ⊗ µ+
t ){(x, y) : x > y},

where the µ−t and µ+
t are de�ned in (5.7) and (5.8). And since µ−t and µ+

t are absolutely

continuous in Lebesgue measure, so (5.9) and (5.10) holds and (7.1) implies that

(7.2) Λ(t) =
1

4

∫∫
x>y

R2(t, x)S2(t, x)dxdy.

Lemma 7.1. There exists a Lipschitz constant L0 such that

Λ(t)− Λ(s) ≤ L0(t− s),

with t > s > 0. So the map t 7→ Λ(t) has bounded variation.

The Lemma is proved later in this section.

To prove Theorem 1.3, we need to consider three sets

Ω1 := {(X, Y ) : w(X, Y ) = −π, z(X, Y ) 6= −π, c′(v(X, Y )) 6= 0},

Ω2 := {(X, Y ) : w(X, Y ) 6= π, z(X, Y ) = −π, c′(v(X, Y )) 6= 0},

Ω3 := {(X, Y ) : w(X, Y ) = −π, z(X, Y ) = −π, c′(v(X, Y )) 6= 0}.

From (2.28), and since wY 6= 0 on Ω1 and zX 6= 0 on Ω2, so that meas(Ω1) = 0 and

meas(Ω2) = 0.

We de�ne Ω∗3 be the set of Lebesgue points of Ω3 and want to show that

(7.3) meas({t(X, Y ) : (X, Y ) ∈ Ω∗3}) = 0

First, we �x point P ∗ ∈ Ω∗3 and P
∗ := (X∗, Y ∗) and claim that for h, k > 0,

(7.4) lim
h,k→0+

Λ(τ − h)− Λ(τ + k)

h+ k
= +∞.

For arbitrary ε > 0, ε arbitrary small, we can �nd δ > 0 such that for any square Q with

length l ≤ δ center at P ∗, there exists a vertical segment σ satisfyingmeas(Ω3∪σ) ≥ (1−ε)l,
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and a horizontal segment σ′ satisfying meas(Ω3 ∪ σ′) ≥ (1− ε)l.
We de�ne that

(7.5) t+ := max {t(X, Y ) : (X, Y ) ∈ σ ∪ σ′} ,

(7.6) t− := min {t(X, Y ) : (X, Y ) ∈ σ ∪ σ′} .

By (4.4), for some constant c0 > 0

(7.7) t+ − t− ≤
∫
σ

(1 + cosw)p

4c
dX +

∫
σ′

(1 + cos z)q

4c
dY ≤ c0(εl)2.

(7.7) is Lipschitz continuous and vanished outside of a set of measure εl. Also, for some

constant c1, c2 > 0,

(7.8) Λ(t−)− Λ(t+) ≥ c1(1− ε)2l2 − c2(t+ +−t−).

Since the choose of ε > 0 is arbitrary, so this implies (7.4). And by the Lemma 1, the map

t 7→ Λ has bounded variation, so (7.4) implies (7.3).

Thus, the singular part of the µt is not trivial only if the set Ω4 := {P ∈ γt : w(P ) =

−π, z(P ) = −π} has positive one-dimensional measure. By the above analysis, this is

restricted to a set where c′ 6= 0 and only happens for a set of time with measure zero.

Proof of Lemma 1.

From (2.11),

(7.9)

 (R2)t − (cR2)x = c′

2c
(R2S − S2R)−Rg(v),

(S2)t + (cS2)x = − c′

2c
(R2S − S2R)− Sg(v).

We �rst provide an argument valid for v = v(t, x) is smooth. (7.9) implies that

d

dt
(4Λ(t)) =

d

dt

∫∫
x>y

R2(t, x)S2(t, y)dxdy

=

∫∫
2R(t, x)S2(t, y)cRx(t, x) + 2S(t, y)R2(t, x)cSx(t, y)

+ 2S(t, y)R2(t, x)
c′

4c
(S2(t, x)−R2(t, x)) + 2R(t, x)S2(t, y)

c′

4c
(R2(t, x)− S2(t, x))

−R(t, x)S2(t, y)g(v(t, x))− S(t, y)R2(t, x)g(v(t, y))dxdy

≤
∫∫

c(S2R2)x +
c′

2c
(R2 − S2)(RS2 − S2R)

−R(t, x)S2(t, y)g(v(t, x))−R2(t, x)S(t, y)g(v(t, y))dxdy

≤− 2

∫
cR2S2dx+

∫
(R2 + S2)dx ·

∫
c′

2c
|R2S − S2R|dx

−
∫∫

R(t, x)S2(t, y)g(v(t, x)) +R2(t, x)S(t, y)g(v(t, y))dxdy.

And estimate the last term from the above calculation,∣∣∣∣∫∫ R(t, x)S2(t, y)g(v(t, x))dxdy

∣∣∣∣
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≤
∫
S2(t, y)dy

∫
|R(t, x)g(v(t, x))| dx

≤ E0‖R(t, x)‖L2‖g(v(t, x))‖L2

≤ E0E
1
2
0 ‖v(t, x)‖L2‖g(v(t, x))

v(t, x)
‖L∞

≤ E2
0 .

Similarly, ∣∣∣∣∫∫ R2(t, x)S(t, y)g(v(t, y))dxdy

∣∣∣∣
≤ E2

0 .

Thus

(7.10)
d

dt
(4Λ(t)) ≤ −2K−1

∫∫
R2S2dx+ 4E0

∥∥∥∥ c′2c

∥∥∥∥
L∞

∫
|R2S − S2R|dx+ 2E2

0 ,

where K−1 is the lower bound for the speed c(v). For each ε > 0, we have |R| ≤ ε−
1
2 + ε

1
2R2.

And pick any ε > 0 such that K−1 > 4E0‖ c
′

2c
‖L∞ · 2

√
ε.

Thus

(7.11)
d

dt
(4Λ(t)) ≤ −K−1

∫
R2S2dx+

16E2
0√
ε

∥∥∥∥ c′2c

∥∥∥∥
L∞

+ 2E2
0 .

This yields the L1 estimate:∫ τ

0

∫
(|R2S|+ |RS2|)dxdt = ϑ(1) · [Λ(0) + E2

0 τ ] = ϑ(1) · (1 + τ)E2
0 ,

Where ϑ(1) is de�ned as a quantity and its absolute value has a uniform bound depending

only on c(v). Also, the map t 7→ Λ(t) has bounded variation on any bounded interval. The

smooth case is proved. The following provides a proof of Lemma 1 in general cases. For

every ε > 0, there exists a constant Kε satisfying that for all w, z,

| sin z(1− cosw)− sinw(1− cos z)|

≤ Kε

[
tan2

(w
2

)
+ tan2

(z
2

) ]
(1 + cosw)(1 + cos z) + ε(1− cosw)(1− cos z).

(7.12)

For �xed 0 ≤ s < t, consider the sets Γs and Γt as we de�ned in (5.5) and de�ne Γst := Γt\Γs.
Recall that

dxdt =
pq

8c
(1 + cosw)(1 + cos z)dXdY.

We write that

(7.13)

∫ t

s

∫ +∞

−∞

1

4
(R2 − S2)dxdt = (t− s)E0,

(7.14)∫ t

s

∫ +∞

−∞

1

4
(R2 − S2)dxdt =

∫∫
Γst

pq

32c
(1 + cosw)(1 + cos z)

[
tan2(

z

2
) + tan2(

w

2
)
]
dXdY.
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(7.13) holds only on the case that v(t, x) is smooth while (7.14) holds for all cases. Combine

(5.4), (5.7), (5.8) and apply (7.12)-(7.14), we obtain that

Λ(t)− Λ(s) ≤
∫∫

Γst

(1− cosw)(1− cos z)pq

64
dXdY

+ E0

∫∫
Γst

c′pq

64c2
[sin z(1− cosw)− sinw(1− cos z)]dXdY

+ E0

∫∫
Γst

{
− pq

32c2
g(v)(1 + cos z) sinw − sinwG(v)p

8

c′

8c
(cos z − cosw)q

+
(1 + cosw)g(v)p

32c
sin zq +

(1 + cosw)

32

c′

2c2
G(v)[sin z − sinw]pq

}
dXdY

≤ 1

64

∫∫
Γst

(1− cosw)(1− cos z)pqdXdY

+ E0

∫∫
Γst

c′

64c2
pq
{
Kε[tan2(

w

2
) + tan2(

z

2
)](1 + cosw)(1 + cos z)

+ ε(1− cosw)(1− cos z)
}
dXdY + E0

∫∫
Γst

{
− pq

32c2
g(v)(1 + cos z) sinw

− sinwG(v)p

8

c′

8c
(cos z − cosw)q +

(1 + cosw)g(v)p

32c
sin zq

+
(1 + cosw)

32

c′

2c2
G(v)[sin z − sinw]pq

}
dXdY

≤K(t− s),

for a suitable constant K. Thus, Lemma 1 is proved. �
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