
An Adaptive, Highly Accurate and Efficient, Parker-Sochacki Algorithm for
Numerical Solutions to Initial Value Ordinary Differential Equation Systems

Jenna Guenther, James Madison University and Morgan Wolf, James Madison University
Advisors: Parker-Sochacki Group, Lead: Dr. Paul Warne, James Madison University

Abstract.
The Parker-Sochacki Method (PSM) allows the numerical approximation of solutions to a polynomial

initial value ordinary differential equation or system (IVODE) using an algebraic power series method. PSM
is equivalent to a modified Picard iteration and provides an efficient, recursive computation of the coefficients
of the Taylor polynomial at each step. To date, PSM has largely concentrated on fixed step methods. We
develop and test an adaptive stepping scheme that, for many IVODEs, enhances the accuracy and efficiency of
PSM. PSM Adaptive (PSMA) is compared to its fixed step counterpart and to standard Runge-Kutta (RK)
foundation algorithms using three example IVODEs. In comparison, PSMA is shown to be competitive, often
outperforming these methods in terms of accuracy, number of steps, and execution time. A library of functions
is also presented that allows access to PSM techniques for many non-polynomial IVODEs without having to
first rewrite these in the necessary polynomial form, making PSM a more practical tool.

1. Introduction. Initial value ordinary differential equation systems (IVODEs) lie at the
core of many models that characterize our universe. Since explicit closed form analytic solu-
tions to many IVODEs are not feasible, simulations modeled by IVODEs frequently depend
on well-developed numerical methods. Such methods regularly have a theoretical connection
to Taylor series in approximating solutions. With simple numerical methods, for example,
Clairaut, Lalande, and Lepaute were able to make significant predictions in celestial mechan-
ics, including the arrival of Halley’s Comet, as early as the 1700s [15]. In the 1800s, John
Crouch Adams implemented methods for solving IVODEs using naive predictor-corrector
schemes in modeling planetary motion. Sir George H. Darwin of Cambridge later incorpo-
rated elementary adaptive stepping [15].

Classic Taylor methods that approximate solutions of IVODEs by continually computing
increasingly higher-order derivatives about a point have been used as early as the 1700s [15].
Unfortunately, a classic Taylor approach often requires complicated calculations of extensive
symbolic derivatives, and quickly becomes intractable when transcendental and other nonlin-
ear functions are introduced. The numerical Runge-Kutta (RK) algorithms were developed
in the early 20th century [15]. In these algorithms, approximations are cleverly determined
using nested function evaluations in lieu of calculating successive derivatives. RK methods,
specifically of fourth order, are a standard in approximating solutions to IVODEs.

Early RK algorithms were fixed step methods. These were later developed into adaptive
algorithms, which are generally more efficient. Adaptive methods frequently allow many fewer
steps while retaining similar or better accuracy, in comparison to their fixed step counterparts.
In a 1969 report to NASA, Fehlberg first developed what he called ”step size control” with
low order RK formulas [14]. He derived the overlapping coefficients for the modern day
Runge-Kutta-Fehlberg (RKF) method and based the step size in part on a comparison of
the local truncation errors of RK methods of orders 4 and 5 [14]. In 1980, Dormand and
Prince established an adaptive method that serves as the foundation of several built-in IVODE

 Copyright © SIAM
 Unauthorized reproduction of this article is prohibited 257

solvers, including MATLAB’s ODE45 package. Dormand-Prince (DP) has been shown to be
more accurate and efficient than RKF for several IVODEs [19]. Given the above, these two
standard RK adaptive order 4-5 methods, RKF and DP, are of comparative interest in this
work. The most sophisticated adaptive methods are able to simultaneously control total error
and local truncation error to satisfy specified tolerances.

In the late 1980s, Parker and Sochacki discovered a method for approximating the solutions
to polynomial differential equations based on a modified Picard iteration scheme referred to
as the Parker-Sochacki Method. [29]. The early framework allowed theoretic machinery to be
applied to ordinary, partial, and integral differential equations [10, 36, 31, 30]. Although able
to handle the nonlinear and transcendental functions that cause difficulty for classic Taylor
methods, the computation of successive terms of the Taylor polynomials through this modified
Picard approach was computationally expensive.

In 2002, [40] derived an algebraic power series method (PSM) which is equivalent to the
Picard approach for polynomial IVODEs, allowing for an efficient recursive computation of
the coefficients of the Taylor series at each step. PSM generates the Taylor coefficients of the
solution efficiently without relying on symbolic calculation of derivatives, making it attractive
when compared to standard Taylor methods. Also, higher (or lower) degree approximations
only require a reassignment of a parameter in a program, giving the user “on the fly” step-
wise control over the order of the algorithm. In addition, PSM provides a Taylor polynomial
approximation to the solution across the entire time step rather than at just a single value,
a potential advantage over RK strategies. Aside from machine round-off error, PSM can a-
priori guarantee that, at any given step, the error of the approximation will remain less than a
designated desired error tolerance [40]. For a brief overview of PSM, see Section 2 and [9, 10].

Over the last decade, application and interest in PSM for problems of technological and
scientific importance has increased dramatically, including techniques for trajectory propaga-
tion. For example, PSM was used as the primary solver in [38] for gathering simulation data
in testing the times of firing events in neurons and scheduling algorithms used for synaptic
event delivery. See [31, 30, 1, 2, 4, 5, 6, 11, 13, 17, 20, 21, 23, 26, 27, 32, 33, 35, 37, 39]
for a sample of recent studies that report the advantages (and some disadvantages) of PSM.
PSM and work from the Automatic Differentiation (AD) community have developed nearly
simultaneously [9, 16, 25], and there has been a number of benefits in collaborations between
these two communities, including strategies in this work. Both [12] and [7] discuss the early
AD foundation of interval analysis and generating the coefficients of a Taylor polynomial via
successive derivatives and recurrence relations, which have clear connections to PSM. Inter-
est in PSM continues to grow, largely thanks to the cogent, robust approach to the n-body
problem detailed in [31, 30].

To date, development of PSM for IVODEs has focused largely on fixed step methods
[36, 10, 29]. A foundation for an adaptive stepping PSM algorithm similar to RKF and DP
could be broadly used to numerically solve a wide class of IVODEs with significant gains.
Like RKF and DP, our adaptive PSM algorithm (PSMA) is an explicit one-step method that
could represent an engine or base algorithm for future sophisticated IVODE solvers. As work
from the AD community developed in parallel with PSM, [18] provided a modern adaptive
implementation of AD in ANSI C on Linux that allowed for adaptation in both order and
step size. The step size there was similarly derived from an asymptotic error estimate, as

258

done here. In our PSM work, we demonstrate some greater suitability for stiff problems and
a broader library that includes transcendental functions.

To exploit and advance PSM, a major focus of this research is the development of both
the theoretical framework for PSMA and the process for choosing step sizes, which follows in
Sections 2 and 3. PSM and PSMA are ripe for competitive comparisons with results from
RK and DP algorithms. We thus extend our work and apply the adaptive theory on several
examples to compare PSM against the standard RK algorithms, particularly in terms of the
effect of higher order approximations. Highlighted examples in Section 4 include a singular
problem, an IVODE used in simulations that model missile flight trajectories with two degrees
of freedom (DoF), and a classic stiff problem used to model flame propagation. All codes were
implemented and executed in a Matlab programming environment on one Dell Latitude 3450
computer.

A second important contribution is presented in Section 5. Early PSM methods required
the user to first rewrite the IVODEs in a polynomial form. To avoid this step, a versatile library
of succinct PSM specific functions, which make PSM much easier to apply, are presented and
demonstrated. The functions rely on series manipulation to efficiently generate the coefficients
of Taylor series that arise from numerous scenarios involving algebraic, transcendental, and
differential/integral operations and compositions with other series.

The major developments and contributions of this research are summarized in the conclu-
sion in Section 6.

2. A Brief Overview of PSM. In this section, a brief overview of PSM is provided.
Traditionally, using PSM for IVODEs of the form

(2.1) y′ = f (t,y) , y(a) = α

for a ∈ R and α ∈ Rn required (2.1) to be converted to a polynomial system. Following the
development of [10], a polynomial system is an autonomous IVODE of the form

(2.2) x′ = G ◦ x, x(a) = b

with a ∈ R, b ∈ Rm, G : Rm −→ Rm, and each component of G a polynomial that is a
functional on Rm. Fortunately, the vast majority of IVODEs important to the sciences and
engineering may be rewritten in the form of (2.2), (see [10] and [29]). For example, y defined
through the nonlinear IVODE

(2.3) y′(t) =
sin
(
y(t)e−t

2
)

√
t

, y(1) = 2,

upon introduction of auxiliary variables,

(2.4) x1 = y, x2 = sin
(
ye−t

2
)
, x3 = cos

(
ye−t

2
)
, x4 = e−t

2
, x5 = t, x6 = t−

1
2 ,

259

is the first component in the solution of the polynomial system

x′1 = x2x6, x1(1) = 2(2.5a)

x′2 = −2x1x3x4x5 + x2x3x4x6, x2(1) = sin
(
2e−1

)
(2.5b)

x′3 = 2x1x2x4x5 − x22x4x6, x3(1) = cos
(
2e−1

)
(2.5c)

x′4 = −2x4x5, x4(1) = e−1(2.5d)

x′5 = 1, x5(1) = 1,(2.5e)

x′6 = −1

2
x6

3, x6(1) = 1,(2.5f)

The polynomial system (2.5) is determined from (2.3) and straightforward differentiation of
(2.4). Also, when implementing PSM, these auxiliary variables are often chosen in such a
manner to have significance in the study of the model.

Once in polynomial form (2.2), PSM recursively arrives at the power series of x without
the need for explicit differentiation using a simple sequence of Cauchy products, (described
subsequently in Section 5). For example, in (2.5), Cauchy products for intermediate variables
defined by

u1 = x2x6, u2 = x3x4, u3 = x1x5, u4 = x2x4, u5 = x4x5, u6 = x6x6,(2.6a)

u7 = u6x6, u8 = u2u1, u9 = u2u3, u10 = u4u3, u11 = u4u1(2.6b)

can be used to calculate the power series of x recursively. The recursions for the coefficients
of the series are initialized by the initial conditions in (2.5) and are given by

x1 j+1 =
u1 j
j + 1

, x2 j+1 =
−2u9 j + u8 j

j + 1
, x3 j+1 =

2u10 j − u11 j
j + 1

,(2.7a)

x4 j+1 =
−2u5 j
j + 1

, x5 j+1 =

{
0 j > 1
1 j = 1

, x6 j+1 = −1

2

(
u7 j
j + 1

)
,(2.7b)

where for notational purposes, it has been assumed that a variable z has a series form of

(2.8) z =
∞∑
j=0

zj(t− c)j

with c the center of the series.

With PSM, the coefficients for the 12th degree terms in the series for x about t = c
can be shown to cost less than a mere 150 multiplications/divisions once the recursions have
generated the coefficients through the 11th degree terms. Then of course, if desired, once the
12th degree terms are determined, then the 13th degree terms are accessible. In contrast, if
one were to use a classic Taylor series method for the IVODE in (2.3) and desired a 12th

degree approximation, then to simply compute the the 12th derivative of y needed in the
12th degree term of the Taylor series, repeated differentiation of the right hand side IVODE
would be necessary and would result in an expression for y(12) that alone would have over 800

260

distinct complicated terms, and this derivative (as well as the previous eleven) would need to
be evaluated at each step.

Instead of implementing traditional PSM with the polynomial system (2.5), an alternative
set of auxiliary variables that use a library of PSM functions developed for this work (see Table
A.1 in the appendix; to be explained in Section 5) also may be used to recursively generate
the series coefficients for y in (2.3). For example, the auxiliary variables defined by

w1 = −t2, w2 = e−t
2
, w3 = ye−t

2
, w4 = sin

(
ye−t

2
)
,(2.9a)

w5 = cos
(
ye−t

2
)
, w6 = t−

1
2 , w7 = sin

(
ye−t

2
)
t−

1
2 ,(2.9b)

have series coefficients, centered at c, recursively generated by the list of functions

w1 j = −powert (w1 0:j−1, 2, c) ,(2.10a)

w2 j = expy (w2 0:j−1,w1 0:j) ,(2.10b)

w3 j = cauchy prod (y0:j ,w2 0:j) ,(2.10c)

w4:5 j = sincos (w4:5 0:j−1,w3 0:j) ,(2.10d)

w6 j = powert (w6 0:j−1,−0.5, c) ,(2.10e)

w7 j = cauchy prod (w4 0:j ,w6 0:j) ,(2.10f)

and this list generates the series coefficients for y through

(2.11) yk+1 =
w7, k

k + 1
.

The bold portions in (2.10) represent arrays holding the series coefficients for the respective
auxiliary variable. The code list (2.10) has the potential advantage of not requiring to actually
form the polynomial systems. Also, the computational cost in using (2.10) versus the more
standard PSM approach of (2.5) and (2.6) can be shown to be roughly half the cost. While
the functions in Table A.1 were arrived at through PSM techniques, this approach modeled
in (2.10) really represents a blend of AD and PSM.

For a desired degree and step size, once either traditional PSM or PSM through our library
of functions has recursively calculated the necessary coefficients, the truncated power series is
evaluated at the given step, marching the numerical solution forward. These resulting values
are then used to initialize the recursions for the next step, much like other traditional explicit
one-step methods. However, unlike many traditional methods, including RK methods, PSM
generates the coefficients of the Taylor polynomial at each step, so the approximation at each
step could be just the evaluation of the polynomial at the step size or the storage of the
polynomial itself, allowing for interpolation between step sizes.

3. One-Step Error Analysis and Control. In this section, the theory that drives an adap-
tive time-step control is developed. We begin with some preliminaries.

3.1. One-Step Development and Notation. Suppose that the IVODE,

(3.1) y′(t) = f(t, y(t)), y(a) = α

261

is such that f meets the conditions of the Picard-Lindelöf theorem [22] and f ∈ Cn+1([a, b])
in t. Then the IVODE (3.1) has a unique solution y that, by Taylor’s theorem [8], can be
represented as

(3.2) y(t) =
n∑
j=0

yj(t− c)j +
y(n+1)(ξ(t))

(n+ 1)!
(t− c)n+1

for all c ∈ (a, b) with ξ(t) between c and t. If further, f is real analytic on [a, b], then

(3.3) y(t) =
∞∑
j=0

yj(t− c)j = y0 + y1 (t− c) + y2(t− c)2 + y3(t− c)3 + · · ·

for all c ∈ [a, b].
For clarity, we continue for a specific value for n noting that the development extends

without loss of generality for any n. For each h such that t = c + h ∈ (a, b) , it follows from
(3.2) that, for n = 5 e.g.,

(3.4) y(c+ h) = y0 + y1h+ y2h
2 + y3h

3 + y4h
4 + y5h

5 +
y(6)(ξ1(h))

6!
h6

where ξ1(h) is between c and c+h. Next, assume for a given c that u, v ∈ C6 ([a, b]) are func-
tions that match y(c+h) up to order 4 and order 5, respectively. Such associated functions can
be used to obtain results from two distinct numerical methods, or more commonly, methods
of different order from the same Runge-Kutta family. (A simple example of a function v for
a 2nd order RK method is given below.) By Taylor’s theorem and since u matches y through
order 4,

u(c+ h) = u0 + u1h+ u2h
2 + u3h

3 + u4h
4 + u5h

5 +
u(6)(ξ2(h))

6!
h6(3.5a)

= y0 + y1h+ y2h
2 + y3h

3 + y4h
4 + u5h

5 +
u(6)(ξ2(h))

6!
h6.(3.5b)

Similarly since v matches y through order 5, it is useful to record here and is utilized later
in Section 3.4, that

v(c+ h) = v0 + v1h+ v2h
2 + v3h

3 + v4h
4 + v5h

5 +
v(6)(ξ3(h))

6!
h6(3.6a)

= y0 + y1h+ y2h
2 + y3h

3 + y4h
4 + y5h

5 +
v(6)(ξ3(h))

6!
h6,(3.6b)

where ξ2(h) and ξ3(h) are again between c and c + h. The uk and vk in (3.5) and (3.6)
represent Taylor coefficients involving derivatives of u and v evaluated at c. We remind the
reader that, without loss of generality, the arguments that follow extend to a general degree.

Consider a discretization in time for t ∈ [a, b] that is possibly non-uniform in step size.
Denote this {t0 ≡ a, t1, . . . , tk, . . . , tN ≡ b} for integer-valued N > 0. We will frequently refer

262

to the arbitrary subinterval [tk, tk+1] more explicitly as [tk, tk + h] with arbitrary step size h.
Given such a time discretization, an arbitrary explicit numerical scheme for an IVODE of the
form (3.1) may be denoted

(3.7) w(tk + h) = w(tk) + hϕ(tk, w(tk)),

where ϕ represents the approximate action of f , and w represents an approximate solution
to the exact solution y of (3.1), [28]. Interpolation is then typically used to approximate the
solution between these nodes if required.

To provide a simple example of a function u or v as mentioned in (3.5) or (3.6), we examine
the classical Heun method, a 2nd order RK method, which for an IVODE (3.1) is given by
[28] as

(3.8) yk+1 = yk +
h

2
f (tk, yk) +

h

2
f (tk+1, yk + hf (tk, yk)) .

We note that yk in (3.8) does not represent a Taylor coefficient. Under the theoretical assump-
tion that there is no error in yk at tk in (3.8), for the Heun method there is a corresponding
function v(t), different for each tk value, given by

(3.9) v(t) = y(tk) +
t− tk

2
f (tk, y(tk)) +

t− tk
2

f (t, y(tk) + (t− tk)f (tk, y(tk))) .

Upon differentiating (3.9) twice and evaluating v, v′, and v′′ at t = tk we see that

v(tk) = y(tk)(3.10a)

v′(tk) = f (tk, y(tk))(3.10b)

v′′(tk) =
∂f

∂t
(tk, y(tk)) +

∂f

∂y
(tk, y(tk)) f (tk, y(tk)) .(3.10c)

The values from (3.10) can be used to show that the Taylor polynomials for y, as defined
by (3.1) and centered at t = tk, and v from (3.9), also centered at t = tk, match to second
degree. So for a given h, there exists ξ(h) such that (compare to the notation of (3.6))

v (tk + h) = y(tk) + y′(tk)h+
y′′(tk)

2
h2 +

v′′′ (ξ(h))

6
h3(3.11a)

= y0 + y1h+ y2h
2 +

v′′′ (ξ(h))

6
h3.(3.11b)

Evaluating (3.9) at t = tk + h, we also see that

(3.12) v(tk + h) = y(tk) +
h

2
f (tk, y(tk)) +

h

2
f (tk + h, y(tk) + hf (tk, y(tk))) ,

matching the left-hand side of the Heun method (3.8). Under the assumption that y(tk) is
exact, as will be the case in the local truncation error defined below, v (tk + h) in (3.12),
and the theoretical equivalent (3.11), is the value provided by Heun’s method to approximate

263

y (tk + h). Again, following [28], for the Heun method (3.8) and a given h, the function ϕ in
(3.7) would be

(3.13) ϕ (t, y) =
1

2
[f (t, y) + f (t+ h, y + hf (t, y))] .

For the RK methods used for comparison purposes in this work (RKF and DP), the expressions
similar to (3.9) and (3.13) would be more involved.

3.2. Local Truncation Error. According to classic texts [8, 28], the local truncation
error, denoted τk+1(h), in using an explicit one-step numerical method of the form (3.7) to
approximate a solution at time tk+1 is

(3.14) τk+1(h) ≡ y(tk + h)− y(tk)− hϕ (tk, y(tk))

h
.

Definition (3.14) assumes that y(tk) and y(tk + h) are exact and contain no error. Also, ϕ
as in (3.7) is specific to the numerical method; for example, ϕ is given by (3.13) for Heun’s
method [28]. While (3.14) defines the error locally, the order of τk+1(h) matches the global
order of the method [8].

If the coefficients {uk} in (3.5) are found by an algorithm that uses only information at
tk and y(tk), then the expansion in (3.5) becomes

(3.15) u(tk + h) = y0 + h

(
y1 + y2h+ y3h

2 + y4h
3 + u5h

4 +
u(6)(ξ2(h))

6!
h5

)
.

In the above, u(tk + h) is computed from some explicit numerical single-step method and is
equivalent to the right-hand side of (3.15), where the final two terms involving ξ2 and u5 are
related to the local truncation error.

We assume at the kth step that y(tk) would also include error accumulated due to taking
multiple steps of the numerical scheme (and roundoff; for this work on our Dell Latitude 3450,
machine epsilon is 2.220446049250313× 10−16) and so, in practice, is instead an approximate
value, denoted ȳ(tk). Similarly, {y0, y1, y2, y3, y4} in (3.15) would also be approximate values
{ȳ0, ȳ1, ȳ2, ȳ3, ȳ4}. We note here again that (3.14) assumes y(tk) and y(tk + h) are exact and
terms involving the bars are not used in the one-step error analysis.

Theoretically, using u(tk+h), computed from a numerical method, to approximate y(tk+h)
results in a local truncation error from (3.14) of

(3.16) τk+1(h) =
y(tk + h)− y(tk)− h

(
y1 + y2h+ y3h

2 + y4h
3 + u5h

4 + u(6)(ξ2(h))
6! h5

)
h

but y0 = y(tk), and so comparing the numerator in (3.16) with (3.4) for c = tk, we see that

(3.17) τk+1(h) = (y5 − u5)h4 +
y(6)(ξ1(h))− u(6)(ξ2(h))

6!
h5.

264

Now if s is a positive scalar, then similar to (3.17), the local truncation error in using
u(tk + sh) via (3.15) to approximate y(tk + sh) is

(3.18) τk+1(sh) = (y5 − u5) s4h4 +
y(6)(ξ1(sh))− u(6)(ξ2(sh))

6!
s5h5.

Since the second term of (3.18) is of higher order in h than the first, the majority of the local
truncation error for many IVODEs is typically considered to be associated with the first term,
or

(3.19) τk+1(sh) = (y5 − u5) s4h4 +O
(
h5
)
.

For an estimate of the absolute value of the local truncation error τk+1(sh) to be less than
some desired error tolerance ε, it would then seem reasonable to require

(3.20) |τk+1(sh)| ≈
∣∣(y5 − u5) s4h4∣∣ =

∣∣(y5 − u5)h4∣∣ s4 < ε.

The inequality in (3.20) is useful and can be manipulated in several ways. In fact, this
observation motivates our approach for simple adaptive error estimates in the PSM setting,
and is also referenced below in Section 3.4 in our development of the classic scale often used
in RK adaptive methods and as presented in [8].

3.3. New PSM Approach to Adaptive Step Size. Recall, the PSM algorithm is designed
so that the approximation of y(tk + h) exactly matches the Taylor polynomial of the solution
y to (3.1) expanded about tk to a given degree n, assuming no error in y(tk). Viewing PSM as
an explicit numerical single-step method of the form represented by (3.7), we have for PSM,

(3.21) wk+1 = wk + h
(
ȳ1 + ȳ2h+ ȳ3h

2 + · · ·+ ȳnh
n−1) ,

where {ȳ1, ȳ2, ȳ3, · · · , ȳn} represent the Taylor coefficients of the solution to (3.1) centered at
tk, but based on the approximation wk to y(tk), and hence the bar. Note (3.21) is equivalent
in theory to the classic higher order Taylor method. The local truncation error defined in
(3.14) for (3.21) is

(3.22) τk+1(h) ≡
y(tk + h)− y(tk)− h

(
y1 + y2h+ y3h

2 + · · ·+ ynh
n−1)

h
,

where we remove the bar since we are under the assumption that y(tk) and y(tk+h) are exact
and contain no error. Proceeding as before with n = 4 in (3.21) and using y0 = y(tk) and
(3.4) with c = tk, we see that (3.22) with (3.4) reduces to

(3.23) τk+1(h) = y5h
4 +

y(6)(ξ1(h))

6!
h5.

Again, since the second term of (3.23) is higher order in h than the first, the majority of the
local truncation error for many IVODEs would typically be associated with the first term.
For |τk+1(h)| to be less than some designated error tolerance ε, it would seem reasonable to
require

(3.24)
∣ ∣

|τk+1(h)| ≈ ∣y5h4∣ < ε

265

or equivalently,

(3.25) |h| <
∣∣∣∣ εy5
∣∣∣∣ 14 .

Some penalty must be paid for ignoring higher order terms [8], so here the step size h is chosen
conservatively,

(3.26) h = ±
∣∣∣∣ ε2y5

∣∣∣∣ 14 ≈ ±0.84

∣∣∣∣ εy5
∣∣∣∣ 14 ,

where the ± determines direction.
The value of y5 in (3.26), in practice, ȳ5, is computed with a simple recursion through PSM.

We emphasize that there is no such simple calculation of y5 available for adaptive Runge-Kutta
type schemes. RK methods typically approximate y5 by computing the difference between
order 5 and order 6 approximations. (See the related development in Section 3.4). This is
prohibitive for general order considerations since changing the order of an RK method requires
an entirely new set of complicated coefficients. In contrast, given PSM’s easy access to any
order, it is a simple matter to generalize (3.26) to apply to an nth order PSMA algorithm. A
conservative step analogous to (3.26) for a general nth order PSMA algorithm would thus be
given by

(3.27) h = ±
∣∣∣∣ ε

2yn+1

∣∣∣∣ 1n .
In the case of a system of differential equations, each function would likely produce different
h values. The minimum of the h values of all functions in the system at that step is used as
the adapted step size. This ensures that the step size is appropriate for all functions in the
system to achieve an approximation within the designated error tolerance. Also, if yn+1 = 0,
the step size of h becomes problematic. To avoid such potential issues leading to absurdly
large step sizes, a maximum step size may be introduced to maintain accuracy.

3.4. Standard RK Approach to Adaptive Step Size. PSMA was motivated by Fehlberg’s
approach to a RK adaptive time stepping [14], as presented in [8]. But unlike in the PSM
setting, adaptive RK methods depend on a slightly more involved process. Our development is
comparable to that presented in [8, 28] as it is driven by Taylor series. Comparing approximate
solutions at successive orders, we consider

(3.28) v(tk + h)− u(tk + h),

where u, v are as introduced earlier, with v the higher-order approximation. Using (3.5) and
(3.6), with c = tk, the difference (3.28) reduces to

(3.29) v(tk + h)− u(tk + h) = (y5 − u5)h5 +
v(6)(ξ3(h))− u(6)(ξ2(h))

6!
h6.

266

Solving (3.29) for (y5 − u5)h4 yields

(3.30) (y5 − u5)h4 =
v(tk + h)− u(tk + h)

h
− v(6)(ξ3(h))− u(6)(ξ2(h))

6!
h5.

From (3.30) we can see that the middle term in (3.20) is equivalent to

(3.31)
∣∣(y5 − u5)h4∣∣ s4 =

∣∣∣∣v(tk + h)− u(tk + h)

h

∣∣∣∣ s4 +O
(
h5
)
.

Then, to O
(
h5
)
,

(3.32) |τk+1(sh)| ≈
∣∣(y5 − u5)h4∣∣ s4 ≈ ∣∣∣∣v(tk + h)− u(tk + h)

h

∣∣∣∣ s4,
which suggests that, for |τk+1(sh)| to be roughly less than ε, it would be reasonable to have

(3.33)

∣∣∣∣v(tk + h)− u(tk + h)

h

∣∣∣∣ s4 < ε

or equivalently,

(3.34) s <

∣∣∣∣ εh

v(tk + h)− u(tk + h)

∣∣∣∣ 14 .
Since some penalty must be paid for ignoring higher order terms, the scale s is again generally
chosen conservatively; in fact, for RKF, the typical choice is

(3.35) s =

∣∣∣∣ εh

2 (v(tk + h)− u(tk + h))

∣∣∣∣ 14 ≈ 0.84

∣∣∣∣ εh

v(tk + h)− u(tk + h)

∣∣∣∣ 14 ,
(see [8, 28]).

4. Examples. The following examples present comparisons of PSM algorithms with tradi-
tionally accepted algorithms that use a RK foundation. We tracked number of steps, accuracy,
and Matlab execution time for the standard RK fixed step order 4 method (RK4), DP, and
RKF, as well as for PSM fixed step and PSMA. To compare the algorithms without the in-
fluence of sophisticated program features intrinsic to Matlab, we coded standalone programs
for RK4, RKF, and DP. This provides a controlled setting where all variables, including how
a step size is chosen, could be be kept as consistent as possible. Average execution times are
presented due to small deviations with runs in Matlab.

The three IVODEs highlighted here are relevant to applied models with real world appli-
cations. The first example investigates a straightforward differential equation with a known
singularity to compare the various algorithms’ abilities to yield an accurate approximation
near that singularity. Then we introduce an IVODE that models flight trajectory assuming
two degrees of freedom with a focus on the velocity portion of the system. The final ex-
ample investigates a simple flame propagation model to explore the effect of higher degree
approximations on stiffness.

267

4.1. Example 1: Tangent. Our first example examines a quadratic IVODE in a neigh-
borhood of the domain where the solution becomes singular.

The simple IVODE

(4.1) y′ = 1 + y2, y(0) = 0

has the well-known unique explicit solution of

(4.2) y(t) = tan(t),

which, of course, has a singularity at t = π
2 . Having access to the exact solution allows

for an accurate check of the relative error accrued by a method at a chosen endpoint. For
comparison purposes, we tested all algorithms on the designated time interval [0, 1.57079],
where the endpoint is close enough to the singularity at t = π

2 to cause numerical difficulties.
The results follow in Table 4.1. The first methods listed (RK4, RKF, DP) have a standard

RK foundation; the fourth-order Runge-Kutta method (RK4) is fixed-step while the others are
adaptive. The subsequent methods have a PSM foundation with different specific orders and
utilize both fixed and adaptive steps. A designated relative local error tolerance of ε = 10−11

was used with each of the adaptive methods. PSMA was able to converge for ε = 10−13 while
ε = 10−11 was the smallest value of ε for which RKF and DP were able to remain numerically
stable. The column labeled ”Error” indicates the relative error of the approximation to the
solution at the last step in the interval. It is noteworthy that none of the standard RK-based
algorithms, nor the PSM fixed step algorithms, were able to achieve the desired accuracy and
only PSMA succeeded in (and surpassed) the error tolerance of ε = 10−11.

Table 4.1
Singular Example: Comparison of performance in numerical computation of solutions to y′ = 1 + y2 on

t ∈ [0, 1.57079] , where the true solution becomes singular at π/2. The performance of standard implementations
of RK4, RKF, and DP provide bench marks in step count and execution time. Note for RKF and DP to
converge, we had to apply a restriction on the minimum step. These should be compared to the same measures
of performance for the PSM and PSMA implementations. PSMA did not require a step size restriction. Adaptive
methods used a relative local error tolerance of ε = 10−11.

Method Error Steps Avg. Time (sec)

Runge-Kutta 4 10−5 1000000 2.67
Runge-Kutta-Fehlberg (minstep=10−7) 10−7 15992 0.08
Runge-Kutta-Fehlberg (minstep=10−9) 10−6 567768 2.83

Dormand-Prince (minstep=10−7) 10−6 15377 0.11

PSM Fixed Step Order 6 10−5 1000000 1.31
PSM Fixed Step Order 12 10−9 1000000 2.62
PSM Fixed Step Order 24 10−9 1000000 5.97
PSM Fixed Step Order 48 10−8 100000 1.55

PSM Adaptive Order 6 10−10 38595 0.08
PSM Adaptive Order 12 10−11 593 0.0032
PSM Adaptive Order 24 10−11 77 0.001
PSM Adaptive Order 48 10−12 28 0.11

268

The adaptive RK methods also became numerically unstable without the additional re-
quirement of a minimum step size. Without this minimum step size, as the endpoint t =
1.57079 was approached, the adaptive RK methods were not able to converge but were trapped
in a loop requiring increasingly smaller step sizes. RKF, the most accurate of the two adaptive
RK methods tested, took nearly 16000 steps to achieve its approximation with the safety net
of a minimum step size of 10−7. The results for PSMA are comparatively impressive and
demonstrably better. For example, PSMA Order 24 was able to meet the designated error
tolerance in as few as 77 steps and in a fraction of the time of RKF.

While (4.1) is a single example, these results suggest that PSMA should be considered a
candidate for solving singular or nearly singular problems. It also strongly suggests that order
could make a significant difference with PSMA in accurately and efficiently approximating
solutions close to a singularity. We again point out the utility that with PSM schemes, order
is controlled through the choice of an upper limit in a loop, so a step-wise change to any order
could be easily achieved (though not considered in the work.) Such control is in direct contrast
to standard adaptive RK methods where a step-wise change of order requires a new set of
increasingly more complicated coefficients, particularly when considering, e.g., a 48th − 49th

order method.
Timing, while likely to be more stable once implemented in a compiled environment, is

anticipated to retain a similar ordering. Notice that the PSMA high order methods are com-
petitive with, and often an order of magnitude faster than, the standard adaptive methods of
RKF and DP in addition to maintaining or exceeding the error tolerance capabilities of these
standard algorithms, and without the need for a minimum step size.

4.2. Example 2: Two Degrees of Freedom Projectile Equations. Consider the IVODE,

y′1 = −Acd
m

ρy21 −GM
sin(y2)

y24
, y1(0) = 7000(4.3a)

y′2 = −GM cos(y2)

y1y24
+
y1 cos(y2)

y4
, y2(0) =

π

4
(4.3b)

y′3 =
y1 cos(y2)

y4
, y3(0) =

π

4
(4.3c)

y′4 = y1 sin(y2), y4(0) = 6.371002× 106,(4.3d)

which is a system that models projectile flight within a polar framework. The particle velocity
y1 (ms

−1) and the flight path angle y2 (measured as deviation from the current trajectory)
are free variables for the system. The value y3 is the polar angle measured from initial launch
position, and y4 is the polar radius representing distance in meters from the earth’s center.

The environmental parameters in the simulation are the earth’s gravitational constant,
G = 6.67408 × 10−11, the density ρ = 1 of air in kilograms per cubic meter, and the mass of
the earth in kilograms, M = 5.972×1024. The projectile parameters are its mass in kilograms,
m = 1000, the cross sectional area in square meters, A = 8.75, and the coefficient of drag,
cd = 0.5. For details of this model, see [34].

269

The system (4.3) cannot be explicitly integrated. The comparative solution for the velocity
at t = 10 seconds was determined using 40-digit arithmetic with a numerical Taylor Series (TS)
package and a 7-8 Runge-Kutta Hall (7-8 RKH) package available in the software Maple. A
28th order Taylor polynomial was required for TS, and for both methods, relative and absolute
error tolerances were set to 10−27. The values calculated by these distinct numerical schemes
matched to 10−29. Maple’s TS package, unlike PSM, calculates the Taylor polynomial exactly
symbolically, and 7-8 RKH matches this accuracy by using extremely small step sizes. Each
method took approximately a minute in Maple to finish the calculation.

The results in Table 4.2 suggest that PSMA could be an excellent algorithm for projectile
simulations and indicate that time step and order appear to matter in both accuracy and
timing for these types of applications. The column labeled ”Error” indicates the relative error
of the approximation to the solution at the last step in the interval. PSMA, again at higher
orders, appears recognizably more efficient than the RKF and DP adaptive algorithms, with
run time improvements exceeding an order of magnitude, and doing so with significantly fewer
steps. We note also in Table 4.2, that adaptive algorithms produce a dramatic drop in the
number of steps for both PSM and RK schemes. An interesting additional observation is that
PSMA was able to run with the local relative error ε near machine precision. The adaptive
algorithms of DP and RKF required local relative error tolerances that could not be pushed
smaller than ε = 10−11 and ε = 10−12, respectively, without introducing a minimum step size.

Table 4.2
Projectile Example: Comparison of performance in numerical approximation of velocity y1(t = 10) in the

two degree of freedom particle flight model.The performance of standard implementations of RK4, RKF, and
DP provide bench marks in step count and execution time. These should be compared to the same measures
of performance for the PSM and PSM adaptive implementations. Adaptive methods used a relative local error
tolerance of ε = 10−11.

Method Error Steps Avg. Time (sec)

Runge-Kutta 4 6.68× 10−15 100000 1.073
Runge-Kutta-Fehlberg (Adaptive) 1.38× 10−14 9331 0.233

Dormand-Prince (Adaptive) 4.22× 10−13 8804 0.22

PSM Fixed Step Order 4 9.12× 10−15 100000 0.69
PSM Fixed Step Order 8 9.66× 10−14 5000 0.063
PSM Fixed Step Order 12 5.26× 10−15 5000 0.097
PSM Fixed Step Order 20 6.11× 10−14 1000 0.037
PSM Fixed Step Order 60 8.10× 10−16 500 0.092

PSM Adaptive Order 4 4.66× 10−15 11503 0.139
PSM Adaptive Order 8 2.98× 10−13 242 0.006
PSM Adaptive Order 12 8.71× 10−15 85 0.003
PSM Adaptive Order 32 3.05× 10−14 29 0.014

We mention again that the PSMA produces Taylor splines across its longer steps that
are accurate over the entire time step. Therefore, if a value is later desired inside a time
step, a simple evaluation using this spline produces a result at the same level of accuracy as

270

the method. Further, timing continues to appear to be an advantage for PSM techniques.
Observe that the PSM fixed step and PSMA higher order methods are often an entire order
of magnitude faster than RKF and DP. Again, while it is likely that timing would be more
stable when implemented in a compiled environment, it is expected that a similar ordering
would be maintained.

4.3. Example 3: The Flame Equation. The third example involves a classic stiff IVODE,

(4.4) y′ = y2 − y3, y(0) =
1

1 + eα
, α > 0

which is typically analyzed for t ∈ [0, 2(1 + eα)]. This simple polynomial IVODE models the
growth of the radius, y(t), of a match’s ball of flame after ignition and the balance of available
and consumed oxygen in the application [3]. Although an explicit solution is difficult, an
implicit solution of (4.4) is easy to compute, and is given by

(4.5) t = α+ eα − ln

∣∣∣∣1− 1

y

∣∣∣∣+ 1− 1

y
.

The solution (4.5) increases quickly near its inflection point (t∗, 2/3) with

(4.6) t∗ = α+ eα − ln
1

2
− 1

2
,

and then rapidly asymptotes towards the equilibrium of y = 1. This is an example of interest
since in a neighborhood around t∗, the solution changes from being non-stiff to stiff. Hence,
this is where classic explicit numerical solvers require recognizably more effort to meet a
designated error tolerance. It has also been noted that as α increases, so does the computation
costs for these methods in this neighborhood. The value of α may be considered a parameter,
and the problem becomes increasingly stiff as α increases.

While authors often solve (4.4) across the entire interval t ∈ [0, 2(1 + eα)] [3, 24], it is
important to note that machine round off error accumulates with each additional step. To
minimize this effect, we study (4.4) on a relatively small interval containing the inflection
point t∗,

(4.7) [t0 = α+ eα − 3− e3, t1 = 2α+ eα − e−α],

instead of over the entire region. The endpoints t0 and t1 were determined by (4.5) so that,

(4.8) y(t0) =
1

1 + e3
, y(t1) =

1

1 + e−α
.

For a choice of α = 12, the interval (4.7) is given by [t0 ≡ 162743.7059, t1 ≡ 162778.7914], and
was chosen to capture the solution’s transition from non-stiff to stiff behavior.

271

Table 4.3
Flame Example: A comparison of performance in numerical computation of solutions to y′ = y2 − y3

for t ∈ [t0 = 162743.7059, t1 = 162778.7914] with relative error measured at t1. The performance of standard
implementations of RK4, RKF, and DP provide benchmarks in step count and execution time. These should
be compared to the same measures of performance for the PSM and PSMA implementations. To maintain
accuracy with PSMA, we had to restrict the maximum step size to 5. Adaptive methods used a relative local
error tolerance of ε = 10−13.

Method Error Steps Avg. Time (sec)

Runge-Kutta-Fehlberg (Adaptive) 2.33× 10−15 1630 0.025
Dormand-Prince (Adaptive) 4.52× 10−14 1439 0.017

PSM Fixed Step Order 4 8.88× 10−16 100000 0.144
PSM Fixed Step Order 8 2.22× 10−16 5000 0.017
PSM Fixed Step Order 12 1.11× 10−16 1000 0.004
PSM Fixed Step Order 32 1.11× 10−16 500 0.008

PSM Adaptive Order 4, maxstep=5 4.33× 10−15 3450 0.034
PSM Adaptive Order 8, maxstep=5 6.66× 10−16 120 0.001
PSM Adaptive Order 12, maxstep=5 1.93× 10−14 40 0.0006
PSM Adaptive Order 20, maxstep=5 2.55× 10−15 17 0.0006
PSM Adaptive Order 32, maxstep=5 1.58× 10−14 12 0.0005

The results for the adaptive methods for this example compare similarly to the first two
examples and are presented in Table 4.3. The column labeled ”Error” indicates the relative
error of the approximation to the solution at the last step in the interval. A designated relative
local error tolerance of ε = 10−13 was used with each of the adaptive methods, and in this
example, no minimum step size restriction was additionally required for DP or RKF. The
results again suggest the importance of order, specifically in regard to step size (and often run
time).

We again believe that the number of steps is the most significant column in Table 4.3,
and should be stable across interpreted and compiled environments. We see in Table 4.3 that
PSMA at 32nd order can solve (4.4) with only 12 steps, which is a remarkable one hundredth
of the steps taken by DP. PSMA also ran over 30 times faster than DP in that scenario. Also,
PSMA order 20 requires 17 steps compared to DP’s 1439 and RKF’s 1630 steps, respectively.
The timings for PSM and PSMA higher order methods continue to impress. Again we mention
that while we expect timings to be more stable when implemented in a compiled environment,
it is likely that timings would retain a similar ordering. This example indicates that the higher
order approximations available with explicit PSM techniques may have a positive impact on
stiff or nearly stiff IVODEs.

5. Library of PSM Functions. A drawback to PSM techniques has been the need for the
IVODEs to be manually written as a polynomial system. This section details the development
of a growing set of PSM functions that perform PSM recursions corresponding to each tran-
scendental function or nonlinear operation that arises in a large class of IVODEs. See Table
A.1 in the appendix for a list of many of the PSM functions derived. The PSM recursions

272

performed by these functions are equivalent to those given by some systems of polynomial
differential equations, however they do not require actually forming the polynomial systems.
Instead, they require manual decomposition of the IVODEs into a code list form. We see
this as an efficient hybrid between pure PSM (manual conversion of IVODEs to polynomial
form) and pure AD (computational conversion to series recursion formulas) by coding auxil-
iary variables in a list of steps with one function or (nonlinear) operation per step and calling
a library of corresponding recursion formulas.

Fortunately, the vast majority of differential equations relevant to the engineering and
scientific communities, even those that are highly nonlinear, can be recast in polynomial
form [10]. It is typically straightforward to convert a differential equation into polynomial
form. It is equivalently straightforward to manually decompose an IVODE into a code list
form where operations are handled through calls to our PSM library of functions. A simple
example contrasting regular PSM through polynomial systems and PSM through our library
of functions was given in Section 2. Both techniques have the advantage that they recursively
generate the coefficients of the power series to a desired degree without taking successive
complicated derivatives.

Computationally, both traditional PSM and PSM through our library of functions, after
initialization, rely solely on basic arithmetic operations and do not use MATLAB’s transcen-
dental functions. Compared to other methods, this has advantages in timing and efficiency
for many IVODEs. Also, the functions in this library encompass standard parent functions as
well as more complex compositions of functions. In applying our PSM technique to various
IVODEs, the prescribed code list calls upon functions from this library to generate the Taylor
polynomial for the approximation, which can then be evaluated at a designated time step to
yield an approximation to the solution.

We briefly survey some of the basic theory behind PSM, and demonstrate an example
illustrating the method used to generate the recursive relationships that form the foundation
of functions we have implemented.

5.1. Basic PSM Framework and Construction of Subfunctions. In the late 1980s, Parker
and Sochacki recognized that if IVODEs were in polynomial form, the first n terms of the
nth Picard iterate was the Taylor polynomial [29]. Thus, they further recognized that Picard
iteration could be used as a Taylor generator that bypassed the traditional need for explicit
differentiation. Computational enhancements to PSM came when it was further shown that
the recursive Picard iterations could be computed without the need of integration. The
framework for this approach is motivated by power series. If the series of an auxiliary variable
y centered at a step tk is given by

(5.1) y(t) =
∞∑
j=0

yj(t− tk)j ,

then y′ has the expansion

(5.2) y′(t) =

∞∑
j=0

(j + 1)yj+1(t− tk)j .

273

If the first n terms of the series for the polynomial system (as an example, the system (2.5)
corresponding to the IVODE (2.3)) are known, then the (n + 1)st term can be determined
from the right-hand side of the system (see e.g., (2.7)). This computational PSM iterative
scheme is a robust extension of the classic power series method.

Since the systems are polynomial, there is a need to multiply series with this technique,
and so the Cauchy product plays a significant role in the method. Recall that if the coefficients
of the series of a and b are known up to degree n, then the nth degree coefficient of the series
for the product c = ab can be found by

(5.3) cn =

n∑
j=0

ajbn−j ,

a simple dot product with the coefficient array of a and the transpose of b.
The Cauchy product (5.3) is a key component in the library of functions. The user simply

inputs the desired degree n for the Taylor coefficient of the product c and two arrays containing
the coefficients of a and b at least up to n, and the function uses a basic loop to calculate
the desired coefficient cn. See A.4 in the appendix for the psuedocode of cauchy prod.m.
Computational costs for PSM techniques are often measured in number of Cauchy products
required in an algorithm.

5.2. Example of a Development of a PSM Recursion in the Library. As an example of
the method used to implement many of the algorithms in the library of functions, we develop
the recursion used for the expy function; the calculation of the nthdegree Taylor coefficient
of the natural exponential of a power series. Given the coefficients of the power series for y
to at least degree n, expy can be used to recursively generate the coefficients of the power
series to degree n of

(5.4) w = ey.

We derive expy, by assuming y is expanded as in (5.1) and w similarly as

(5.5) w(t) =
∞∑
j=0

wj(t− tj)j .

Differentiating (5.4) and then substituting,

w′ = ey y′(5.6a)

= y′w.(5.6b)

Note that an IVODE for y provides the necessary recursion to compute enough terms of y to
determine the next term in w. The form in the second equation in (5.6) suggests the use of the
Cauchy product (5.3), and assuming an expansion (5.2) for y′, and an analogous expansion
for w′, matching nth degree coefficients leads to

(5.7) (n+ 1)wn+1 =

n∑
j=0

(j + 1) yj+1wn−j .

274

With a slight shift of an index on w, the nth degree Taylor coefficient of w is calculated by

(5.8) wn =
1

n

n−1∑
j=0

(j + 1) yj+1wn−1−j

 .

Equation (5.8) can be coded as expy. The user merely inputs n, an array with the series
coefficients of w to degree n − 1, and an array with the known coefficients of y to at least
degree n, and with a Cauchy product the function efficiently outputs the nth degree coefficient
of w.

Most functions currently included in the library follow a similar development, and as in
(5.8), the function returns a coefficient of the Taylor polynomial to a desired degree whose
calculation depends strictly on previously determined lower degree coefficients. Working to-
gether, these functions can be used to efficiently generate extremely high order approximations
to many dynamical models. See Table A.1 for a list of functions that were implemented in
Matlab, as well as syntax required to call them.

5.3. Examples Using Functions Implemented. Pseudocode for algorithms (A.1, A.2, and
A.3) is provided in the Appendix for the three IVODEs considered in Section 4, equations
(4.1), (4.3), and (4.4), respectively. These nonlinear problems are easily coded using functions
drawn from the library table A.1, and these calls are highlighted in blue. A pseudo-code
implementation of the adaptive time stepping control (A.5) is also included.

6. Conclusion. This work focused on the development and testing of a novel adaptive
PSM algorithm which we call PSMA for PSM with adaptive stepping. This method is similar
to a Taylor method, but it uses a simple computational approach to recursively generate the
coefficients of a power series to a desired degree without taking extensive high order derivatives.
In Section 3, the theory for regular adaptive stepping and local truncation error is established.
The theory used to develop PSMA is adapted from the recognized adaptive methods with
a RK foundation. Adaptive stepping was incorporated into the PSM algorithms, and the
classic adaptive scheme for the standard RK algorithms was treated in brief. In comparing
these PSM algorithms to the classic methods, PSM and PSMA have realized several useful
theoretical, computational, and practical gains in generating highly accurate solutions in the
IVODE setting. First, a beneficial feature of PSMA is its ability to recursively generate an
approximation to the yk+1 coefficient given approximations to the previous coefficients, which
is not true for most standard adaptive numerical solvers. Also, order in PSMA is increased
by changing a single, order-control parameter. Since PSM can recursively generate Taylor
coefficients of arbitrary order, the estimate on which the PSMA time step is based is therefore
easy to both construct and implement, and is easy to apply to arbitrary order. This would be
far harder for solvers of the RK family as an increase of order for the RK family, for instance,
instead requires a new set of weights as indicated by the Butcher Tableau for the method.

In Section 4, the PSM algorithms (fixed step and adaptive stepping) and the standard
RK foundation algorithms (RK4, RKF, DP) are applied to three illustrative examples in
order to compare the accuracy, number of steps, and timings in approximating the solutions.
All three nonlinear examples suggest that PSMA is both effective and efficient. The first

275

example, containing a singular solution, examined the potential effectiveness of higher order
approximations available with PSMA for studying singular problems. The second example was
an IVODE used in simulations modeling flight trajectories of a projectile [34] to explore the
accuracy and efficiency of the algorithms in an applied setting. The third example examined
the effect of higher order approximations and investigated the behavior of the algorithms in a
flame propagation model with a stiff solution. In each example, PSMA was faster, achieving
similar or better accuracy in considerably fewer time steps in comparison to fixed-stepped
PSM methods of equal order, as expected. PSMA also proved to be more efficient when
compared to traditional explicit fixed step methods RK4 and the adaptive methods RKF and
DP, particularly at higher orders. Examples hint that a computational minimum in (time,
order) space may exist, and that the order of approximation is very important for some regions.

Lastly, in Section 5, the basic structure of PSM’s iterative scheme was explained, including
the PSM specific functions that perform PSM recursions for operations that appear in a large
class of IVODEs. The functions require decomposing the IVODEs into a code list form, but
bypass the need to convert IVODEs into a polynomial system, which is a requirement and
potential obstacle for regular PSM. These functions allow the coefficients of a power series to
be recursively generated to an arbitrary degree. Also included in this section are a sample
derivation of the recursion and pseudo-code implementations for the examples of Section 4.
All of the functions created during this project are listed in Table A.1. The functions in this
library were used in pseudocodes A.1 ,A.2, and A.3 for the examples from Section 4. The
goal is to grow this library of functions so that it might serve as part of the foundation for a
future large-scale PSM tool for the scientific and engineering communities.

The future of PSMA includes further increasing its computational efficiency by moving
from its present Matlab exploratory environment to a compiled platform. Beyond this, and as
noted in [31], the Cauchy product framework of PSM makes it well-suited for parallelization.
As such, potential gains in parallelizing PSMA will also be an important direction. In addition,
PSMA is currently adaptive only in step size, but efficiency could be gained if we could
also adapt in order. This is another potential benefit of our methods as compared to RK-
based methods, since ”on-the-fly” movement between orders for the latter cannot be easily
accommodated. Lastly, since PSM generates the Taylor polynomial at each step, and the
Taylor polynomial is a starter for other numerical methods, it is worth exploring the possibility
of other PSM adaptive methods. In particular, while fixed step Padé approximants were briefly
considered in [10], adaptive Padé approximants with PSM could potentially produce similar
accuracy to PSMA with a significant reduction in the number of steps, and possibly in less
time. This potential highlights yet another research direction that is poised to build from this
work.

Acknowledgments. Work for this research was funded in part through the James Madison
University Jeffrey E. Tickle ’90 Family Endowment housed in the College of Science and
Mathematics. We would also like to thank all of our advisors from the PSM group at JMU!
Lastly, we extend our gratitude to the referees of this work who provided us with detailed
comments in the reviews. We greatly appreciate their deep insight into helping us make the final
version of this manuscript notably clearer and more effective.

276

REFERENCES

[1] I. M. Abdelrazik and H. A. Elkaranshawy, Extended Parker Sochacki method for Michaelis-Menten
enzymatic reaction model, Analytic Biochemistry, 496 (2016), pp. 50–54, https://doi.org/10.1016/j.
ab.2015.11.017.

[2] I. M. Abdelrazik, H. A. Elkaranshawy, and A. M. Abdelrazek, Modified Parker-Sochacki method
for solving nonlinear oscillators, Mechanics Based Design of Structures and Machines, 45 (2017),
pp. 239–252, https://doi.org/10.1080/15397734.2016.1201425.

[3] S. Abelman and K. C. Patidar, Comparison of some recent numerical methods for initial-value problems
for stiff ordinary differential equations, Comput. Math. Appl., 55 (2008), pp. 733–744, https://doi.
org/10.1016/j.camwa.2007.05.012.

[4] S. O. Akindeinde, Improved Parker-Sochacki method for closed form solution of two and three-point
boundary value problems of nth order odes, Int. J. Appl. Math., 29 (2016), pp. 597–607, https://doi.
org/10.12732/ijam.v29i5.7.

[5] S. O. Akindeinde, Parker-Sochacki method for the solution of convective straight fins problem with
temperature-dependent thermal conductivity, Int. J. Nonlinear Sci., 25 (2018), pp. 119–128.

[6] S. O. Akindeinde and E. Okyere, New analytic technique for the solution of nth order nonlinear two-
point boundary value problems, British Journal of Mathematics and Computer Science, 15 (2016),
pp. 1–11, https://doi.org/10.9734/BJMCS/2016/24365.

[7] D. Barton, I. Willers, and R. Zahar, Automatic solution of systems of ordinary differential equations
by the method of taylor series, Comput. J., 14 (1971), pp. 243–248.

[8] R. L. Burden and J. D. Faires, Numerical Analysis: 4th Ed, PWS Publishing Co., Boston, MA, 1989.
[9] D. C. Carothers, S. K. Lucas, G. E. Parker, J. D. Rudmin, J. S. Sochacki, R. J. Thel-

well, A. Tongen, and P. G. Warne, Connections between power series methods and auto-
matic differentiation, Recent Advancements in Algorithmic Differentiation, 87 (2012), pp. 175–186,
https://doi.org/10.1007/978-3-642-30023-3 16.

[10] D. C. Carothers, G. E. Parker, J. S. Sochacki, and P. G. Warne, Some properties of solutions to
polynomial systems of differential equations, Electron. J. Differential Equations, 2005 (2005), pp. 1–17.

[11] L. Chen and D. Junsheng, Multistage numerical Picard iteration methods for nonlinear Volterra integral
equations of the second kind, Advances in Pure Mathematics, 5 (2015), p. 672.

[12] P. S. Dwyer, Interval analysis: by ramon e. moore. 145 pages, diagrams, 6 9 in. new jersey, englewood
cliffs, prentice-hall, 1966. price, 9.00, J. Franklin inst., 284 (1967), pp. 148–149.

[13] H. A. Elkaranshawy, A. M. Abdelrazek, and H. M. Ezzat, Power series solution to sliding velocity
in three-dimensional multibody systems with impact and friction, International Journal of Mathemat-
ical, Computational, Physical, Electric, and Computer Engineering, 9 (2015), pp. 585–588.

[14] E. Fehlberg, Numerical integration of differential equations by power series expansions, illustrated by
physical examples, Technical Report NASA-TN-D-2356, NASA, 1964.

[15] C. W. Gear, R. D. Skeel, and S. G. Nash, The development of ODE methods: A symbiosis between
hardware and numerical analysis, in A History of Scientific Computing, ACM Press, 1990.

[16] A. M. Gofen, The ordinary differential equations and automatic differentiation unified, Complex Var.
Elliptic Equ., 54 (2009), pp. 825–854, https://doi.org/10.1080/17476930902998852.

[17] M. Hopkins and S. Furber, Accuracy and efficiency in fixed-point neural ODE solvers, Neural Comput.,
27 (2015), pp. 2148–2182, https://doi.org/10.1162/NECO a 00772.

[18] A. Jorba and M. Zou, A software package for the numerical integration of odes by means of high-order
taylor methods, Exp. Math., 14 (2005), pp. 99–117.

[19] T. Kimura, On dormand-prince method. Japan Malaysia Technical Institute, 2009.
[20] J. Liu, G. E. Parker, J. S. Sochacki, and A. Knutsen, Approximation methods for integrodifferential

equations, Proceedings of the International Conference on Dynamical Systems and Applications, III
(2001), pp. 383–390.

[21] J. Liu, J. S. Sochacki, and P. Dostert, Singular perturbations and approximations for integrodiffer-
ential equations, in Differential Equations and Control Theory, S. Aizicovici and N. H. Pavel, eds.,
CRC Press, 2001.

[22] I. M. Mack, Generalized Picard-Lindelöf Theory, Sloan School of Management, Massachusetts Institute
of Technology, Cambridge, MA, 1991.

277

https://doi.org/10.1016/j.ab.2015.11.017
https://doi.org/10.1016/j.ab.2015.11.017
https://doi.org/10.1080/15397734.2016.1201425
https://doi.org/10.1016/j.camwa.2007.05.012
https://doi.org/10.1016/j.camwa.2007.05.012
https://doi.org/10.12732/ijam.v29i5.7
https://doi.org/10.12732/ijam.v29i5.7
https://doi.org/10.9734/BJMCS/2016/24365
https://doi.org/10.1007/978-3-642-30023-3_16
https://doi.org/10.1080/17476930902998852
https://doi.org/10.1162/NECO_a_00772

[23] N. Nakhjiri and B. Villac, Modified Picard integrator for spaceflight mechanics, Journal of Guidance,
Control, and Dynamics, 37 (2014), pp. 1625–1637, https://doi.org/10.2514/1.G000303.

[24] M. Nechita, Revisiting a flame problem. remarks on some non-standard finite difference schemes, Di-
dactica Mathematica, 34 (2016), pp. 51–56.

[25] R. D. Neidinger, Introduction to automatic differentiation and matlab object-oriented programming,
SIAM Rev., 52 (2010), pp. 545–563, https://doi.org/10.1137/080743627.

[26] E. Nurminskii and A. Buryi, Parker-Sochacki method for solving systems of ordinary differential
equations using graphics processors, Numer. Anal. Appl., 4 (2011), p. 223, https://doi.org/10.1134/
S1995423911030049.

[27] B. S. Ogundare, S. O. Akindeinde, A. O. Adewumi, and A. A. Aderogba, Improved Parker-
Sochacki approach for closed form solution of enzyme catalyzed reaction model, J. Mod. Methods
Numer. Math., 8 (2017), pp. 90–98, https://doi.org/10.20454/jmmnm.2017.1251.

[28] J. M. Ortega, Numerical analysis: A second course, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1990.

[29] G. E. Parker and J. S. Sochacki, Implementing the Picard iteration, Neural Parallel Sci. Comput., 4
(1996), pp. 97–112.

[30] C. D. Pruett, W. H. Ingham, and R. D. Herman, Parallel implementation of an adaptive and
parameter-free n-body integrator, Comput. Phys. Commun., 182 (2011), pp. 1187–1198, https://doi.
org/10.1016/j.cpc.2011.01.014.

[31] C. D. Pruett, J. W. Rudmin, and J. M. Lacy, An adaptive N-body algorithm of optimal order, J.
Comput. Phys., 187 (2003), pp. 298–317, https://doi.org/10.1016/S0021-9991(03)00101-3.

[32] J. W. Rudmin, Application of the Parker-Sochacki method to celestial mechanics, technical report, James
Madison University, 1998.

[33] A. Singarimbun, Y. Fujimitsu, M. Djamal, and R. Dewi, Pressure transient modeling in geother-
mal reservoir by using Picard-Mclaurin iteration, Advanced Materials Research, 1025–1026 (2014),
pp. 959–973, https://doi.org/10.4028/www.scientific.net/AMR.1025-1026.959.

[34] G. M. Siouris, Missile guidance and control systems, Springer, New York, NY, 2011.
[35] E. Smirnov and E. Timoshkova, Comparative investigation of methods for the numerical prediction

of motion of asteroids that approach the Earth: Example of the 99942 Apophis asteroid, Cosmic
Research, 52 (2014), pp. 118–124, https://doi.org/10.1134/S0010952514020075.

[36] J. S. Sochacki, Polynomial ODEs: Examples, solutions, properties, Neural Parallel Sci. Comput., 18
(2010), pp. 441–450.

[37] R. D. Stewart and W. Bair, Spiking neural network simulation: numerical integration with the
Parker-Sochacki method, J. Comput. Neurosci., 27 (2009), pp. 115–133, https://doi.org/10.1007/
s10827-008-0131-5.

[38] R. J. Stewart and K. N. Gurney, Spiking neural network simulation: memory-optimal synaptic event
scheduling, J. Comput. Neurosci., 30 (2011), pp. 721–728.

[39] P. Szynkiewicz, A novel GPU-enabled simulator for large scale spiking neural networks, Journal of
Telecommunications and Information Technology, 2 (2016), pp. 34–42.

[40] P. G. Warne, D. A. Warne, J. S. Sochacki, G. E. Parker, and D. C. Carothers, Explicit a-
priori error bounds and adaptive error control for approximation of nonlinear initial value differential
systems, Comput. Math. Appl., 52 (2006), pp. 1695–1710, https://doi.org/10.1016/j.camwa.2005.12.
004.

Appendix A. Library of PSM Functions and Pseudocode. This appendix includes Table
A.1 containing a list of functions that were implemented in Matlab, as well as pseudocode
syntax for calling them. We utilize an array index zero for coefficients rather than the Matlab
index in order to agree with the degree of the term. Pseudocode for the algorithms denoted
below as A.1 ,A.2, and A.3 for the three IVODEs considered in Section 4 (4.1, 4.3, and 4.4,
respectively) is also outlined.

278

https://doi.org/10.2514/1.G000303
https://doi.org/10.1137/080743627
https://doi.org/10.1134/S1995423911030049
https://doi.org/10.1134/S1995423911030049
https://doi.org/10.20454/jmmnm.2017.1251
https://doi.org/10.1016/j.cpc.2011.01.014
https://doi.org/10.1016/j.cpc.2011.01.014
https://doi.org/10.1016/S0021-9991(03)00101-3
https://doi.org/10.4028/www.scientific.net/AMR.1025-1026.959
https://doi.org/10.1134/S0010952514020075
https://doi.org/10.1007/s10827-008-0131-5
https://doi.org/10.1007/s10827-008-0131-5
https://doi.org/10.1016/j.camwa.2005.12.004
https://doi.org/10.1016/j.camwa.2005.12.004

f(t) =
∑∞

k=0 fk(t− c0)k f(y(t)) =
∑∞

k=0 [f(y)]k (t− c0)k
[f(t) = tp]k ← powert(fcoeff(0:k-1),p,c0) [f(y) = yp]k ← powery(fcoeff(0:k-1),ycoeff(0:k),p)
[f(t) = et]k ← expt(fcoeff(0:k-1),c0) [f(y) = ey]k ← expy(fcoeff(0:k-1),ycoeff(0:k))
[f(t) = C]k ← const(C,k) [f(y) = ry]k ← rpowy(fcoeff(0:k-1),ycoeff(0:k))
[f(t) = ln(t)]k ← natlogt(fcoeff(0:k-1)) [f(y) = ln(y)]k ← natlogy(fcoeff(0:k-1),ycoeff(0:k))
[f(t) = cos(t)]k ← cost(fcoeff(0:k-1),c0)

[f(t) = sin(t)]k ← sint(fcoeff(0:k-1),c0)
[
f(y) =

sin(y)
cos(y)

]
k
← sincos(fcoeffs(0:1,0:k-1)

[f(t) = tan(t)]k ← tant(fcoeff(0:k-1),c0) [f(y) = tan(y)]k ← tany(fcoeff(0:k-1),ycoeff(0:k))
[f(t) = cot(t)]k ← cott(fcoeff(0:k-1),c0) [f(y) = cot(y)]k ← coty(fcoeff(0:k-1),ycoeff(0:k))
[f(t) = sec(t)]k ← sect(fcoeff(0:k-1),c0) [f(y) = sec(y)]k ← secy(fcoeff(0:k-1),ycoeff(0:k))
[f(t) = csc(t)]k ← csct(fcoeff(0:k-1),c0) [f(y) = csc(y)]k ← cscy(fcoeff(0:k-1),ycoeff(0:k))

f(t) = Horners(f,t) ← Horners(fcoeff(0:k),t) [f = a · b]k ← cauchy prod(acoeff(0:k),bcoeff(0:k))
[f = a

b]k ← div(acoeff(0:k),bcoeff(0:k),fcoeff(0:k-1))

Table A.1
Library of Functions

Algorithm A.1 Example 3.1: Tangent

1: procedure Find Tan([t0,tend],x0,tol,deg,minstep) . solve x′ = 1 + x2

2: [xcoeff] = Initialize(deg) . initialize 1×deg xcoeff matrix
3: xcoeff(0) = x0 . apply ICs
4: while tcurrent < tend do . run for full interval
5: for k ← 0, deg do . step through degree
6: fkth = const(1,k)+cauchy prod(xcoeff(0:k),xcoeff(0:k)) . [1 + x2]k
7: xcoeff(k+1) = fkth/(k+1) . integrate [f]k wrt t
8: end for
9: tstep = psm step(tol,xcoeff,minstep) . use psm bound

10: tstep = min(tstep,tend) . check and fix for end of interval
11: xfinal = Horner(xcoeff,tstep) . evaluate at end of subinterval
12: xcoeff(0) = xfinal . initialize x0 for next time iteration
13: tcurrent = tcurrent + tstep . update current time value
14: end while
15: return xfinal
16: end procedure

279

Algorithm A.2 Example 3.2: 2DOF Projectile Motion

1: procedure MissileODE([t0,tend],y0,tol,deg,parameters, step opts) . solve (4.3)
2: [ycoeff,ucoeff] = Initialize(deg) . initialize 4×deg ycoeff and 10×deg auxillary ucoeff

matrix
3: ycoeff(1:4,:) = y0(1:4,parameters) . apply ICs
4: while tcurrent < tend do . run for full interval
5: for k ← 1, deg do . step through degree
6: ucoeff(1,k) = div(ycoeff(1,0:k),ycoeff(4,0:k),ucoeff(0:k-1)) . y1/y4
7: ucoeff(2:3,k) = sincosy(ucoeff(2:3,0:k-1),ycoeff(2,0:k)) . sin(y2) , cos(y2) eval
8: ucoeff(4,k) = cauchy prod(ycoeff(4,0:k),ycoeff(4,0:k)) . y24
9: ucoeff(5,k) = cauchy prod(ycoeff(1,0:k),ucoeff(4,0:k)) . y1 · y24

10: ucoeff(6,k) = cauchy prod(ucoeff(1,0:k),ucoeff(3,0:k)) . y1 · cos(y2)/y4
11: ucoeff(7,k) = cauchy prod(ycoeff(1,0:k),ucoeff(2,0:k)) . y1 · sin(y2)
12: ucoeff(8,k) = div(ucoeff(2,0:k),ucoeff(4,0:k),ucoeff(8,0:k-1)) . sin(y2)/y

2
4

13: ucoeff(9,k) = div(ucoeff(3,0:k),ucoeff(5,0:k),ucoeff(9,0:k-1)) . cos(y2)/(y1y
2
4)

14: ucoeff(10,k) = cauchy prod(ycoeff(1,0:k),ycoeff(1,0:k)) . y21
15: % Assemble RHS using parameters
16: f(1) = -A*cd*rho/m*ucoeff(10,k) - G*M*ucoeff(8,k) . (4.3a)
17: f(2) = -G*M*ucoeff(9,k) + ucoeff(6,k) . (4.3b)
18: f(3) = ucoeff(6,k) . (4.3c)
19: f(4) = ucoeff(7,k) . (4.3d)
20: ycoeff(1:4,k+1) = f(1:4)/(k+1) . integrate [fvec]k wrt t
21: end for
22: [tstep] ← psm step . use psm bound and adjust step
23: yfinal vec = Horner(ycoeff(:,0:k),tstep) . Evaluate coefficients
24: ycoeff(:,0) = yfinal vec . Update for next time interval loop
25: tcurrent = tcurrent + tstep . update current time value
26: end while
27: return yfinal vec
28: end procedure

280

Algorithm A.3 Example 3.3: Flame equation

1: procedure FlameODE([t0,tend],x0,tol,deg,minstep) . solve x′ = x2 − x3
2: [xcoeff] = Initialize(deg) . initialize 1×deg xcoeff matrix
3: xcoeff(0) = x0 . apply ICs
4: while tcurrent < tend do . run for full interval
5: for k ← 0, deg do . step through degree
6: x2k = cauchy prod(xcoeff(0:k),xcoeff(0:k)) . [y2]k
7: x3k = cauchy prod(xcoeff(0:k),x2(0:k)) . [y3]k
8: fkth = x2k - x3k; . [y2 − y3]k
9: xcoeff(k+1) = fkth/(k+1) . integrate [f]k wrt t

10: end for
11: tstep = psm step(tol,xcoeff,minstep) . use psm bound
12: tstep = min(tstep,tend) . check and fix for end of interval
13: xfinal = Horner(xcoeff,tstep) . evaluate at end of subinterval
14: xcoeff(0) = xfinal . initialize x0 for next time iteration
15: tcurrent = tcurrent + tstep . update current time value
16: end while
17: return xfinal
18: end procedure

Algorithm A.4 Cauchy Product

1: procedure cauchy prod(acoeff,bcoeff) . implement (5.3)
2: deg=length(acoeff)
3: out = dot(acoeff(0:deg), flip(bcoeff(0:deg))) . acoeff ≡ bcoeff is special case
4: return out
5: end procedure

Algorithm A.5 PSM Adaptive Step Size

1: procedure PSM step(tol,coeffs,optional vars) . Use our estimate for time step
2: [varcount,deg+1] ← size(coeffs)
3: for k ←1,varcount do . Step through all variables
4: hvec(k) ← abs(tol/2/coeffs(k,deg+1))∗∗(1/deg) . apply (3.27)
5: end for
6: h ← min(hvec) . min step over all variables
7: h ← check h and fix for minstep & maxstep options . use optional vars
8: return h
9: end procedure

281

	Introduction
	A Brief Overview of PSM
	One-Step Error Analysis and Control
	One-Step Development and Notation
	Local Truncation Error
	New PSM Approach to Adaptive Step Size
	Standard RK Approach to Adaptive Step Size

	Examples
	Example 1: Tangent
	Example 2: Two Degrees of Freedom Projectile Equations
	Example 3: The Flame Equation

	Library of PSM Functions
	Basic PSM Framework and Construction of Subfunctions
	Example of a Development of a PSM Recursion in the Library
	Examples Using Functions Implemented

	Conclusion
	Appendix A. Library of PSM Functions and Pseudocode

