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Abstract. We present an analysis of a system of differential equations that

models the transmission dynamics of pathogens with antimicrobial resistance

(AMR) in an intensive care unit (ICU) studied by Austin and Anderson (1999).
In Austin and Anderson’s four–dimensional compartmental model, patients

and health care workers are viewed as hosts and vectors of the pathogens,

respectively, and subdivided into uncolonized and colonized populations. In
the analysis, we reduce the model to a two–dimensional non–autonomous sys-

tem. Noting that the reduced system has an autonomous limiting system,

we then apply the theory of asymptotically autonomous differential equations
systems in the plane developed by Markus (1956) and extended by Thieme

(1992, 1994), and later by Castillo–Chavez and Thieme (1995).
We first present a stability analysis of the limiting system and prove the

existence of a locally asymptotically stable equilibrium point under a set of

constraints expressed in terms of reproductive numbers. We then proceed
to an asymptotic analysis of the non–autonomous, two–dimensional system

by applying a Poincaré–Bendixson type trichotomy result proved by Thieme

(1992, 1994). In particular, we establish that any forward bounded trajectory
of the non–autonomous system that starts within a defined rectangular region

will converge toward the equilibrium point of the limiting system, provided that

certain conditions given in terms of the reproductive numbers are satisfied.

Keywords. antimicrobial resistance; transmission dynamics; compartmental

model; non–autonomous system; limiting system; locally asymptotically stable
equilibrium

1. Introduction

Antimicrobial resistance (AMR) is the ability of bacteria to resist the effects of
antibiotics. When a high density patient population is exposed to heavy antibiotic
use and frequent contact with healthcare staff, the risk of cross infection increases
and intensive care units (ICUs) in hospitals become a hotbed of antibiotic resis-
tant bacteria [Str98]. In light of such medical practices, we examine transmission
dynamics of antibiotic resistant pathogens in hospitals.
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The system of differential equations

(1)



dXp

dt
= (1− φ)Λ− µXp − cbpYhXp;

dYp
dt

= φΛ− µYp + cbpYhXp;

dXh

dt
= −cbhYpXh + γYh;

dYh
dt

= cbhYpXh − γYh,

models the transmission dynamics of pathogens with AMR in a hospital unit. The
model (1) was studied by Austin and Anderson [AA99]. Figure 1, which is similar
to the one used in [AA99], shows the flow diagram associated with the system
(1). The population in the hospital unit is divided into two groups: patients,

Xh Yh

Xp Yp

γ

colonization

(1− φ)Λ φΛ

µµ

transient
colonization

γ

Figure 1. Flow Diagram for the Austin–Anderson Model.

identified with the subscript p, and health care workers (HCWs), identified with 
the subscript h.1 In turn, patients and HCWs are subdivided into two groups each: 
uncolonized, denoted by the variable X, and colonized, denoted by the variable 
Y . Colonized individuals are those who have microorganisms in their bodies (e.g., 
bacteria) that are resistant to antimicrobial medications (e.g., antibiotics). Thus, 
Yp(t) denotes the number of patients in the unit that carry AMR microorganism 
at time t, and Yh(t) denotes the number of HCWs that have been colonized by the 
AMR microorganisms at time t. By the same token, Xp(t) denotes the number 
of patients that do not have the AMR microorganisms in their bodies, but are 
susceptible to being colonized by the microorganisms, at time t. Similarly, Xh(t) 
denotes the number of uncolonized HCWs at time t. Austin and Anderson [AA99] 
distinguish between infection and colonization. An infection occurs when germs are

1While D’Agata et al. [EDW07] point out further complexities of the transmission dynamics, 
such as differentiating between types of HCW (nurses and physicians) and their interactions with 
patients, we stick to the original division for simplicity.

323



in or on the body causing signs and symptoms. Colonization occurs when germs
are in or on the body, but do not necessarily make the person sick.

In the system (1), Λ is the patient admission rate, in units of population per
time. A fraction, φΛ, is colonized (φ is called the prevalence of colonization at
admission); so that, a fraction (1− φ)Λ is uncolonized.

The parameter µ in the system (1) and the flow diagram in Figure 1 is the
discharge rate; so that, 1/µ is a patient’s average length of stay in the unit (typically
measured in days).

It was assumed in [AA99] that transmission of the AMR microorganisms is
achieved solely through contact; that is, the microorganisms are often passed from
person to person by contaminated hands of HCWs, or colonization spreads di-
rectly to people after they touch surfaces that are contaminated with the AMR
microorganisms. Accordingly, the parameter c in the system (1) is the contact
rate, measured in number of contacts per unit time, and bp denotes the prob-
ability of transmission from HCW to patient per contact, measured in units of
1/(contact × population); that is, the probability that a patient is colonized by
the AMR microorganisms in one contact with a HCW that is colonized. Thus,
cbp is the rate of colonization because of contact with one HCW per unit of time.
Similarly, bh is the probability of transmission from patient to HCW per contact;
that is, bh is probability of colonization of a HCW in one contact with a colonized
patient; consequently, cbh is the rate of colonization of HCWs by contact with one
colonized patient.

Given the assumption about the transmission of AMR microorganisms stated
above, the HCWs act as vectors of transmission. This is indicated in the flow
diagram in Figure 1 by the dotted arrows. Thus, the ideas used in modeling vector–
borne diseases can be applied in the modeling of AMR microorganisms transmission.
This is precisely what Austin and Anderson did when they adapted a malaria model
developed by Ross and MacDonald in 1911 and 1957, respectively, [MD13]. In this
setting, patients are viewed as hosts. They are either uncolonized (susceptible
to being colonized) or colonized by AMR microorganisms through contact with
colonized HCWs.

As stated previously, HCWs are viewed as vectors. They are either uncolonized
through effective hand–washing, or transiently colonized through interaction with
other HCWs (transient colonization). The parameter γ in the system (1) and in
the flow diagram in Figure 1 is the transient colonization rate; accordingly, 1/γ is
the average duration of transient colonization (typically measured in hours); thus,
1/γ represents the average time a colonized HCW remains colonized until he or she
becomes uncolonized through means of hand–washing, for instance.2

Finally, Austin and Anderson [AA99] also assumed that, once patients become
colonized by the AMR microorganisms, they remain colonized for the duration of
their stay in the hospital unit.

2We are aware that modeling of nosocomial epidemics should take account of not only patient–
HCW hygiene measures, but also environmental infection transmission pathways, as Browne and 
Webb note in [BW15]. They show that more effective cleaning of rooms can substantially increase 
the probability of bacterial extinction; this is not incorporated into the system analyzed in this 
paper, where we only take into account one hygiene measure to be consistent with model (1).
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Adding the last two differential equations in the system (1), we obtain that

d

dt
[Xh + Yh] = 0, for all t,

from which we conclude that the total number of HCWs remains constant. We
denote the total number of HCWs by Nh; so that,

(2) Xh(t) + Yh(t) = Nh, for all t.

In view of equation (2), the four–dimensional system (1) can be reduced to the
three–dimensional system

(3)



dXp

dt
= (1− φ)Λ− µXp − cbpYhXp;

dYp
dt

= φΛ− µYp + cbpYhXp;

dYh
dt

= cbhYp(Nh − Yh)− γYh,

where Nh is the constant number of HCWs. A further reduction in dimension can
be attained by adding the first two differential equations of the system (3) to obtain

d

dt
[Xp + Yp] = Λ− µ(Xp + Yp);

so that, setting

(4) Np(t) = Xp(t) + Yp(t), for all t,

the total number of patients in the unit at time t, we have that

(5)
dNp
dt

= Λ− µNp.

Assuming that the total number of patients at time t0 is Np0 , the solution of the
differential equation (5) satisfying this initial condition is given by

(6) Np(t) =
Λ

µ
+

(
Np0 −

Λ

µ

)
e−µ(t−t0), for all t > t0.

Now, in view of equations (4) and (6), we see that knowing Xp will allow us to
compute Yp (in terms of Xp and Np). Consequently, the three–dimensional system
(3) can be reduced to the two–dimensional system

(7)


dXp

dt
= (1− φ)Λ− µXp − cbpYhXp;

dYh
dt

= cbh(Np(t)−Xp)(Nh − Yh)− γYh,

where Np(t) is given in equation (6).
Thus, we have succeeded in reducing the Austin–Anderson system (1) to the 

two–dimensional system (7). Note that, unlike the systems (1) and (3) which 
are autonomous, the two–dimensional system (7) is non–autonomous. Thus, the 
simplification brought on by the reduction of dimension is tempered by the fact
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that the reduced system (7) is non–autonomous, and therefore harder to analyze.
Note, however, that by virtue of equation (6),

(8) lim
t→∞

Np(t) =
Λ

µ
;

so that, the non–autonomous system (7) has a limiting system

(9)


dX

dt
= (1− φ)Λ− µX − cbpY X;

dY

dt
= cbh

(
Λ

µ
−X

)
(Nh − Y )− γY,

as t → ∞, in view of the limit fact in (8), which is an autonomous system in the
variables X and Y . We note that the variables X and Y are different from the
variables Xp and Yp, respectively. We introduce new variables to distinguish the
non–autonomous system (7) from its limiting system (9).

We will denote the limiting value of Np(t) in the asymptotic expression (8) by

Np so that as t→∞,

(10) Np =
Λ

µ
.

The stability analysis of the long–term behavior of the system (1) outlined in
[AA99] is based on the analysis of a limiting system related to the system (9); in
fact, the limiting system in [AA99] involves Yp and Yh, and not Xp and Yh as we
decided to do here. It is not immediately obvious that the stability properties of
the non–autonomous system (7) are determined by properties of the autonomous
system (9). The goal of this paper is to provide a mathematical justification for
the analysis of the AMR transmission system presented in [AA99]. This involves
application of the theory of asymptotically autonomous differential equations (see
for instance, [Mar56], [Thi92] and [Thi94]). This approach was used by Castillo–
Chavez and Thieme [CCT95] in the analysis of some models in epidemiology that
give rise to asymptotically autonomous two–dimensional systems.

In Section 2 we present a thorough analysis of the autonomous limiting system
(9). In Section 3 we apply the theory of asymptotically autonomous differential
equations systems in the plane developed by Markus in [Mar56] and extended
by Thieme in [Thi92] and [Thi94], and later by Castillo–Chavez and Thieme in
[CCT95], to obtain as much information about the long–term properties of the non–
autonomous system (7). Finally, in Section 4, we return to the Austin–Anderson
AMR transmission model discussed in this section.

2. Stability Analysis of the Limiting System

In this section we present a stability analysis of the two–dimensional, autonomous
system (9). Before we proceed with the analysis, we introduce some dimensionless
parameters that will be helpful in understanding the long–term behavior of col-
onization by AMR microorganisms in a hospital unit. These parameters are the
reproductive numbers

(11) Rh =
cbhNp

γ
,
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(12) Rp =
cbpNh
µ

,

and

(13) R0 = RhRp =
mc2bhbpN

2

p

γµ
,

where Np is as given in equation (10), and

m =
Nh

Np

,

is the staff–patient ratio.
As noted in [EDW07], to facilitate the analysis of the system, we can regroup

the model parameters so that they can be expressed in terms of the reproductive
numbers. The reproductive number Rh in equation (11) is the number of secondary
colonizations of patients resulting from contact with one colonized HCW; the re-
productive number Rp in equation (12) is the number of uncolonized HCWs that
get colonized because of contact with one colonized patient in a hospital unit. Since
the transmission of AMR microorganisms goes from colonized patients to HCWs
to patients, the overall reproductive number for transmission, R0, is the product of
Rh and Rp, as displayed in equation (13).

Introducing the dimensionless variables

(14) x =
X

Np

, y =
Y

Nh
, and τ = µt,

we can rewrite the system (9) in dimensionless form

(15)


dx

dτ
= 1− φ− x− α1xy;

dy

dτ
= α2(1− x)(1− y)− α3y,

where

(16) α1 =
cbpNh
µ

,

(17) α2 =
cbhNp

µ
,

and

(18) α3 =
γ

µ

are dimensionless parameters. For future reference, we express the parameters α1,
α2 and α3 in equations (16)–(18) in terms of the reproductive numbers Rh and Rp
in equations (11) and (12), respectively:

(19) α1 = Rp,

and

(20)
α2

α3
= Rh.
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We now proceed to analyze the system (15). Figure 2 shows a sketch of the
nullclines of the limiting system (15). The x–nullcline is the graph of the equation

Figure 2. Nullclines of the limiting system (15).

y =
1− φ
α1x

− 1

α1
,

which has 1− φ as its x–intercept, the y–axis as a vertical asymptote, and the line

y = − 1

α1

as a horizontal asymptote (shown as a dotted line in Figure 2).
The y–nullcline is the graph of the equation

y =
α2(1− x)

α3 + α2(1− x)
,

which has the line y = 1 as a horizontal asymptote and the line

x = 1 +
α3

α2

as a vertical asymptote (these are shown as dotted lines in Figure 2). Note that

the y–nullcline has x–intercept 1 and y–intercept
α2

α2 + α3
.

The sketch in Figure 2 shows that the x–nullcline and the y–nullcline intersect 
at a point below the x–axis and at a point in the first quadrant that we denote by 
(x∗, y∗). There are other branches of the nullclines that do not intersect and there-
fore are not shown in Figure 2. Thus, the limiting system (15) has two equilibrium
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points. We will focus our attention on the equilibrium point (x∗, y∗) in the first
quadrant. We first note that the coordinates of this equilibrium point satisfy the
estimates

(21) 0 6 y∗ <
α2

α2 + α3

and

(22) 0 < x∗ 6 1− φ.
In view of the estimate for x∗ in inequality (22), we see that

0 < x∗ 6 1− φ 6 1,

since the prevalence of colonization at admissions, φ, is a proportion between 0 and
1.

We will next determine parameter conditions that will guarantee that the equi-
librium point (x∗, y∗) is (locally) asymptotically stable. To do this we apply the
Principle of Linearized Stability (see, for instance, [Arn92, page 212]) to the vector
field

(23) F (x, y) =

(
1− φ− x− α1xy

α2(1− x)(1− y)− α3y

)
, for (x, y) ∈ R2,

at the equilibrium point (x∗, y∗).
The derivative of the map F : R2 → R2 defined in equation (23) evaluated at

(x∗, y∗) is

(24) DF (x∗, y∗) =

(
−1− α1y

∗ −α1x
∗

−α2(1− y∗) −α2(1− x∗)− α3

)
.

The trace of the Jacobian matrix in equation (24) is

(25) τ(x∗, y∗) = −1− α1y
∗ − α2(1− x∗)− α3

and the determinant is

(26) ∆(x∗, y∗) = (1 + α1y
∗)[α2(1− x∗) + α3]− α1α2x

∗(1− y∗).
From the the constraints on the coordinates of (x∗, y∗) in inequalities (21) and (22),
and the assumption that the parameters α1, α2, and α3 are positive, it follows from
equation (25) that

(27) τ(x∗, y∗) < 0.

Next, we use the fact that
0 6 y∗ < 1,

according to inequality (21), to estimate

∆(x∗, y∗)

1− y∗
=

1 + α1y
∗

1− y∗
[α2(1− x∗) + α3]− α1α2x

∗.

Using the fact that
1 + α1y

1− y
> 1, for 0 6 y < 1,

we get
∆(x∗, y∗)

1− y∗
> [α2(1− x∗) + α3]− α1α2x

∗.

Lastly, in view of inequality (22),

0 < x∗ 6 1,
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and we use such estimate for x∗ and get

(28)
∆(x∗, y∗)

1− y∗
> α2 + α3 − α2(1 + α1)x∗.

Observe that

y = α2 + α3 − α2(1 + α1)x

is the equation of a straight line with y–intercept α2 + α3 and x–intercept

α2 + α3

α2(1 + α1)
=

1 +
1

Rh
1 +Rp

,

where we have used the identities in (19) and (20). Consequently, it follows from
inequality (28) that

∆(x∗, y∗)

1− y∗
> 0, provided that x∗ <

1 +
1

Rh
1 +Rp

,

from which we obtain that

(29) ∆(x∗, y∗) > 0, provided that x∗ <
1 +

1

Rh
1 +Rp

,

in view of the estimate for y∗ in inequality (21). We consider two cases:

(i) R0 < 1 or
(ii) R0 > 1,

where R0 is the reproductive number defined in equation (13).
In case (i), using the definition of R0 in inequality (13),

RpRh < 1,

from which we get that
1

Rh
> Rp;

so that,

(30)
1 +

1

Rh
1 +Rp

> 1.

Now, recall that in view of the estimate for x∗ in inequality (22), we see that

0 < x∗ 6 1− φ 6 1.

Consequently, by virtue of inequality (30),

0 < x∗ <
1 + 1

Rh

1 +Rp
,

from which we see that the condition for the statement (29) to hold true is satisfied
regardless of the value of φ. Thus,

(31) ∆(x∗, y∗) > 0, provided that R0 < 1.

On the other hand, in case (ii) we have that

RpRh > 1,
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which implies that
1

Rh
6 Rp;

so that,

1 +
1

Rh
1 +Rp

6 1.

Thus, in case (ii), in view of the estimate for x∗ in inequality (22), we get from the
statement (29) that

(32) ∆(x∗, y∗) > 0, provided that R0 > 1 and 1− φ < Rh + 1

Rh +R0
.

Combining statements (31) and (32) together, we conclude that the determinant
of the linearization (24) of the limiting system (15) is positive in the following cases:

(i) R0 < 1, and

(ii) R0 > 1 and 1− φ < Rh + 1

Rh +R0
.

Since the trace of the matrix in equation (24) is negative, according to inequality
(27), the real parts of the eigenvalues of the linearization of the limiting system
(15) are negative in the cases (i) and (ii) above. Consequently, by the Principle
of Linearized Stability, the equilibrium point (x∗, y∗) is (locally) asymptotically
stable, provided that the conditions (i) or (ii) hold true.

Phase–plane analysis of the limiting system (15) suggests that trajectories start-
ing in the region determined by

0 6 x0 6 1 and y0 > 0

will tend towards the asymptotically stable equilibrium point (x∗, y∗) as t → ∞
under the conditions (i) or (ii) stated above. Figure 3 shows a sketch of the phase–
portrait of the system (15) obtained using the Java version of pplane3 with param-
eter values φ = 0.7, α1 = 0.5, α2 = 2 and α3 = 0.5.

The sketch in Figure 3 also suggests that the phase–portrait of the limiting
system (15) has no cycles. This observation can be established using the Bendixson–
Dulac Criterion (see, for instance, [Str00, p. 202]). Indeed, the divergence of the
vector field F in (23),

(33) divF (x, y) = −1− α1y − α2(1− x)− α3,

is strictly negative for 0 6 x 6 1 and y > 0, and for positive values of the parameters
α1, α2, and α3. Indeed, it follows from equation (33) that

(34) divF (x, y) 6 −1, for 0 6 x 6 1 and y > 0.

Thus, using the continuity of divF , we obtain from inequality (34) that there exists
ε > 0 such that

(35) divF (x, y) < 0, for − ε < x < 1 + ε and y > −ε.

This fact will be important in the analysis of the non–autonomous system (7) to
be presented in the next section.

3pplane is copyrighted in the name of John C. Polking, Department of Mathematics, Rice 

University, https://math.rice.edu/∼dfield/dfpp.html
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y

x´ = 1-phi-x-alpha1*xy

y´ = alpha2*(1-x)(1-y)-alpha3*y

phi=0.

alpha2

0
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Figure 3. Sketch of phase–portrait of limiting system (15) with
φ = 0.7, α1 = 0.5, α2 = 2 and α3 = 0.5. Note that trajectories
starting in the region determined by 0 6 x0 6 1 and y0 > 0 will
tend towards the asymptotically stable equilibrium point, which is
a sink in the first quadrant.

We now complete the stability analysis of the limiting system (9). We have
already analyzed its nondimensionalized version through system (15). We found
that the nondimensionalized system (15) has an equilibrium point, (x∗, y∗), in the
first quadrant that is locally asymptotically stable, provided that either (i) R0 < 1,

or (ii) R0 > 1 and 1 − φ <
Rh + 1

Rh +R0
, where R0 and Rh are the reproductive

numbers defined in equations (11)–(13). Accordingly, in view of variables (14), the
limiting system (9) has an equilibrium point (X∗, Y ∗) in the first quadrant where

(36) X∗ =
Λ

µ
x∗ and Y ∗ = Nhy

∗.

By what we have shown in this section, the equilibrium point (X∗, Y ∗) is (locally)
asymptotically stable, provided that either (i) R0 < 1, or (ii) R0 > 1 and 1 − φ <
Rh + 1

. We have also noted that, as a consequence of the Bendixson–Dulac
Rh + R0
Criterion, the nondimensionalized limiting system (15) has no cycles in the region
determined by −ε < x < 1 + ε and y > −ε, for some ε > 0 (see inequality (35)).

Thus, in view of the change of variables in equations (14), the limiting system (9) 
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has no cycles in the region determined by

(37) − ε < X <
Λ

µ
+ ε and Y > −ε,

for some ε > 0. We summarize these conclusions in the following theorem.

Theorem 2.1. Let (x∗, y∗) denote the equilibrium point of the limiting system
(15) that lies in the first quadrant, and whose coordinates satisfy the constraints
in inequalities (21) and (22), and let X∗ and Y ∗ be as given in equations (36).
Let Rh, Rp, and R0 denote the reproductive numbers defined in identities (11),
(12) and (13), respectively. Assume that either (i) R0 < 1, or (ii) R0 > 1 and

1 − φ <
Rh + 1

Rh +R0
. Then, (X∗, Y ∗) is a locally, asymptotically stable equilibrium

point of the limiting system (9). Furthermore, the system (9) has no cycles in the
region defined by inequalities (37).

3. Asymptotic Analysis of the Non–Autonomous System

In this section we present an asymptotic analysis of the non–autonomous, two–
dimensional system (7). We have already noted in Section 1 that system (7) has a
limiting system as t → ∞ displayed in system (9). Thus, system (7) is an asymp-
totically autonomous system. Hence, the theory of asymptotically autonomous
systems developed by Markus in [Mar56], and extended by Thieme in [Thi92] and
[Thi94], and later by Castillo–Chavez and Thieme in [CCT95], can be applied to this
situation. For the definitions of limiting systems and asymptotically autonomous
systems, we refer the reader to [Mar56], [Thi92], [Thi94], and [CCT95]. It suffices
to know for now that system (7) is an asymptotically autonomous system, and
system (9) its limiting system.

First, note that in view of equation (6), Np(t) is bounded for all t > t0. Further-
more, if we assume that

(38) 0 < Np0 <
Λ

µ
,

then it follows from equation (6) that

(39) 0 < Np(t) <
Λ

µ
, for all t > t0.

Consider a solution of the non–autonomous system (7) subject to the initial
condition

(40) (Xp(t0), Yh(t0)) = (X0, Y0),

for some t0 > 0, and X0 and Y0 satisfying

(41) 0 < X0 <
Λ

µ
and 0 < Y0 < Nh.

We will also assume that the estimate on the initial patient population in inequality
(38) is satisfied.

By the existence and uniqueness theorem for ordinary differential equations (see,
for instance, [Hal09, Theorem 2.1, pg. 17]), there exists a unique solution of system
(7),

(42) t 7→ (Xp(t), Yh(t)), 
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satisfying the initial condition in equation (40), for t in some maximal (forward)
interval of existence [t0, T ), for T > t0. Denoting the solution in (42) by σ(t), for
t ∈ [t0, T ), we will show that it will remain in the interior of the rectangular region

(43)

[
0,

Λ

µ

]
× [0, Nh],

for all t ∈ [t0, T ), provided that the initial point (X0, Y0) satisfies the estimates in
inequalities (41), and the estimate in inequality (38) also holds true.

We first see that the trajectory σ cannot leave the rectangle in (43) through the
edge at Xp = 0 (the Yh–axis). Otherwise, there would be a time t1 ∈ (t0, T ) such
that

(44) Xp(t1) = 0 and X ′p(t1) < 0.

However, according to the first differential equation in the non–autonomous system
(7),

X ′p(t1) = (1− φ)Λ > 0,

which contradicts the second statement in (44). We have therefore established that

(45) Xp(t) > 0, for t0 6 t < T.

In addition to the initial conditions in (38) and (39), we also assume that

(46) Xh(t0) > 0 and Yp(t0) > 0.

Next, we show that

(47) Yh(t) > 0, for t0 6 t < T,

under the assumptions in (41).
If the claim in inequality (47) is not true, there exists t1 ∈ (t0, T ) such that

(48) Yh(t) > 0, for t ∈ [t0, t1),

and

(49) Yh(t1) = 0.

It is also the case that

(50) Y ′h(t1) < 0.

Now, it follows from the second equation in system (1), along with the statements
(45) and (48), that

dYp
dt
> φΛ− µYp, for t0 6 t 6 t1,

which we can rewrite as

(51)
dYp
dt

+ µYp > φΛ, for t0 6 t 6 t1.

Multiplying the differential inequality (51) by eµt, integrating from t0 to t, and
simplifying yields

(52) Yp(t) > Yp(t0)e−µ(t−t0) +
φΛ

µ
(1− e−µ(t−t0)), for t0 6 t 6 t1.

Consequently, in view of the second inequality in (46), we obtain from inequality
(52) that

(53) Yp(t) > 0, for t0 6 t 6 t1.
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Next, combine the statements (45) and (53) with the definition of Np(t) in equation
(4) to deduce that

Xp(t) < Np(t), for t0 6 t 6 t1,

from which we get that

(54) Np(t)−Xp(t) > 0, for t0 6 t 6 t1.

Substitute t1 for t in the second equation in system (7) to obtain that

Y ′h(t1) = cbh(Np(t1)−Xp(t1))(Nh − Yh(t1))− γYh(t1);

so that, using equation (49),

(55) Y ′h(t1) = cbhNh(Np(t1)−Xp(t1)).

Consequently, by virtue of inequality (54), we see from the claim (55) that

Y ′h(t1) > 0,

which is in direct contradiction with the claim (50). We have therefore established
the assertion in (47).

Note that in the previous argument we have also shown that

(56) Yp(t) > 0, for t0 6 t < T

(see (53)).
It is also the case that

(57) Xh(t) > 0, for t0 6 t < T,

provided that the initial conditions in (46) are satisfied. For, if the assertion in (57)
is not true, there exists t1 ∈ (t0, T ) such that

(58) Xh(t1) = 0.

It is also the case that

(59) X ′h(t1) < 0.

Consequently, substituting t1 for t in the third equation in system (1) and using
equation (58), we obtain that

X ′h(t1) = γYh(t1);

so that, in view of the claim (47),

X ′h(t1) > 0,

which is in direct contradiction with the claim (59). Hence, the assertion in (57) is
established.

Now, it follows from the claims (45), (56) and the definition of Np(t) in equation
(4) that

0 < Xp(t) < Np(t), for t0 6 t < T ;

so that, in view of inequality (39),

(60) 0 < Xp(t) <
Λ

µ
, for t0 6 t < T.

By the same token, in view of the claims (47), (57) and the definition of Nh in
equation (2),

(61) 0 < Yh(t) < Nh, for t0 6 t < T.
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We have therefore established that any trajectory σ of the non–autonomous system
(7) that starts in the interior of the rectangle in (43) will remain in that rectangle
for t0 6 t < T , provided that the initial conditions in (46) also hold true.

Note that the vector field F : R2 × [0, T )→ R2 defined by

F (Xp, Yh, t) =

(
(1− φ)Λ− µXp − cbpYhXp;

cbh(Np(t)−Xp)(Nh − Yh)− γYh

)
, for (Xp, Yh, t) ∈ R2×[0, T ),

is C∞ and bounded over the set[
0,

Λ

µ

]
× [0, Nh]× [0, T ),

in view of the fact that Np(t) is bounded for t > t0 (see the definition of Np in
equation (6)). Consequently, since every trajectory, σ(t), for t ∈ [t0, T ), of system
(7), where [t0, T ) is the maximal (forward) interval of existence, that starts in the
interior of the rectangle in (43) remains in that rectangle for all t ∈ [t0, T ), it must
be the case that T =∞. Otherwise we would be able to extend the trajectory past
t = T < ∞, contradicting the maximality of the interval [t0, T ) (see, for instance,
Corollary 3.2 on page 14 in [Har82]). Hence, every trajectory, σ(t), of the non–
autonomous system (7) that starts in the interior of the rectangle in (43) exists for
all t > t0 and remains in that rectangle for all t > t0. We can therefore discuss the
ω–limit set of σ.

Consider a general two–dimensional system of differential equations

(62)

{
ẋ1 = f1(x1, x2, t);
ẋ2 = f2(x1, x2, t),

with f1 and f2 being continuous real–valued functions defined on R× [t0,∞), where
R is a region in R2 and t0 is some real number. Given (x10 , x20) ∈ R, suppose that
system (62) has a solution, σ(t) = (x1(t), x2(t)), satisfying

x1(t0) = x10 and x2(t0) = x20 ,

that is unique and exists for all t > t0. Suppose further that the functions f1 and
f2 in system (62) are locally Lipschitz continuous with respect to the variables x1
and x2. For the case in which the trajectory σ(t), for t > t0, is also assumed to be
bounded, the ω–limit set of σ, denoted ω(σ), is defined as follows:

(y1, y2) ∈ ω(σ)⇔ y1 = lim
j→∞

x1(tj) and y2 = lim
j→∞

x2(tj),

for some sequence (tj) of real numbers in [t0,∞) such that tj →∞ as j →∞.
Markus [Mar56] proved that, if σ(t) for t > t0 is bounded, then the ω–limit

set ω(σ) is nonempty, compact, and connected. It is possible to characterize the
ω–limit set of a bounded trajectory of the system (62) for the case in which the
system (62) is asymptotically autonomous, as shown in [Mar56], [Thi92], [Thi94],
and [CCT95].

The system (62) is said to be asymptotically autonomous if there exists an au-
tonomous system

(63)

{
ẏ1 = g1(y1, y2);
ẏ2 = g2(y1, y2),

where g1 and g2 are real–valued functions that are locally Lipschitz continuous in
some plane region containing R, such that

f1(x1, x2, t)→ g1(x1, x2) and f2(x1, x2, t)→ g2(x1, x2), as t→∞,
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locally uniformly in (x1, x2) ∈ R.
For the situation described above in the asymptotically autonomous system (62)

with limiting system (63), it is reasonable to expect that the structure of the ω–limit
sets of bounded (forward) orbits for the non–autonomous system (62) is dictated
by the structure of the ω–limit sets of the limiting system (63). This is indeed the
case. In fact, there is a Poincaré–Bendixson type trichotomy result established by
Thieme in [Thi92] and [Thi94]. We quote here the version of such result found
in [CCT95, Theorem 2.1] in the context of the asymptotically autonomous system
(62) and its limiting system (63).

Theorem 3.1 (Thieme, 1992). Let σ be a forward bounded orbit of the asymptot-
ically autonomous system (62). Let ω(σ) denote its ω–limit set and assume that
there exists a neighborhood of ω(σ) that contains at most finitely many equilibrium
points of the limiting system (63). Then, one of the following holds true:

(i) ω(σ) consists of an equilibrium point of system (63).
(ii) ω(σ) is the union of periodic orbits of system (63) and possibly of centers

of system (63) that are surrounded by periodic orbits of system (63) lying in
ω(σ).

(iii) ω(σ) contains equilibrium points of system (63) that are cyclically chained to
each other in ω(σ) by orbits of system (63).

In this section we will prove that, under the assumptions of Theorem 2.1 in Sec-
tion 2 of this paper, every bounded forward trajectory, σ(t), of the non–autonomous
system (7) that starts in the interior of the rectangle in (43) converges to the lo-
cally asymptotically stable equilibrium point, (X∗, Y ∗), of the limiting system (9)
given in Theorem 2.1. We will do this by precluding options (ii) and (iii) in the
trichotomy laid out by Theorem 3.1. To accomplish this, we follow the argument
outlined in the corollary to Theorem 3.1 given in [CCT95, Corollary 2.2].

Corollary 3.2 (Corollary 2.2 in [CCT95]). For the asymptotically autonomous
system (62) with limiting system (63), assume that there is subset R of R2 such
that any equilibrium point of system (63) in R is the only equilibrium point in a
sufficiently small neighborhood. Furthermore, assume that there exist a subset S of
R2 and an open simply connected subset Ω of R2 with the following properties:

• Every forward bounded orbit of system (62) in R has its ω–limit set in S.
• All possible periodic orbits of system (63) in S and the closures of all pos-

sible orbits of system (63) that chain equilibrium points of system (63)
cyclically in S are contained in Ω.
• The vector field G = (g1, g2) is C1 in Ω and there is a real–valued C1 func-

tion ρ in Ω such that div(ρG) is either strictly positive almost everywhere
on Ω or strictly negative almost everywhere in Ω.

Then, every forward bounded solution of system (62) in R and every forward 
bounded solution of system (63) in R converges towards an equilibrium point of 
system (63) as t → ∞.

We are now in a position to state and prove the main result of this section.

Theorem 3.3. Let (X∗, Y ∗) be as defined in equations (36), where (x∗, y∗) denotes 
the equilibrium point of the system (15) that lies in the first quadrant, and whose 
coordinates satisfy the constraints in (21) and (22). Let Rh, Rp, and R0 denote the 
reproductive numbers defined in equations (11), (12) and (13), respectively. Assume 
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that either (i) R0 < 1, or (ii) R0 > 1 and 1− φ < Rh + 1

Rh +R0
. Then, any trajectory

σ(t) of the non–autonomous system (7) that starts in the interior of the rectangle
in (43) will converge toward the equilibrium point (X∗, Y ∗) as t→∞.

Proof: Let S denote the rectangle in (43) and R denote the interior of S. Define Ω
to be the set

Ω =

{
(X,Y ) ∈ R2 | −ε < X <

Λ

µ
+ ε and Y > −ε

}
,

where ε > 0 is as given in Theorem 2.1. We may assume that ε is sufficiently small
so that Ω contains only the equilibrium point (X∗, Y ∗) of the limiting system in
(9) given by Theorem 2.1. Note that Ω is open and simply connected.

We have shown in this section that any trajectory σ(t) of the non–autonomous
system (7) that starts in R at time t0 will remain in R for all t > t0, provided that
the initial conditions in (46) also hold true. Consequently, the ω–limit set of σ will
be in S. Thus, the first bullet point in Corollary 3.2 holds true.

We have already pointed out in Theorem 2.1 that the limiting system (9) has
no cycles in S. Furthermore, since Ω contains only one equilibrium point of the
limiting system (9) (namely, the point (X∗, Y ∗)), there are no cyclically chained
equilibrium points of system (9). Thus, the condition in the second bullet point in
Corollary 3.2 is vacuously satisfied.

The third bullet point condition in Corollary 3.2 on the divergence of ρG has
already been verified in the arguments leading to the proof of Theorem 2.1 for the
case ρ ≡ 1; see the statement in (35).

Hence, Corollary 3.2 can be applied to the asymptotically autonomous system
(7) and its limiting system (9) to conclude that any trajectory σ(t) of the non–
autonomous system (7) that starts in R will converge toward the equilibrium point
(X∗, Y ∗) as t→∞. �

4. Analysis of the Austin–Anderson AMR Transmission Model

In this section we return to the Austin–Anderson AMR transmission model (1)
that we introduced in Section 1 and analyzed its associated systems in Sections 2
and 3. While in Section 3 we analyzed the asymptotically autonomous system (7)
involving the variables Xp and Yh, we can achieve a result similar to that in [AA99]
by analyzing the asymptotically autonomous system involving Yp and Yh. Consider
the following system

(64)


dYp
dt

= φΛ− µYp + cbpYh(Np(t)− Yp);

dYh
dt

= cbhYp(Nh − Yh)− γYh,

where Np(t) is given in equation (6) and Nh is the constant number of HCWs.
By virtue of equation (8), the non–autonomous system (64) has a limiting system

(65)


dW

dt
= φΛ− µW + cbpZ

(
Λ

µ
−W

)
;

dZ

dt
= cbhW (Nh − Z) − γZ, 

338



as t→∞, which is an autonomous system. Note that in this case, the variable W
in limiting system (65) corresponds to the number of colonized patients, while Z
corresponds to the number of colonized HCWs.

Using the dimensionless variables in equations (14), we can rewrite the system
(65) in dimensionless form

(66)


dw

dτ
= φ− w + α1(1− w)z;

dz

dτ
= α2w(1− z)− α3z,

where

α1 =
cbpNh
µ

, α2 =
cbhNp

µ
, and α3 =

γ

µ

are the same dimensionless parameters defined in equations (16), (17), and (18),
respectively.

Figure 4 shows a sketch of the nullclines of system (66). The w–nullcline of

Figure 4. Nullclines of the limiting system (66).

system (66) is the graph of the equation

(67) z =
w − φ

α1(1− w)
,
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which has the line w = 1 as a vertical asymptote, and the line z = − 1

α1
as a

horizontal asymptote (shown as a dotted lines in Figure 4). Observe that this
curve has φ as its w–intercept.

The z–nullcline of system (66) is the graph of the equation

(68) z =
α2w

α3 + α2w
,

which has the line z = 1 as a horizontal asymptote, and the line w = −α3

α2
as

a vertical asymptote (these are shown as dotted lines in Figure 4). Note that the
z–nullcline has the origin (w = 0 and z = 0) as the w–intercept and z–intercept.

The analysis of the asymptotically autonomous system (64) based on the analysis
of its limiting system (65) presented in this section and the Appendix will serve
as another example of the application of the theory of asymptotically autonomous
systems discussed in Sections 2 and 3. Since the analysis of the limiting system (65)
closely parallels that of the limiting system (9), we leave the remaining details in
the Appendix. The local stability result for the limiting system (65) is as follows:

Theorem 4.1. Let Rh, Rp, and R0 denote the reproductive numbers defined in
identities (11), (12), and (13), respectively. Assume that either (i) R0 < 1, or

(ii) R0 > 1 and φ >
R0 − 1

Rh +R0
. Then system (65) has an equilibrium point (Y ∗p , Y

∗
h )

satisfying

Λφ

µ
< Y ∗p <

Λ

µ
and 0 < Y ∗h < Nh,

which is locally, asymptotically stable. Furthermore, system (65) has no cycles in
the region defined by

−ε < W <
Λ

µ
+ ε and − ε < Z < Nh + ε,

for some ε > 0.

Next, we may proceed as Section 3 in this paper to deduce the following local
stability result for the asymptotically autonomous system (64):

Theorem 4.2. Let Rh, Rp, and R0 denote the reproductive numbers defined in
identities (11), (12), and (13), respectively, and assume that either (i) R0 < 1, or

(ii) R0 > 1 and φ >
R0 − 1

Rh +R0
. Let (Y ∗p , Y

∗
h ) be the equilibrium point of system (65)

given by Theorem 4.1. Then any trajectory σ(t) of the non–autonomous system
(64) that starts in the interior of the rectangle in (43) will converge toward the
equilibrium point (Y ∗p , Y

∗
h ) as t→∞.

Remark 4.3. The proof of Theorem 4.2 can be achieved by verifying the conditions 
in Corollary 3.2, which was expounded in Section 3 in the context of the theory of 
asymptotically autonomous systems developed by Markus in [Mar56], and extended 
by Thieme in [Thi92] and [Thi94], and later by Castillo–Chavez and Thieme in 
[CCT95].
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We can compute the coordinates of the equilibrium point (Y ∗p , Y
∗
h ) given by

Theorem 4.2 by first computing the coordinates of the equilibrium point (w∗, z∗)
of system (66) in the first quadrant, and then using the expressions

(69) Y ∗p =
Λ

µ
w∗ and Y ∗h = Nhz

∗.

To compute (w∗, z∗), the intersection in the first quadrant of the nullclines of the
system in (66), we solve the system of equations in (67) and (68) simultaneously,
and select the solution in the first quadrant. For instance, setting the expressions
for z in equations (67) and (68) equal to each other leads to the quadratic equation

(70) α2(α1 + 1)w2 + (α3 − α2(α1 + φ))w − α3φ = 0.

The positive solution of the equation (70) is

w∗ =
α2(α1 + φ)− α3 +

√
(α2(α1 + φ)− α3)2 + 4α2α3(α1 + 1)

2α2(α1 + 1)
,

which we can rewrite in terms of the reproductive numbers Rh, Rp, and R0 defined
in equations (11), (12), and (13), respectively, as

w∗ =
R0 − 1 +Rhφ+

√
(R0 − 1 +Rhφ)2 + 4Rh(1 +Rp)φ

2Rh(1 +Rp)
,

or

(71) w∗ =
R0 − 1 +Rhφ+

√
(R0 − 1 +Rhφ)2 + 4(Rh +R0)φ

2(Rh +R0)
,

where we have used the identities in (19) and (20). We note that the expression
in (71) is equation (31) in [AA99] for the prevalence of colonizations in patients in
the hospital unit.

The second coordinate of the equilibrium point of system (66) that is in the first
quadrant is then given by

(72) z∗ =
w∗ − φ

Rp(1− w∗)
,

according to equations (67) and (19), where w∗ is given in equation (71).
Using the expressions in (69) we get values for Y ∗p and Y ∗h , where w∗ is given in

equation (71), and z∗ in equation (72).
Next, use the definitions of Np(t) and Nh in equations (4) and (2), respectively,

and the limit fact in (8) to conclude that

(73) X∗p =
Λ

µ
− Y ∗p and X∗h = Nh − Y ∗h .

Note that (X∗p , Y
∗
h ) is the asymptotically stable equilibrium point system (7), which

was analyzed in Section 3, provided that the conditions in Theorem 3.3 hold true.
Therefore, the expressions in (69) and (73) yield the coordinates, (X∗p , Y

∗
p , X

∗
h, Y

∗
h ),

of an equilibrium point of the Austin–Anderson system (1) that lies in the interior
of the region

(74)

[
0,

Λ

µ

]
×
[
0,

Λ

µ

]
× [0, Nh]× [0, Nh]
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in four–dimensional Euclidean space. If the hypotheses of Theorem 4.2 (or Theorem
4.1) hold true, then the equilibrium point

(75)

(
Λ

µ
− Y ∗p , Y ∗p , Nh − Y ∗h , Y ∗h

)
is asymptotically stable. Furthermore, any trajectory, (Xp(t), Yp(t), Xh(t), Yh(t)),
for t > 0, of the Austin–Anderson system (1) that starts at a point (Xp(0), Yp(0), Xh(0), Yh(0))
in the interior of the region in (74) will tend towards the equilibrium point in (75)
as t→∞.

5. Conclusion

This paper presents an analysis of a four–dimensional compartmental model of
AMR transmission introduced by Austin and Anderson [AA99]. In particular, our
analysis provides a mathematical justification for Austin and Anderson’s stability
analysis. In the Austin–Anderson model, patients and HCWs act as hosts and
vectors of AMR microorganisms, respectively; in turn, these are subdivided into
uncolonized and colonized groups. To better understand the model, we reduce the
system’s dimension and arrive at a two–dimensional yet non–autonomous system.
Furthermore, this system has an autonomous limiting system, for which we prove
the existence of a locally asymptotically stable equilibrium point under a set of
constraints expressed in terms of reproductive numbers.

The stability analysis of the Austin–Anderson system presented in [AA99] was
established on a limiting system. Here comes a challenging aspect of the analysis,
however, because it is not immediately apparent to determine the stability proper-
ties of the non–autonomous system based on the properties of autonomous limiting
system. The workaround is to apply the theory of asymptotically autonomous dif-
ferential equations from [Mar56], [Thi92], [Thi94] and a Poincaré–Bendixson type
trichotomy result from [CCT95] to the non–autonomous system. The outcomes are
Theorems 4.1 and 4.2, of which their hypotheses help us establish two facts:

• the equilibrium point of the Austin–Anderson system is locally asymptoti-
cally stable;
• any forward bounded trajectory of the non–autonomous system that starts

in the interior of a defined rectangular region will tend towards the equi-
librium point of the limiting system.

Within the scope of the Austin–Anderson model, these findings tell us that we can 
define the threshold of AMR transmission in an ICU environment by generating con-
ditions for which an endemic equilibrium exists and is locally asymptotically stable. 
The conditions involve model–specific parameters such as reproductive numbers, 
patient admission rate, prevalence of colonization at admission, and patient’s aver-
age length of stay. In order for hospital management and researchers to achieve an 
effective disease surveillance, it would be crucial to reliably measure these statistics 
and interpret the conditions for an endemic equilibrium to exist. Future extensions 
of this work may include bringing epidemiological insights to better interpret the 
parameter–based conditions.
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Appendix

The analysis of the asymptotically autonomous system (64) based on the analysis
of its limiting system (65) presented in this section will serve as another example
of the application of the theory of asymptotically autonomous systems discussed in
Section (3).

The sketch in Figure 4 shows that the w–nullcline and the z–nullcline intersect at
a point below the w–axis in the third quadrant and at a point in the first quadrant
that we denote by (w∗, z∗). There are other branches of the nullclines which do not
intersect and therefore are not shown in Figure 4. Thus, the limiting system (66)
has two equilibrium points. We will focus our attention on the equilibrium point
(w∗, z∗) in the first quadrant. We first note that the coordinates of this equilibrium
point satisfy the estimates

(76) 0 < z∗ < 1

and

(77) φ < w∗ < 1.

We will next determine parameter conditions that will guarantee that the equi-

librium point (w∗, z∗) is (locally) asymptotically stable. To do this we apply the
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Principle of Linearized Stability to the vector field

(78) F (w, z) =

(
φ− w + α1(1− w)z
α2w(1− z)− α3z

)
, for (w, z) ∈ R2,

at the equilibrium point (w∗, z∗).
The derivative of the map F : R2 → R2 defined in the vector field (78) evaluated

at (w∗, z∗) is

(79) DF (w∗, z∗) =

(
−1− α1z

∗ α1(1− w∗)
α2(1− z∗) −α2w

∗ − α3

)
.

The trace of the Jacobian matrix in (79) is

(80) τ(w∗, z∗) = −1− α1z
∗ − α2w

∗ − α3

and the determinant is

(81) ∆(w∗, z∗) = (1 + α1z
∗)(α2w

∗ + α3)− α1α2(1− w∗)(1− z∗).

From the constraints on the coordinates of (w∗, z∗) in inequalities (76) and (77),
and the assumption that the parameters α1, α2, and α3 are positive, it follows from
equation (80) that

(82) τ(w∗, z∗) < 0.

Next, we use the fact that 0 < z∗ < 1, according to inequality (76), to estimate

∆(w∗, z∗)

1− z∗
=

1 + α1z
∗

1− z∗
(α2w

∗ + α3)− α1α2(1− w∗).

Using the fact that
1 + α1z

1− z
> 1, for 0 6 z < 1,

we get
∆(w∗, z∗)

1− z∗
> α2w

∗ + α3 − α1α2(1− w∗),
or

(83)
∆(w∗, z∗)

1− z∗
> (α2 + α1α2)w∗ + α3 − α1α2.

Observe that

(84) z = (α2 + α1α2)w + α3 − α1α2

is the equation of a straight line with z–intercept α3 − α1α2 and w–intercept

(85)
α1α2 − α3

α2(1 + α1)
=
α1 − α3

α2

1 + α1
=
Rp −

1

Rh
1 +Rp

=
R0 − 1

Rh +R0
,

where we have used the identities in (19) and (20).
We consider two possibilities:

(i) α3 − α1α2 > 0, or
(ii) α3 − α1α2 6 0.

Cases (i) and (ii) above are equivalent to the cases

(i) R0 < 1, or
(ii) R0 > 1,
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where R0 is the reproductive number defined in equation (13), in view of the iden-
tities in (19) and (20).

Note that the straight line in equation (84) has positive slope. Thus, in case (i)
we have that

∆(w∗, z∗)

1− z∗
> 0, provided that w∗ > 0 and 0 < z∗ < 1,

regardless of the value of φ. Consequently,

(86) ∆(w∗, z∗) > 0, provided that R0 < 1,

in view of the fact that the coordinates of the equilibrium point (w∗, z∗) satisfy the
estimates in inequalities (76) and (77).

On the other hand, in case (ii) above, it follows from inequality (83) that

(87)
∆(w∗, z∗)

1− z∗
> 0, provided that w∗ >

R0 − 1

Rh +R0
,

since the expression on the right–hand side of inequality (83) is positive. Since the
straight line (84) has positive slope, such observation can be made provided that
w∗ lies to the right–hand side of the w–intercept of the line (84).

Thus, by virtue of the estimate for w∗ in inequality (77), we obtain from the
claim (87) that

∆(w∗, z∗)

1− z∗
> 0, provided that φ >

R0 − 1

Rh +R0
,

from which we obtain that

(88) ∆(w∗, z∗) > 0, provided that φ >
R0 − 1

Rh +R0
,

given the estimate for z∗ in inequality (76). It then follows from the claim (88) that

(89) ∆(w∗, z∗) > 0, provided that R0 > 1 and φ >
R0 − 1

Rh +R0
.

Combining claims (86) and (89) together, we conclude that the determinant of
the linearization (79) of the limiting system (66) is positive in the cases

(i) R0 < 1, or(90)

(ii) R0 > 1 and φ >
R0 − 1

Rh +R0
.(91)

Since the trace of the matrix in (79) is negative, according to inequality (82),
the real parts of the eigenvalues of the linearization of the limiting system (66)
are negative in the cases (90) or (91) given above. Consequently, by the Principle
of Linearized Stability, the equilibrium point (w∗, z∗) is (locally) asymptotically
stable. Thus, as in the arguments leading to the proof of Theorem 2.1 in Section 2
of this paper, we have arrived at a local stability result for limiting system (65).

Remark 5.1. The last assertion in the statement of Theorem 4.1 follows from the
Bendixson–Dulac Criterion and the fact that the divergence of the vector field F
given in (78),

satisfies

divF (w, z) = −1 − α1z − α2w − α3,

divF (w, z) 6 −1 for w > 0 and z > 0.
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Remark 5.2. We note that the conditions in (90) and (91) are the same as the
conditions in Theorem 2.1 in Section 2 of this paper, since

φ >
R0 − 1

Rh +R0

is equivalent to

1− φ < Rh + 1

Rh +R0
.

Thus, Theorem 4.1 can be obtained as a consequence of Theorem 2.1 by noting
that the equilibrium point (Y ∗p , Y

∗
h ) given in Theorem 4.1 is given by

Y ∗p =
Λ

µ
−W ∗ and Y ∗h = Z∗,

where (W ∗, Z∗) is the equilibrium point given by Theorem 2.1. This assertion is
justified by the definition of Np(t) in equation (4) and its asymptotic expression in
(8).
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