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Abstract

We derive a mathematical model for biofilm growth on a degradable substra-
tum. The starting point is the one-dimensional Wanner-Gujer biofilm model. The
processes included are diffusion of a dissolved growth controlling substrate into the
biofilm, cell lysis, detachment of biomass, and growth from substrate conversion
and substratum degradation. The resulting model is a system of two non-linear
ordinary differential equations, the evaluation of the right-hand side of which re-
quires the solution of a semi-linear two-point boundary value problem. We perform
standard analysis from the existence and uniqueness of solutions to equilibrium
and stability analysis. Finally, we study our model through numerical simulations
and investigate how biofilms evolve on degradable substratum. We find in our set-
ting that the addition of substratum degradation has no effect on the long-term
behaviour of the biofilm, but does affect the transient behaviour.
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1 Introduction

A large proportion of the planet’s microbial biomass reside in compact, sessile commu-
nities called bacterial biofilms [2,5, 9]. These biofilms attach to biotic or abiotic surfaces
called substratum. When the bacteria attach to the substratum, they become sessile and
form a gel-like matrix of extracellular polymeric substances (EPS), in which the bacteria
are themselves embedded [8,13]. This EPS provides both mechanical protection and pro-
tection against antimicrobials. This complex structure allows biofilms to adapt to many
environments, including living tissue, implanted medical devices, aquatic systems, and
food processing plants [2, 9].

Biofilm based technologies have been developed for environmental engineering appli-
cations for many decades, originally in wastewater treatment, and more recently in soil
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remediation and groundwater protection [2]. Other occurrences of biofilms are gener-
ally negative. For example, in food processing equipment, biofilms pose a public health
risk, which in some circumstances may lead to bacterial infections. In a medical context,
biofilms can lead to bacterial infections. In industrial equipment, biofilms can lead to
biocorrosion or biofouling, which reduces the overall efficiency of the machinery.

Biofilms are spatially structured microbial populations. Substrates that are necessary
to sustain bacterial growth diffuse through the biofilm/EPS matrix, generally from the
bulk substrate. As the substrate diffuses through the biofilm, the bacteria consume
the substrate, which causes different living conditions for the bacteria inside the biofilm.
Specifically, the bacteria at the biofilm/bulk aqueous phase layer have plenty of nutrients,
while the bacteria at the biofilm/substratum interface have limited access to the substrate.
Hence, variations in metabolic activities within the biofilm occur.

Biofilm detachment is a complex process with many complex mechanisms. The de-
tachment process mediates the accumulation of biofilms and affects the long-term be-
haviour of the biofilm [2]. Detachment also contributes to the production of suspended
flocs [5]. However, we assume that when biomass detaches from the biofilm, it immedi-
ately washes out. Throughout the biofilm modelling literature, there are many different
detachment rates proposed with their effects on biofilm growth and formation investi-
gated. Common detachment expressions include a constant detachment rate, detachment
proportional to the biofilm thickness, and shear dependent detachment rates. We limit
ourselves to detachment rate functions that satisfy certain properties, outlined in Sec-
tion 2. Our prescribed properties permit the constant and proportional detachment rates
mentioned above, along with two shear dependent detachment expressions outlined in [1].

Typically, models in the literature assume that the substratum on which the biofilms
grow is inert [1, 2, 5, 7, 9], which is the case for most biofilm systems. However, we will
be investigating biofilm growth on a degradable substratum. This phenomenon occurs
in many different environmental engineering applications, including soil remediation and
bioenergy/bioethanol production [10], which uses bacteria to degrade organic material,
which produces ethanol. Therefore, there is a need to investigate the effects of substratum
degradation on biofilm growth.

We start by using the one-dimensional Wanner-Gujer model [14], which has become
the basis for most biofilm engineering applications over the past few decades [13]. The
model consists of a mass balance based on conservation principles. The underlying as-
sumptions in the model are (i) the biofilm covers the substratum in a homogeneous layer,
(ii) the properties of the biofilm change only in the direction perpendicular to the substra-
tum, (iii) the biomass density inside the biofilm is constant; therefore, biomass produc-
tion corresponds 1:1 to biofilm growth, (iv) the flux of substrate into the biofilm follows
Fick’s first law [14]. These substrate fluxes are usually computed based on a steady-state
assumption, which depends on the disparity of time scales between processes inside the
biofilm and biofilm growth [13]. From here, we add the notion of biomass detachment and
substratum degradation, where we assume the degradation promotes bacterial growth.

The notion of substratum degradation that we use in our model is a first look into how
substratum degradation may affect biofilm dynamics in a specific system. The notion
is not based on any biological data, but is derived from qualitative phenomenological
assumptions, which appears the simplest conceivable scenario and therefore is suitable as
a starting point for the modelling of substratum degradation by biofilms. We assume that
substratum degradation occurs whenever the bacteria inside the biofilm at the biofilm-
substratum interface layer are active. For our model, this requires a sufficiently large
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amount of substrate inside the biofilm at the interface layer for substratum degradation
to occur. As an example, this notion of substratum degradation reflects a multi-species
biofilm system where one bacteria favours the bulk substrate and the other favours the
nutrients produced by degrading the substratum. We see that in these systems, the
bacteria which favour the substratum would need to be active to degrade the substratum.
Multi-species biofilm models are very complicated and are very computationally intensive
to simulate. Therefore, as this is the first look into the effects of substratum degradation
on biofilm growth, we limit ourselves to a single-species biofilm.

The resulting model is a system of two first-order non-linear ordinary differential equa-
tions (ODEs) coupled with a second-order semi-linear boundary value problem (BVP).
The system of ODEs describes the change in biofilm and substratum thicknesses and the
BVP describes the substrate concentration inside the biofilm. We show that this model
can be reduced to a planar autonomous ODE that can be studied in the phase plane.
Furthermore, we study the existence and uniqueness of solutions and characterize long-
term behaviour. Lastly, we perform numerical simulations of the model to investigate
the time evolution of the system, along with some sensitivity analysis to investigate the
role of certain parameters.

2 Mathematical model

2.1 Model assumptions

1. We use the Wanner-Gujer 1-D biofilm model, i.e. we assume that the biofilm
thickness is spatially constant, and the biomass density is also constant. Thus, the
production of new biomass corresponds 1:1 to biofilm expansion [13]. Similarly,
biomass loss corresponds 1:1 to biofilm contraction.

2. The biofilm is submerged in some aqueous solution of a substrate with a constant
concentration. The substrate concentration inside the biofilm at the biofilm-aqueous
solution layer is equal to the concentration of the aqueous solution.

3. The biofilm can degrade the substratum, which leads to a decrease in the thickness
of the substratum. This degradation promotes bacterial growth inside the biofilm,
which by assumption 1 implies an expansion of the biofilm. Furthermore, the
biofilm degrades the substratum based on the substrate concentration at the biofilm-
substratum interface. If the concentration is too low, then no degradation will
occur. If the threshold is exceeded, the degradation rate increases with the increase
in concentration up to a constant rate.

2.2 Governing equations

2.2.1 Substrate concentration in the biofilm and substrate flux between the
aqueous phase and the biofilm

The dissolved growth-limiting substrate inside the biofilm is transported via Fickian
diffusion in the z-direction, the direction of biofilm growth, and is consumed by bacteria
to promote growth. We apply the standard time scale argument in biofilm modelling that
substrate diffusion and utilization are much quicker than biofilm growth. This allows for
a quasi-steady-state assumption [13]. Let λ be the thickness of the biofilm, then the
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substrate concentration C(z) inside the biofilm is given by the solution to the two-point
boundary value problem

Dc
d2C

dz2
=
µX

Y

C

KS + C
,

dC

dz
(0) = 0, C(λ) = C∞, 0 < z < λ, (1)

where Dc is the diffusion coefficient, X is the biomass density of the biofilm, µ is the
per capita growth rate for the biofilm, C∞ is the concentration of substrate in the aque-
ous phase, also referred to as the bulk substrate concentration, Y is the biofilm yield
coefficient, and KS is the biofilm half-saturation constant. µC/(KS + C) is the Monod
kinetics, which is the standard uptake function used in biofilm modelling [2,5,9,13]. The
location z = 0 is the biofilm/substratum interface layer and z = λ is the biofilm/bulk
aqueous phase layer. The Fickian flux J of substrate into the biofilm, which describes
the transport of substrate into and throughout the biofilm, is given by

J(λ;C∞) =
Y Dc

X

dC

dz
(λ). (2)

2.2.2 Biofilm and substratum thickness model

We determine the biofilm thickness λ from a mass balance of biofilm growth, detachment,
and substratum degradation. In our model formulation, we use a generic detachment
function d and a generic substratum degradation rate function g, both of which are made
more precise later. Therefore, we can calculate the change in biofilm thickness as

dλ

dt
=

λ∫
0

µC(z)

KS + C(z)
dz −

λ∫
0

kldz −
λ∫

0

d(λ)dz + Ag(C(0))H(S)L(λ), (3)

where kl is the natural cell lysis rate, A is the yield coefficient between substratum
degradation and biofilm growth, g is the rate of substratum degradation, which is a
function of C(0) by model assumption 3, d is the detachment rate function, and S is the
thickness of the substratum. The three integrals in (3) correspond to the total growth/loss
from substrate consumption, cell lysis, and detachment, respectively. We assume that the
coordinates placed on our system always put z = 0 at the biofilm-substratum interface,
which gives the limits of integration 0 to λ as is used above. Lastly,

L(λ) :=
λ

λ+ ελ
and H(S) :=

S

S + εS

are approximations of the Heaviside function. We introduce these terms since no degrada-
tion should occur when λ = 0 or S = 0, but the degradation rate should be approximately
g whenever S and λ are positive.

The substratum cannot grow and is solely degraded by the biofilm, so we write the
change in substratum thickness as

dS

dt
= −g(C(0))H(S)L(λ) (4)

If we integrate (1) from 0 to λ and apply the no flux boundary condition we obtain

λ∫
0

µC

KS + C
dz =

Y Dc

X

dC

dz
(λ) = J(λ;C∞).
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We note that the concentration at the biofilm-substratum interface C(0), is solely a
function of λ by (1). Therefore, we define G(λ) := g(C(0)); this allows us to write our
model for biofilm and substratum thickness as an autonomous system of ODEs given by

dλ

dt
= J(λ;C∞)− (kl + d(λ))λ+ AG(λ)H(S)L(λ),

dS

dt
= −G(λ)H(S)L(λ).

(5)

Furthermore, we assume that g and d are sufficiently smooth and that g satisfies g(C) = 0
for all C ∈ [0, c̃], dg/dC > 0 for all C > c̃, and limC→∞ g(C) = k where c̃ is the threshold
concentration described in model assumption 3. These conditions on g all follow from
model assumption 3. We also assume that the function d, along with both its first and
second derivatives, are all non-negative.

Remark 2.1. The conditions on the detachment rate function d satisfy some of the
standard detachment rate functions used in the literature. These include,

� d(λ) = const

� d(λ) = δλγ, γ ≥ 1, δ ≥ 0

as well as certain shear dependent detachment functions described in [1].

Lastly, for the purposes of this work, we assume that all parameters are positive.

3 Properties of the mathematical model

In this section we outline important properties related to (1) and (5). We begin by
showing that any solution to (1) is non-negative and less than or equal to the bulk
substrate concentration.

Proposition 3.1. Any solution, C = C(z), to (1) satisfies 0 ≤ C(z) ≤ C∞.

Proof. We begin by showing that C(z) is non-negative. To do this we consider the
differential equation

d2c

dx2
= k1

|c|
k2 + |c|

, 0 < x < 1 (6)

where k1, k2 > 0. We consider (6) with boundary conditions

dc

dx
(0) = 0 and c(1) = 1. (7)

Since |c| ≥ 0 we have

k1
|c|

k2 + |c|
≤ k1
k2
|c|.

Let c1(x) denote the solution to

d2c

dx2
=
k1
k2
|c|, 0 < x < 1 (8)
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with the boundary conditions (7). Then by comparison theorems for Sturm-Liouville
type boundary value problems [12], we get c1(x) ≤ c(x). Solving (8) with (7) gives

c1(x) = sech

(√
k1
k2

)
cosh

(√
k1
k2
x

)
(9)

Since c1(x) > 0 we have that c(x) ≥ 0. Therefore, this solution satisfies

d2c

dx2
= k1

c

k2 + c
,

dc

dx
(0) = 0, c(1) = 1. (10)

with (7). Since (10) is the non-dimensionalized version of (1) with x = z/λ, c = C/C∞,
k1 = µXλ2/(C∞Y Dc), and k2 = KS/C∞, we have C(z) ≥ 0 where C(z) is a solution to
(1). Now because C(z) ≥ 0 we know that

d2C

dz2
=

µX

Y Dc

C

KS + C
≥ 0.

Therefore, we know the maximum value of C must occur on the boundary. Since

dC

dz
(0) = 0 and

d2C

dz2
≥ 0,

we have that C(0) ≤ C(λ). Therefore, C(z) ≤ C(λ) = C∞.

Remark 3.2. Since 0 ≤ C(z) ≤ C∞, we can define upper and lower estimates on c(x)
using comparison theorems for Sturm-Liouville type boundary value problems [12]. Since

k1
k2 + 1

c ≤ k1c

k2 + c
≤ k1
k2
c,

we have

sech

(√
k1
k2

)
cosh

(√
k1
k2
x

)
≤ c(x) ≤ sech

(√
k1

k2 + 1

)
cosh

(√
k1

k2 + 1
x

)
.

Reversing the non-dimensionalization and noting

k1
k2 + 1

=
θλ2

KS + C∞
and

k1
k2

=
θλ2

KS

where θ := µX/(Y Dc), we obtain

sech

(√
θλ2

KS

)
cosh

(√
θ

KS

z

)
≤ C(z)

C∞
≤ sech

(√
θλ2

KS + C∞

)
cosh

(√
θ

KS + C∞
z

)
.

We define

c1(x) := sech

(√
k1
k2

)
cosh

(√
k1
k2
x

)
,

c2(x) := sech

(√
k1

k2 + 1

)
cosh

(√
k1

k2 + 1
x

)
,

C1(z) := C∞ sech

(√
θλ2

KS

)
cosh

(√
θ

KS

z

)
,

C2(z) := C∞ sech

(√
θλ2

KS + C∞

)
cosh

(√
θ

KS + C∞
z

)
.
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Now we show that a unique solution to (1) exists.

Proposition 3.3. There exists a unique solution to (1).

Proof. We first show the existence of a solution by considering the two point boundary
value problem

d2C

dz2
=
µX

Y

|C|
KS + |C|

,
dC

dz
(0) = 0, C(λ) = C∞, 0 < z < λ. (11)

From [12] we have that a solution to (11) exists if

f(C) =
µX

Y

|C|
KS + |C|

is continuous and bounded, and the corresponding homogeneous problem

d2C

dz2
= 0,

dC

dz
(0) = 0, C(λ) = 0, 0 < z < λ, (12)

has only the trivial solution. We note that f(C) is continuous and bounded, since KS > 0
and 0 ≤ f(C) ≤ µX/Y . From [12] we have that (12) possess only the trivial solution if
and only if

det

(
dCa
dz

(0)
dCb
dz

(0)

Ca(λ) Cb(λ)

)
6= 0 (13)

where Ca and Cb form any fundamental solution set to d2C/dz2 = 0. A fundamental set
of solutions to (12) is Ca(z) = z and Cb(z) = 1. Substituting into (13) gives

det

(
1 0
λ 1

)
= 1 6= 0.

From Proposition 3.1 we know that solutions to (11) are non-negative. Therefore, any
solution to (11) is a solution to (1).

To show uniqueness we consider the two point boundary value problem

d2c

dx2
= f(c) := k1

c

k2 + c
, −1 < x < 1, c(−1) = 1 = c(1). (14)

where k1, k2 > 0. Let c1 and c2 be two solutions to (14) and let w := c1 − c2. Since c1
and c2 are continuous functions we know that either w ≡ 0 or there are open intervals
for which c1 > c2 or c1 < c2. Since f is monotonically increasing we know that if w > 0,
then d2w/dx2 > 0 and if w < 0, then d2w/dx2 < 0. Let (a, b) be an interval where w > 0
and w(a) = 0 = w(b). Then by the mean value theorem, there must exist a maximum
in (a, b), but since w is twice differentiable we know that d2w/dx2 < 0 at the maximum.
Therefore, there exists no intervals for which w > 0. Similarly, if w < 0 on an interval
(c, d) and w(c) = 0 = w(d), then w must attain a minimum but d2w/dx2 < 0. Therefore,
there are no intervals where w < 0 and hence c1 − c2 = w ≡ 0.

Now let c = c̃(x) be a solution to (10). Then c = c̃(−x) is a solution to

d2c

dx2
= k1

c

k2 + c
, −1 < x < 0,

dc

dx
(0) = 0, c(−1) = 1. (15)
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Therefore,

c(x) :=

{
c̃(x) 0 ≤ x ≤ 1

c̃(−x) −1 ≤ x < 0
. (16)

is a solution to (14). Since there exists exactly one solution to (14), we know that
the solution to (10) is unique. Since (10) is a non-dimensionalized version of (1), see
Proposition 3.1 and Remark 3.2, we conclude that solutions to (1) are unique.

Proposition 3.4. G(λ) := g(C(0)) is a decreasing function.

Proof. We again consider the non-dimensionalization of (1), i.e. (10). We see that if
λ1 > λ2 > 0, then d2c1/dx

2 > d2c2/dx
2 where d2c1/dx

2 and d2c2/dx
2 denote the left

hand side of (10) with λ = λ1 and λ = λ2 plugged in respectively. Then denoting c1(x)
and c2(x) as the respective solutions we get that c1(x) < c2(x), by comparison theorems
for Sturm-Liouville type boundary value problems [12]. Thus taking x = 0 we have
c1(0) < c2(0). Reversing the non-dimensionalization gives C1(0) < C2(0). Since g(C) is
increasing we see that G(λ) is decreasing.

With these results established we move on to properties of the flux function. The
results given below were all proved in [9], with the exception of property (4), which was
shown in [7]. We give a quick sketch of the proof.

Theorem 3.5 (Properties of J(λ;C∞)). The flux function J(λ;C∞) for λ ≥ 0, C∞ ≥ 0
is well defined, non-negative, differentiable, and monotonically increasing. Furthermore
J(λ;C∞) has the following properties:

(1) J(λ; 0) = 0 = J(0;C∞).

(2)
µC∞

KS + C∞
≤ ∂J

∂λ
(0;C∞) ≤ µC∞

KS

.

(3) C∞

√
φ

KS + C∞
tanh

(√
θ

KS + C∞
λ

)
≤ J(λ;C∞) ≤ C∞

√
φ

KS

tanh

(√
θ

KS

λ

)
where φ := µY Dc/X.

(4)
∂2J

∂λ2
≤ 0.

Here we give a quick sketch of the proof of everything but property (4). By definition,
the function J(λ;C∞) for λ ≥ 0 and C∞ ≥ 0 is non-negative and monotonically increasing.
Since J(λ;C∞) is defined by the derivative of the concentration gradient C(z) we know
that the function is well-defined and differentiable. Property (1) follows directly from the
definition. Properties (2) and (3) are derived from the upper and lower solutions outlined
in Remark 3.2.

Definition 3.6.

Jl(λ,C∞) := C∞

√
φ

KS + C∞
tanh

(√
θ

KS + C∞
λ

)
,

Ju(λ;C∞) := C∞

√
φ

KS

tanh

(√
θ

KS

λ

)
.
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The following result shows us that the model (5) is well-posed.

Theorem 3.7. The model (5) with non-negative initial data possesses a unique, non-
negative solution that exists for all t > 0.

Proof. From Theorem 3.5 we know that J(0;C∞) = 0. Therefore, using the tangent
criterion from [12], it follows that the non-negative cone is positively invariant. Note that
C is differentiable with respect to λ [12], as λ is a parameter, so G(λ) is continuously
differentiable by the properties of g. Hence, in the non-negative cone, the right hand sides
of (5) are continuously differentiable, so the system satisfies a Lipschitz condition. This
implies the local existence and uniqueness of a non-negative solution of the initial value
problem (5) with non-negative initial data. Since dS/dt ≤ 0, we have that 0 ≤ S ≤ S(0).
Furthermore, there exists a positive constant K1 such that K1 > AG(λ)H(S)L(λ). Since
Ju(λ;C∞) is bounded, we know that J(λ;C∞) < K2 for some positive constant K2.
Therefore, the solution, y = y(t), to dy/dt = K1 + K2 − kly is an upper bound for λ(t).
Since y(t) is bounded, we know that λ(t) is bounded above. Therefore, (5) possesses a
unique, non-negative solution that exists for all t > 0.

4 Equilibrium and stability analysis

Proposition 4.1. A line of trivial equilibria, (λ, S) = (0, S), of the system defined by
(5), exists for all parameters.

Proof. By Proposition 3.5 property (1), J(0;C∞) = 0. Furthermore, L(0) = 0. Thus, if
λ = 0, then dS/dt = 0 and dλ/dt = 0.

Since equilibrium values of (5) must have 0 = G(λ)H(S)L(λ) for every S, we perform
analysis of the biofilm model without substratum degradation, i.e.

dλ

dt
= J(λ;C∞)− (kl + d(λ))λ. (17)

Lemma 4.2. There are at most two non-negative solutions to

J(λ;C∞)− (kl + d(λ))λ = 0. (18)

The first is the trivial solution λ = 0, which exists for all parameters and the second is a
positive solution, which depends on model parameters and exists if and only if

∂J

∂λ
(0;C∞) > kl + d(0)

Proof. The existence of the trivial equilibrium follows directly from Theorem 3.5 property
(1). For the second solution we consider the two functions

f(λ) := J(λ;C∞)

h(λ) := (kl + d(λ))λ

where we note that the intersection points of f and h are the only solutions to (18).
We have that h(0) = 0 and from the properties of d(λ) we have that dh/dλ > 0 and
d2h/dλ2 ≥ 0 for all λ ≥ 0. From Theorem 3.5 we have that f(0) = 0, df/dλ ≥ 0 and
d2f/dλ2 ≤ 0. Therefore, the non-trivial solution will exist if and only if df/dλ(0) >
dh/dλ(0) and is unique, since d2f/dλ2 ≤ 0 and d2h/dλ2 ≥ 0.

102



Remark 4.3.

� From the proof given above we see that if λ∗ > 0 is the non-trivial solution to (18),
then J(λ;C∞) > (kl + d(λ))λ for all λ < λ∗ and J(λ;C∞) < (kl + d(λ))λ for all
λ > λ∗. Furthermore, if λ∗ does not exist, then J(λ;C∞)− (kl + d(λ))λ < 0.

� The functions Ju and Jl, which denote the upper and lower solutions of the flux
function J respectively, can both be written in the form a tanh(bλ) where a and b
are positive constants. Therefore, we know that both estimates satisfy the criteria
used in the above proof. Therefore, each Ji(λ;C∞) = (kl +d(λ))λ, for i ∈ {l, u} has
at most two solutions where the non-trivial solution exists if and only if

∂Ji
∂λ

(0) > kl + d(0).

We will use these results to give sufficient conditions for the existence and uniqueness of
non-trivial equilibria of (5).

The function J(λ,C∞) and its derivatives are not easy to evaluate. However, using the
estimates from Theorem 3.5 we can derive the following weaker criterion for the existence
of the non-trivial solution to (17).

Corollary 4.4. If µC∞/(KS + C∞) > kl + d(0), then the non-trivial solution to (18)
exists.

Proof. This follows directly from Theorem 3.5 property (2) and Lemma 4.2.

We now give sufficient conditions for which G vanishes and for which G is positive.

Proposition 4.5. Let

η :=

√
Y Dc (KS + C∞)

µX
.

If c̃ < C∞ and λ ≥ η arcsech (c̃/C∞), then G(λ) = 0. Furthermore, if c̃ ≥ C∞, then
G(λ) = 0.

Proof. Suppose c̃ ≥ C∞. Then by Proposition 3.1, C(0) ≤ c̃. Therefore, G(λ) =
g(C(0)) = 0. Now suppose c̃ < C∞. Then, G(λ) = g(C(0)) = 0 whenever C(0) ∈ [0, c̃].
Using the upper estimate from Remark 3.2 we have that C(0) ≤ C2(0). Therefore, if
C2(0) = C∞ sech (λ/η) ≤ c̃, then C(0) ≤ c̃. Thus G(λ) = 0. Suppose

λ ≥ η arcsech

(
c̃

C∞

)
, (19)

then since 0 ≤ c̃ < C∞, the range of arcsech(x) is [0,∞), and sech(x) is a decreasing
function for [0,∞) we can rearrange (19) to obtain

C∞ sech

(
λ

η

)
≤ c̃.
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Proposition 4.6. Let

η0 :=

√
Y DcKS

µX
.

If c̃ < C∞ and λ < η0 arcsech (c̃/C∞), then G(λ) > 0.

Proof. Suppose c̃ < C∞. Then, G(λ) = g(C(0)) > 0 whenever C(0) > c̃. Using the lower
estimate from Remark 3.2 we have C1(0) ≤ C(0). Therefore, if c̃ < C∞ sech (λ/η0) =
C1(0), then c̃ < C(0). Thus G(λ) > 0. Suppose

λ < η0 arcsech

(
c̃

C∞

)
, (20)

then since 0 ≤ c̃ < C∞, the range of arcsech(x) is [0,∞), and sech(x) is a decreasing
function for [0,∞) we can rearrange (20) to obtain

c̃ < C∞ sech

(
λ

η0

)
.

From Lemma 4.2 and Proposition 4.5 we see that there are two critical λ values in
our model. These values correspond to the non-trivial solution to (18) and the threshold
value for which G(λ) = 0. We define these critical points below.

Definition 4.7. Let λ̃ be the critical λ value for which G(λ) = 0 for all λ ≥ λ̃ and
G(λ) > 0 for all λ < λ̃. Furthermore, let λ∗ denote the unique positive solution to (18).

Remark 4.8.

� By Proposition 4.5, λ̃ always exists and is always non-negative. By Lemma 4.2 and
Corollary 4.4, λ∗ exists under certain conditions on the growth of the biofilm.

� If c̃ ≥ C∞, then λ̃ = 0. Furthermore, if c̃ < C∞, then λ̃ > 0.

� λ∗ and λ̃ can be controlled independently. This leads to three different cases:

1. λ∗ exists and λ∗ > λ̃,

2. λ∗ exists and λ∗ < λ̃,

3. λ∗ does not exist.

We will show below that each case has its own distinct long-term behaviour. Furthermore,
λ∗ and λ̃ cannot be computed easily, thus for each case we give a sufficient condition, which
depends only on model parameters, that guarantees each case holds.
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4.1 Case 1: λ∗ exists and λ∗ > λ̃

Theorem 4.9. If λ∗ exists and λ∗ > λ̃, then there exists a line of non-trivial equilibria,
(λ, S) = (λ∗, S).

Proof. Suppose λ∗ > λ̃ ≥ 0 are fixed. Then by the definition of λ̃, we have that dS/dt = 0
at λ∗ and since λ∗ is the unique non-trivial solution for which (17) vanishes, we have
dλ/dt = 0 for every S ≥ 0.

We now give a weaker condition for the existence of the line of non-trivial equilibria,
which depends only on model parameters.

Corollary 4.10. If either of these two conditions holds

1. c̃ ≥ C∞ and kl + d(0) <
µC∞

KS + C∞
,

2. c̃ < C∞ and

kl + d

(
η arcsech

(
c̃

C∞

))
<

µC∞
√

(1− (c̃/C∞)2)

(KS + C∞) arcsech
(

c̃
C∞

) (21)

Then there exists a line of non-trivial equilibria, (λ, S) = (λ∗, S).

Proof. We show that when either of these two conditions holds, λ∗ exists and λ∗ > λ̃.
Since d(λ) is non-decreasing and 0 ≤

√
1− (c̃/C∞)2/ arcsech(c̃/C∞)) ≤ 1 we have

kl + d(0) ≤ kl + d

(
η arcsech

(
c̃

C∞

))
<

µC∞
√

(1− (c̃/C∞)2)

(KS + C∞) arcsech
(

c̃
C∞

) ≤ µC∞
KS + C∞

.

We note that kl+d(0) < µC∞/(KS+C∞), which is satisfied by both conditions, guarantees
the existence of λ∗ from Corollary 4.4 and the non-trivial solution to Jl(λ;C∞) = (kl +
d(λ))λ. If c̃ ≥ C∞, then from Proposition 4.5 we have that λ̃ = 0. Therefore, λ∗ > λ̃. Now
suppose c̃ < C∞ and let λ = λ1 denote the non-trivial solution to Jl(λ;C∞) = (kl+d(λ))λ.
By Remark 4.3, we know that λ1 is unique. Since Jl(λ;C∞) ≤ J(λ,C∞) and d(λ) is a
non-decreasing function, we know λ1 ≤ λ∗. Therefore, if λ1 > λ̃, then λ∗ > λ̃. So if

λ1 > η arcsech

(
c̃

C∞

)
, (22)

then by Proposition 4.5 and the definition of λ̃, λ∗ > λ̃. We finish by showing that
hypothesis (21) is sufficient for (22) to hold. By Remark 4.3 we know that if kl + d(λ) <
Jl(λ;C∞)/λ, then λ < λ1. Since tanh(arcsech(x)) =

√
1− x2, we have that

Jl

(
η arcsech

(
c̃
C∞

)
;C∞

)
η arcsech

(
c̃
C∞

) =
µ
√

(C2
∞ − c̃2)

(KS + C∞) arcsech
(

c̃
C∞

) .
Therefore, (21) guarantees that (22) holds.

Proposition 4.11. If λ∗ exists and λ∗ > λ̃, then the only steady states of (5) are
(λ, S) = (0, S) and (λ, S) = (λ∗, S).
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Proof. Suppose λ∗ exists and λ∗ > λ̃. Then whenever 0 < λ < λ̃ we have by Remark 4.3
and the fact that AG(λ)H(S)L(λ) ≥ 0 that dλ/dt > 0. When λ∗ 6= λ and λ > λ̃ we have
that dλ/dt = J(λ;C∞)− (kl + d(λ))λ 6= 0 by Lemma 4.2.

We now begin analysis of the long-term behaviour of the system whenever λ∗ exists
and λ∗ > λ̃. We first note that all equilibria points are non-hyperbolic. Therefore, we
cannot use the traditional linearisation arguments to get a full picture of the long-term
behaviour. We proceed by investigating solution trajectories in the phase plane.

Proposition 4.12. Suppose λ∗ exists and λ∗ > λ̃. Then,

1. If λ > λ∗, then dλ/dt < 0, and

2. If 0 < λ < λ∗, then dλ/dt > 0.

Therefore, all non-constant solutions approach the line of non-trivial equilibria (λ∗, S).

Proof. Follows directly from Lemma 4.2, Remark 4.3, and AG(λ)H(S)L(λ) ≥ 0.

Figure 4.1 provides a reference phase portrait. As we can see the solution trajectories
which start below λ = λ∗ travel upwards towards λ = λ∗. These trajectories also travel
in the negative S-direction up until they reach λ = λ̃ where they then travel solely in the
positive λ-direction. All solution trajectories which start above λ = λ∗ travel solely in
the negative λ-direction towards λ = λ∗.

Figure 4.1: Sample phase portrait in the Sλ-plane of (5), for long-term behaviour case
1. We see monotonic growth toward the final biofilm thickness. The trajectories at the
bottom of the graph start at a small λ value because the system (5) is in equilibrium
whenever λ = 0.

4.2 Case 2: λ∗ exists and λ∗ < λ̃

Theorem 4.13. If λ∗ exists and λ∗ < λ̃, then we have a non-trivial equilibrium point
(λ∗, 0).
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Proof. This follows directly from the definition of λ∗.

We now give a weaker criterion for which the equilibrium point (λ∗, 0) exists.

Corollary 4.14. If c̃ < C∞, kl + d(0) < µC∞/(KS + C∞), and

kl + d

(
η0 arcsech

(
c̃

C∞

))
>

µ
√

(C2
∞ − c̃2)

KS arcsech
(

c̃
C∞

) (23)

Then we have a non-trivial equilibrium point (λ∗, 0).

Proof. We show that when the hypotheses hold, λ∗ exists and λ∗ < λ̃. Suppose c̃ < C∞.
Since kl + d(0) < µC∞/(KS + C∞) guarantees the existence of λ∗, and Ju ≥ J we have
the existence of λ = λ2 which is the solution to Ju(λ;C∞) = (kl + d(λ))λ. By Remark
4.3, we know that λ2 is unique. Since Ju(λ;C∞) ≥ J(λ,C∞) and d(λ) is a non-decreasing
function, we know λ2 ≥ λ∗. Therefore, if λ2 < λ̃, then λ∗ < λ̃. So if

λ2 < η0 arcsech

(
c̃

C∞

)
(24)

then by Proposition 4.6 and the definition of λ̃, λ∗ < λ̃. We finish by showing that
hypothesis (23) is sufficient for (24) to hold. By Remark 4.3 we know that if kl + d(λ) >
Ju(λ;C∞)/λ, then λ > λ2. Since tanh(arcsech(x)) =

√
1− x2, we have that

Ju

(
η0 arcsech

(
c̃
C∞

)
;C∞

)
η0 arcsech

(
c̃
C∞

) =
µ
√

(C2
∞ − c̃2)

KS arcsech
(

c̃
C∞

) .
Therefore, (23) guarantees that (24) holds.

Proposition 4.15. If λ∗ exists and λ∗ < λ̃, then the only steady states of (5) are
(λ, S) = (0, S) and (λ∗, 0).

Proof. Suppose λ∗ exists and λ∗ < λ̃. Then by Lemma 4.2 we have that if λ̃ < λ, then
dλ/dt 6= 0. When 0 < λ < λ̃ and λ 6= λ∗, we have by the definition of λ̃ and λ∗ that
either dS/dt < 0 or dλ/dt 6= 0. When λ = λ∗ and S > 0, we have dS/dt < 0.

We now begin analysis of the long-term behaviour of (5) when λ∗ exists and λ∗ < λ̃.
We note again that not all equilibria points are hyperbolic. Therefore, we cannot use
the traditional linearisation arguments to get a full picture of long-term behaviour. We
proceed by investigating solution trajectories in the phase plane.

Proposition 4.16. Suppose λ∗ exists and λ∗ < λ̃. Then

1. If λ > λ̃, then dλ/dt < 0,

2. If λ∗ < λ < λ̃ and S > 0, then dS/dt < 0,

3. If 0 < λ < λ∗ and S > 0, then dS/dt < 0 and dλ/dt > 0,

4. If λ > 0 and S = 0, then dS/dt = 0 and λ→ λ∗ as t→∞.

Therefore, all non-constant solutions approach (λ∗, 0).
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Proof. We begin with property 1. Suppose λ > λ̃, then by the definition of λ̃ and
Proposition 4.5 we have that dλ/dt = J(λ;C∞)−(kl+d(λ))λ. By Lemma 4.2 and Remark
4.3 we have that dλ/dt < 0. Now we move on to property 2. Suppose λ∗ < λ < λ̃ and
S > 0. Then G(λ), H(S), L(λ) > 0, therefore dS/dt < 0. For property 3, we see that if
0 < λ < λ∗ < λ̃ and S > 0, then since AG(λ)H(S)L(λ) > 0, we have dλ/dt > 0 and
dS/dt < 0. We finish with property 4. Suppose λ > 0 and S = 0. Then dS/dt = 0,
which implies dλ/dt = J(λ;C∞) − (kl + d(λ))λ. From Lemma 4.2 and Remark 4.3 we
know that if λ < λ∗, then dλ/dt = J(λ;C∞) − (kl + d(λ))λ > 0 and if λ > λ∗, then
dλ/dt = J(λ;C∞)− (kl + d(λ))λ < 0. Therefore, λ→ λ∗ as t→∞.

Figure 4.2 provides a reference phase portrait. Solutions where S, λ > 0 travel towards
some λ = λ′ value between λ∗ and λ̃. Solutions where λ > λ̃ travel solely in the negative
λ-direction, while solutions where λ < λ̃ travel in the negative S-direction and towards λ′.
Once the solutions reach λ′ they travel in the negative S-direction until S = 0, then all
trajectories travel solely in the λ-direction until they reach steady state at (S, λ) = (0, λ∗).
We see that the biofilm doesn’t necessarily grow monotonically in this case.

Figure 4.2: Sample phase portrait in the Sλ-plane of (5), for long-term behaviour case
2. We see in this case that the biofilm thickness over shoots the final biofilm thickness
λ∗ whenever λ(0) < λ∗. The trajectories at the bottom of the graph start at a small λ
value because the system (5) is in equilibrium whenever λ = 0.

4.3 Case 3: λ∗ does not exist

Proposition 4.17. If λ∗ does not exist, then the line of trivial equilibria are the only
equilibria of (5).

Proof. Suppose λ∗ does not exist. For any equilibrium to exist we need G(λ)H(S)L(λ) =
0. Therefore, dλ/dt = J(λ;C∞) − (kl + d(λ))λ; which from Lemma 4.2 we know only
vanishes if λ = 0 or λ = λ∗. Since λ∗ does not exist, we conclude that λ = 0 must hold
for all equilibria of (5).

Corollary 4.18. If µC∞/KS < kl + d(0), then the line of trivial equilibria are the only
equilibria of (5).
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Proof. From Theorem 3.5 property (2) and Lemma 4.2 it follows that if µC∞/KS <
kl + d(0), then λ∗ does not exist. So by Proposition 4.17, the line of trivial equilibria is
the only equilibria of (5).

As all equilibrium points are non-hyperbolic, we move to analysis in the phase plane.

Proposition 4.19. Suppose λ∗ does not exist. Then λ→ 0 as t→∞.

Proof. Suppose λ∗ does not exist. Then if 0 < λ < λ̃ and S > 0, then dS/dt < 0. If
λ > λ̃, then dλ/dt < 0. Finally, if λ > 0, and S = 0, then by Remark 4.3, λ→ 0.

Figure 4.3 provides a reference phase portrait. For S > 0, solution trajectories travel
towards a positive λ = λ′ value less than λ̃. However, once S = 0 the model simplifies to
(17), which has trajectories decaying to λ = 0 as λ∗ does not exist.

Figure 4.3: Sample phase portrait in the Sλ-plane of (5), for long-term behaviour case 3.
We see that the biofilm initially grows toward a positive thickness and then once S = 0,
the biofilm degrades down towards λ = 0. The trajectories at the bottom of the graph
start at a small λ value because the system (5) is in equilibrium whenever λ = 0.

In all cases of long-term behaviour the equilibria and the stability conditions of (5)
are the same as in (17). Therefore, the long-term behaviour of (5) and (17) are the same.

5 Simulations

Numerical simulations of (5) were performed in Python using solve ivp from the SciPy
package [11]. This routine implements the Dormand-Prince-Runge-Kutta 4(5) method,
see [4] for more details. The embedded two-point boundary value problem (1) was solved
with the routine solve bvp from the SciPy package [11]. This routine implements a 4th
order collocation algorithm with the control of residuals similar to [6] and the collocation
system is solved by a damped Newton method with an affine-invariant criterion function
[3]. For all simulations, the model was solved until the euclidean norm of the right-hand
side of (5) was less than 10−7, i.e a steady state was reached.

In the following sections, we provide simulation results of the system (5). Parameter
values are summarized in Table 1, along with the definitions of d and g given by (25).
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5.1 Simulation parameters

For purposes of the simulation we assume the functions d and g are of the form

d(λ) = δ = const, g(C) =


0 0 ≤ C ≤ c̃

k
(C − c̃)2

κ2 + (C − c̃)2
C > c̃

. (25)

The function d represents a constant detachment rate. The function g is a Hill function,
where for small values of C(0), g(C(0)) = 0 and for large values g(C(0)) ≈ k. Since we
rewrite g(C(0)) as G(λ) in (5), we give two plots of the function G(λ) = g(C(0)), as
described in (25), for λ ∈ [0, 0.0015], c̃ = 0.0002, 0.002, and the relevant parameters in
Table 1. The two values for c̃ are the values used in the simulations used to investigate
the role of the biofilm/substratum yield coefficient A and represent case 1 and case 2 of
long-term behaviour under the parameters in Table 1. The plots are given in Figure 5.1.

Figure 5.1: Plot of the substratum degradation rate function G(λ) = g(C(0)) for g given
in (25), λ ∈ [0, 0.0015], c̃ = 0.002 (left), c̃ = 0.0002 (right), and k and κ given in Table 1.

5.2 Effects of the threshold concentration

In the first simulation, we investigate how the threshold concentration value affects the
growth of the biofilm and the degradation of substratum when we are in the first case of
long-term behaviour. In these simulations, we set the biofilm/substratum yield coefficient
to A = 0.5 and investigate threshold concentration values in the range of 0.002 to 0.005.
Furthermore, we compare these simulations to the base case biofilm model (17). The
simulation results are reported in Figure 5.2.

We see that as the threshold concentration increases, the biofilm grows more slowly,
and the substratum equilibrates at a larger final thickness. We also see that as the
threshold concentration increases, the time to equilibration for the substratum thickness
decreases. This is caused by the relationship between the threshold concentration and
the value λ̃, as defined in Definition 4.7. Since λ̃ is the threshold value for which G(λ)
vanishes, and by considering the plots in Figure 5.1, we see that as c̃ decreases, λ̃ must
increase and hence the substratum will be degraded for longer. This explains why the
biofilm grows more slowly with larger threshold concentrations. We see that these sim-
ulations follow the first case of long-term behaviour; see Figure 4.1, i.e. λ∗ exists and
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Table 1: Model parameters used in simulations.

Parameter Symbol Value Units Reference

Diffusion coefficient Dc 10−4 m2/day [13]
Biofilm biomass density X 10000 g/m3 [13]
Biofilm yield coefficient Y 0.63 − [13]
Biofilm maximum growth rate µ 6 1/day [13]
Biofilm half saturation constant KS 4 g/m3 [13]
Aqueous phase concentration C∞ 10 g/m3 Assumed
Cell death rate kl 0.4 1/day [13]
Detachment coefficient δ 0.5 1/day [1]
Substratum maximal decay rate k 0.005 1/day Assumed
Substratum decay half saturation constant κ 0.002 g/m3 Assumed
Threshold concentration c̃ Varied g/m3 Assumed
Biofilm/substratum yield coefficient A Varied − Assumed
Biofilm regularization parameter ελ 10−6 m Assumed
Substratum regularization parameter εS 10−6 m Assumed
Initial biofilm thickness λ0 0.00055 m Assumed
Initial substratum thickness S0 0.0005 m Assumed

Figure 5.2: Comparison of the full system (5) and the base model (17) (dashed line),
with varying threshold concentrations c̃. Each simulation uses the parameter values
summarized in Table 1 with c̃ = {0.002, 0.003, 0.004, 0.005} and A = 0.5. The biofilm
thickness λ and substratum thickness S are given on the left and right respectively. This
simulation follows the first case of long-term behaviour.

λ∗ > λ̃, since the substratum thicknesses are equilibrating at positive values. Lastly, as
shown in the analysis, all final biofilm thicknesses are the same as in the base case model.

In the second simulation, we investigate how the threshold concentration value affects
the growth of the biofilm and the degradation of the substratum when we are in the
second case of long-term behaviour. In these simulations, we set the biofilm/substratum
yield coefficient to A = 0.5 and investigate threshold concentration values in the range
of 0.0002 to 0.0005. Moreover, we compare these simulations with the base case biofilm
model (17). The simulation results are reported in Figure 5.3.

We first note that the biofilm thickness, in the full model, reaches a maximum thick-
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Figure 5.3: Comparison of the full system (5) and the base model (17) (dashed line),
with varying threshold concentrations c̃. Each simulation uses the parameter values
summarized in Table 1 with c̃ = {0.0002, 0.0003, 0.0004, 0.0005} and A = 0.5. The biofilm
thickness λ and substratum thickness S are given on the left and right respectively. This
simulation follows the second case of long-term behaviour.

ness on a plateau before equilibrating, unlike in the base case model. Additionally, we
see that the longer the plateau phase, the more constant the substratum degradation
rate. We see that as the threshold concentration increases, the biofilm thickness reaches
a smaller maximum thickness, takes longer to equilibrate, and has a longer plateau phase,
as described above. The increase in time to equilibrium is due to the degradation of the
substratum. We see that increasing the threshold concentration decreases the rate of
substratum degradation. Therefore, the biofilm degrades the substratum for longer. Fur-
thermore, we can see that these simulations all follow the long-term behaviour described
by case 2; see Figure 4.2, i.e. λ∗ exists and λ∗ < λ̃, since the final biofilm thickness is
positive and the biofilm thickness achieved a maximum. Lastly, as shown in the analysis,
all final biofilm thicknesses are the same as in the base case model.

5.3 Effects of the biofilm/substratum yield coefficient

In the third simulation, we investigate how the biofilm/substratum yield coefficient affects
the growth of the biofilm and the degradation of the substratum in the first case of long-
term behaviour. In these simulations, we set the threshold concentration to c̃ = 0.002
and investigate biofilm/substratum yield coefficients in the range of 0.1 to 0.75. We also
include the base case biofilm model (17). The simulation results are given in Figure 5.4.

We see that an increase in the biofilm/substratum yield coefficient increases the growth
rate of the biofilm and the final substratum thickness. The increase in the final substra-
tum thickness is due to the increased biofilm thickness, since an increase in the biofilm
thickness, decreases the substratum degradation rate. We also see that the substratum
completely degrades in this setting when the biofilm/substratum yield coefficient A = 0.1.
This still follows case 1 of long-term behaviour since that case does not exclude this pos-
sibility. Therefore, these simulations follow the first case of long-term behaviour; see
Figure 4.1, i.e. λ∗ exists and λ∗ > λ̃, since the substratum thicknesses are equilibrating
at non-negative values and the biofilm growth is monotonic. Lastly, as shown in the
analysis, all final biofilm thicknesses are the same as in the base case model.
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Figure 5.4: Comparison of the full system (5) and the base model (17) (dashed line),
with varying biofilm/substratum yield coefficients A. Each simulation uses the parameter
values summarized in Table 1 with c̃ = 0.002 and A = {0.1, 0.25, 0.5, 0.75}. The biofilm
thickness λ and substratum thickness S are given on the left and right, respectively. This
simulation follows the first case of long-term behaviour.

Figure 5.5: Comparison of the full system (5) and the base model (17) (dashed line),
with varying biofilm/substratum yield coefficients A. Each simulation uses the parameter
values summarized in Table 1 with c̃ = 0.0002 and A = {0.4, 0.5, 0.6, 0.7}. The biofilm
thickness λ and substratum thickness S are given on the left and right, respectively. This
simulation follows the second case of long-term behaviour.

In the last simulation, we investigate how the biofilm/substratum yield coefficient
affects the growth of the biofilm and the degradation of the substratum when we are
in the second case of long-term behaviour. In these simulations, we set the threshold
concentration to c̃ = 0.0002 and investigate biofilm/substratum yield coefficient values in
the range of 0.4 to 0.7. Moreover, we compare these simulations to the base case biofilm
model (17). The simulation results are reported in Figure 5.5.

We see that the biofilm thicknesses in the full model reach a maximum thickness
on a plateau before equilibrating, unlike in the base case model. Additionally, we see
that the longer the plateau phase, the more constant the substratum degradation rate.
We see that increasing the biofilm/substratum yield coefficient increases the maximum
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thickness achieved by the biofilm along with the time to equilibrium and the length of
the plateau phase. The increase in the time to equilibrium is due to the degradation of
the substratum. As the value of the biofilm/substratum yield coefficient increases, the
rate of substratum degradation decreases, and thus, the biofilm degrades the substratum
for longer. Furthermore, we can see that these simulations all follow the second case of
long-term behaviour; see Figure 4.2, i.e. λ∗ exists and λ∗ < λ̃, since the final biofilm
thickness is positive and the biofilm thickness achieved a maximum. Lastly, as shown in
the analysis, all final biofilm thicknesses are the same as in the base case model.

6 Conclusion

In this paper, we studied a mathematical model of biofilm growth on a degradable sub-
stratum, which is an extension of a simpler model (17) where the biofilm was growing
on an inert substratum. The purpose was to study the effect of substratum degradation
on such models that permit this. We started with the simple case where substratum
degradation occurs if and only if the bacteria at the biofilm-substratum interface layer
are active. With this model, we were interested in investigating whether or not such an
extension would yield different system behaviour. We found that the equilibria of the
system and the stability conditions were the same as in the simpler model, i.e. the ex-
tension with substratum degradation produced the same long-term behaviour. However,
the time evolution of the system is different. We saw that the biofilm thickness does
not necessarily grow monotonically, which is different from the growth of the biofilm in
the base case model. Therefore, the addition of substratum degradation in systems that
satisfy our model assumptions is necessary to describe system behaviour accurately.

The non-monotonic growth of the biofilm thickness in certain simulations leads to
interesting consequences for systems satisfying our model assumptions. For example,
suppose we are modelling a reactor where there is a biofilm growing, and these biofilms
degrade the substratum based on our model assumptions. If we are concerned with
substrate removal inside the reactor, then if we used the simpler biofilm growth model
(17) instead of our model (5) we would see an underestimate in the substrate removal.
The underestimate of the substrate removal would be caused by the underprediction of
the total flux of substrate into the biofilm. Which we can see by considering Figure 5.3
and that the flux function J(λ;C∞) is increasing in λ. Therefore, for systems satisfying
our model assumptions, it is necessary to include the effects of substratum degradation.

When considering our biofilm growth model, the only way to change the biofilm
thickness in the long-term is to scrape off part of the biofilm. In the context of our model,
this would be the increase of the detachment rate d(λ). As we can see from our results in
Sections 4.1 and 4.2, specifically corollaries 4.10 and 4.14 respectively, an increase in the
detachment rate can cause a change in long-term behaviour, namely from case 1 to case
2. This change in long-term behaviour is a reflection of the change in the inactive layer
of the biofilm. A thicker biofilm means less dissolved substrate for the bacteria at the
base of the biofilm, which means a larger inactive layer and, in the context of our model,
no substratum degradation. This system behaviour reflects biological phenomenon as we
expect a thinner biofilm to have a smaller inactive layer.

While the model is simplified, it still provides beneficial first insight into the effects of
substratum degradation on biofilm growth. The simplicity of the model allowed for de-
tailed analytical results from existence and uniqueness to equilibria and stability analysis.
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However, an investigation into different degradation kinetics could prove very useful to
our understanding of the interactions between biofilms and the substratum. For specific
applications, one would likely need to adapt the substratum degradation kinetics to fit
their system best, but what we have shown is that the addition of substratum degradation
can have a significant impact on the dynamics of these systems. Thus, when applicable,
substratum degradation should be implemented in such models.

There are plenty of biofilm growth models in the literature that investigates biofilm
formation/growth on inert substratum in more complex settings. For example, models
that account for variable bulk substrate concentration and suspended bacterial flocs [5,9],
or models which assume a multi-species biofilm as in [14]. Therefore, a further study of
biofilm growth on degradable substratum in various settings would also be beneficial to
the understanding of biofilm/substratum interactions.
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