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Abstract

Topological data analysis seeks to discern topological and geometric
structure of data, and to understand whether or not certain features of data
are significant as opposed to random noise. While progress has been made
on statistical techniques for single-parameter persistence, the case of two-
parameter persistence, which is highly desirable for real-world applica-
tions, has been less studied. This paper provides an accessible introduction
to two-parameter persistent homology and presents results about match-
ing distance between 2-parameter persistence modules obtained from fam-
ilies of simple point clouds. Results include observations of how differ-
ences in geometric structure of point clouds affect the matching distance
between persistence modules. We offer these results as a starting point for
the investigation of more complex data.

1 Introduction and Motivation

Topological data analysis (TDA) is a collection of methods used to discern the 
shape of data. TDA detects topological features, such as clusters, holes, and 
voids. Topological methods are especially useful for high-dimensional, noisy 
data. TDA has been applied in numerous settings, including image analysis 
[1], protein structure [3], texture representation in images [11], astronomical 
data [14], and neuroscience [15].

One of the main tools in TDA is persistent homology. Persistent homology as-
sociates to a dataset an algebraic object known as a persistence module, which
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encodes topological features of the data. The study of persistence modules can 
then reveal insights about the data that underlies the modules.

One common problem is to compare two datasets via their persistence mod-
ules. In this setting, notions of distance between persistence modules are use-
ful for quantifying the amount of difference between persistence modules. This 
paper examines one such distance, the matching distance, which is easily com-
puted. Our goal is to understand how the matching distance quantifies simi-
larity between datasets.

We computed matching distances between persistence modules arising from 
datasets of two types. The first type of dataset consists of three points in vari-
ous configurations. The second type of dataset consists of two circles with radii 
r, and circles were separated by a distance d. We examined how changes to r 
or d affect the matching distance.

The organization of the paper is as follows: In Section 2, we provide math-
ematical background for persistent homology and the matching distance. In 
Section 3, we describe our data analysis and matching distance computations. 
Discussion and directions for future research are provided in Section 4.

2 Mathematical Background

Persistent homology is one of the main tools in TDA and can be applied to 
many types of data, including real-valued functions and sets of points in Eu-
clidean space. It quantifies multi-scale topological features of d ata: connected 
components, holes, voids, and their higher-dimensional analogs.

Previous research has used persistent homology to discern topological struc-
ture in data from many fields [1, 3, 11, 14, 15]. Nearly all of this prior work has 
used one-parameter persistent homology, which produces easily-visualized 
descriptors called barcodes, but which is sensitive to outliers. This sensitiv-
ity can be avoided by using two-parameter persistence. We give here a brief 
introduction to persistent homology in both the one- and two-parameter set-
tings; more detailed surveys of the subject are found in [6, 7].

2.1 One-parameter persistence

Given a set of point-cloud data, we first build a simplicial complex. Our build-
ing blocks are simplices: a point is a 0-simplex; an edge is a 1-simplex; a tri-
angular face is a 2-simplex. More formally, an n-simplex is an n-dimensional
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geometric object that is the convex hull of n+ 1 points which are not contained
in any (n− 1)-dimensional plane. A simplicial complex X is a set of simplices
such that if v ∈ X, then every face of v is also in X, and if v,w ∈ X, then v∩w is
also in X. A common type of simplicial complex built from a point cloud is the
Rips complex, which we now define.

Definition 1 Given a collection of points {xα} in Euclidean space En and ε > 0,
the Rips complex Rε is the simplicial complex whose k-simplices correspond to un-
ordered (k+ 1)-tuples of points {xα}k0 whose pairwise distances are at most ε.

ε ε ε

Figure 1: Three Rips complexes built from a dataset of five points, with
different scale parameters ε.

In other words, the Rips complex depends on a scale parameter ε. The complex
contains an edge between two points if and only if the distance between the
points is at most ε. The complex contains a triangular face for any three points
whose pairwise distances are at most ε. Figure 1 shows three Rips complexes
built from the same underlying point cloud, but with different scale parame-
ters. For illustration purposes, we have drawn a ball of diameter ε around each
data point. The complex contains an edge for each pair of balls that intersect
and a triangular face for each three balls that intersect pairwise.

A Rips complex is built with a fixed scale parameter ε, but usually no single
choice of ε reveals all structure of the data. Instead, we consider many Rips
complexes, one for every positive value ε. Imagine growing balls of diame-
ter ε centered at each point: as ε increases from zero, an n-simplex appears
whenever n+ 1 balls pairwise intersect. Figure 1 shows three snapshots of this
process, which leads us to the concept of a filtration.

A filtration is a sequence of simplicial complexes, each a subcomplex of the
next:

X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ Xn ⊂ · · · . (1)

Figure 2 illustrates a filtration. In the figure, Xi  ↪→  Xi +1 denotes a map that 
takes each simplex in Xi to its corresponding simplex in Xi+1; this is possible 
because Xi is a subcomplex of Xi+1. Note that if a simplex appears in Xi, it 
must be present in Xj for all j > i.
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If every complex in a filtration is a Rips complex, then we call the filtration a
Rips filtration. Given a finite point set, simplices appear at only finitely many
values of ε. Thus, a Rips filtration of a finite point set can be denoted

Rε0
⊂ Rε1

⊂ Rε2
⊂ · · · ⊂ Rεn

for some sequence 0 = ε0 < ε1 < ε2 < · · · < εn.

Figure 2 illustrates a Rips filtration; note that we have not drawn a complex for
every ε at which a simplex appears. The shaded areas represent the triangular
faces and, in X6, the boundary of a 3-simplex.
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Figure 2: Top: Six complexes are shown from a Rips filtration built from a 
five-point dataset. Bottom: The corresponding barcode; orange bars are zeroth 

homology (which tracks connected components) and blue bars are first 
homology (which tracks holes).

Any topological feature (such as a component or a hole) appears in the filtra-
tion at some scale parameter ε1 and disappears at some scale parameter ε2; 
the pair (ε1, ε2) gives the persistence of the feature. Plotting each persistence 
pair as a interval along the scale axis produces a barcode, as seen at the bot-
tom of Figure 2. The orange bars in Figure 2 represent components: each of 
the five points corresponds to an orange bar starting at ε  =  0 . An orange bar 
ends at each ε value at which two components become connected. The blue 
bar represents the hole in the simplicial complex, which persists over a range 
of ε values.

The information in a barcode can also be visualized as a persistence diagram, 
which is a collection of points above the diagonal in the xy-plane. Bars in 
the barcode are in one-to-one correspondence with points in the persistence 
diagram. A bar from a to b is plotted as the point (a, b) in the persistence 
diagram.

In order to quantify the topological features of a simplicial complex, as illus-
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trated in the barcode, we use the mathematics of homology. Homology asso-
ciates a vector space to each simplicial complex and a linear map to each inclu-
sion map in the filtration. The homology vector space Hk(X) is generated by 
the k-dimensional holes of simplicial complex X. Making this precise requires 
some definitions, which we introduce briefly; for more details, see [16].

Let Ck be a vector space whose basis consists of all k-simplices in simplicial 
complex X. That is, Ck contains k-chains, which are sums of k-simplices with 
coefficients in a field F.  In TDA, F is usually chosen to be the 2-element field, a 
choice we make in this paper as well. The boundary operator ∂k : Ck → Ck−1 
maps a k-simplex to the sum of its (k − 1)-faces, extending by linearity to k-
chains. Let Bk ⊆ CK be the subspace of boundaries, which are images of ∂k+1. 
Let Zk ⊆ Ck be the subspace of cycles, defined by the property that v  ∈ Zk 
if and only if ∂k(v) = 0. Crucially, Bk ⊆ Zk, since ∂ ◦ ∂ = 0. We then define 
the homology vector space Hk = Zk/Bk. Thus, Hk is a vector space consisting 
of all cycles that are not boundaries. The dimension of Hk is the number of 
equivalence classes of holes, in the sense that two holes are equivalent if they 
differ by a boundary.

The homology of a filtration is a  one-parameter persistence m odule. The in-
clusion maps in the filtration induce linear maps between the homology vector 
spaces. Specifically, the degree i homology of the filtration in equation (1) is a 
persistence module consisting of the following vector spaces and linear maps:

Hi(X1) → Hi(X2) → Hi(X3) → · · · → Hi(Xn) → · · · .

The structure theorem for persistence modules says each persistence module 
is the sum of interval modules; each interval gives the persistence of one topo-
logical feature in the filtration [ 5]. Thus, a  barcode is a  visualization of a  per-
sistence module, which each interval module shown as a bar.

In order to compare barcodes, we need a notion of distance between barcodes. 
We use the bottleneck distance, which is easily computable, though other op-
tions exist [2]. Before defining the bottleneck distance, we introduce the con-
cept of a matching, which we explain in terms of persistence diagrams.

A matching η between persistence diagrams D1 and D2 pairs each point in D1 
with a point in D2 or a point on the diagonal line, and pairs each point in D2 
with a point in D1 or a point on the diagonal. For an illustration of a matching 
between two persistence diagrams, see Figure 3. By convention, we use the 
L∞ metric to obtain the distance from a point x = (x1, x2) to its matched point 
η(x) = (y1, y2):

||x − η(x)||∞ = max(|x1 − y1|, |x2 − y2|).

Let the size of a matching refer to the supremum of the L∞ distance between 
matched points. Among all possible matchings, we seek a matching with the
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smallest size. The bottleneck distance between D1 and D2 is the size of this
optimal matching, as defined below [6].

Definition 2 The bottleneck distance between persistence diagrams D1 and D2 is

dB(D1,D2) = inf
η

sup
x

||x− η(x)||∞,
where the supremum is taken over all matched points x and the infimum is taken over
all matchings η.

Figure 3 shows the optimal matching between two persistence diagrams D1
and D2. The size of this matching is given by the max L∞ distance between
matched points, which is max(|a−c|, |b−d|). Since no other matching between
these persistence diagrams has smaller size, the bottleneck distance dB(D1,D2)
is equal to max(|a− c|, |b− d|).

(a, b)

(c, d)

Figure 3: A matching between persistence diagrams D1 (plotted in blue) and 
D2 (plotted in red). Some points in each diagram are matched to the diagonal.

While one-parameter persistence is stable with respect to perturbation of the 
point cloud data, it is unstable with respect to the presence of outliers. A den-
sity estimator on the points (i.e., a function that indicates whether each point 
has many nearby neighbors) might be able to identify outliers, but this requires 
introducing a threshold. Instead, we prefer to use the density estimator as a 
second filtration parameter, which brings us into the realm of two-parameter 
persistence.

2.2 Two-parameter persistence

Two-parameter persistence arises from data that is simultaneously indexed by 
two parameters. For example, suppose we have a point cloud P and a real-
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valued function f : P → R on each point. In particular, f may arise from a
density estimator. For any r ∈ R, let

f−1(−∞, r] = {p ∈ P | f(p) ≤ r}.

We can then construct a Rips filtration from f−1(−∞, r]. Repeating this con-
struction for an increasing sequence r1, r2, . . . , rn, we obtain a sequence of Rips
filtrations, which yields a bifiltration.

A bifiltration is a set of simplicial complexes, each indexed by two parameters,
with inclusion maps in the direction of each increasing parameter. Specifically,
the set of simplicial complexes {Ci,j}i,j forms a bifiltration if there exist com-
muting inclusion maps

Ci,j ↪→ Ci ′,j ′

whenever i ≤ i ′ and j ≤ j ′. Figure 4 (left) gives an example of a bifiltration.

The homology of a bifiltration is a 2-parameter persistence module, which is a
set of vector spaces Hp(Ci,j) with commuting linear maps in the directions of
increase of i and j, as illustrated in Figure 4 (right).

C1,1

C1,2

C1,3

C2,1

C2,2

C2,3

Hi(C1,1)

Hi(C1,2)

Hi(C1,3)

Hi(C2,1)

Hi(C2,2)

Hi(C2,3)

Figure 4: A sample bifiltration (left) and its corresponding 2-parameter 
persistence module in homology degree i (right).

Unfortunately, the algebraic structure of 2-parameter persistence modules is 
extremely complicated, and there is no reasonable “barcode” for such modules 
[9]. Instead, we can obtain a barcode along any line with nonnegative slope 
in the 2-parameter space by restricting the 2-parameter persistence module to 
such a line, as we now explain.
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LetM be a 2-parameter persistence module with parameter values in discrete
indexing sets I and J. Denote the vector spaces in M as Mi,j for every i ∈ I
and j ∈ J, with linear maps Mi,j → Mi ′,j ′ whenever i ≤ i ′ and j ≤ j ′. We
may then adopt a continuous perspective, assigning a vector space fromM to
every point in (x, y) ∈ R2. If x < min(I) or y < min(J), then the point (x, y) is
assigned the zero vector space; otherwise, the vector space assigned to (x, y) is
Ma,b, where a = max{i ∈ I | i ≤ x} and b = max{j ∈ J | j ≤ y}, as illustrated in
Figure 5.

Let ` be a line in R2 with non-negative slope. LetM` be the 1-parameter per-
sistence module obtained by restricting M to line `: every point along ` is
assigned the homology vector space ofM at that point in R2, with linear maps
induced fromM (as in Figure 5). SinceM` is a 1-parameter persistence mod-
ule, it has a barcode, or equivalently, a persistence diagram.

M1,1

M2,2M1,2

M2,1

M1,3 M2,3

. .
. ...

...
. . .

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

. . .
...

... . .
.

`

Parameter 1
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Figure 5: A 2-parameter persistence module with discrete parameter values 
may be viewed from a continuous perspective. Vector space M1,1 is 

associated with all points inside the shaded region (with half-open boundary) 
in the 2-parameter plane, and similarly for the other vector spaces. The vector 

spaces along any line ` with nonnegative slope then form a 1-parameter 
persistence module, with linear maps induced from the 2-parameter 

persistence module.

Furthermore, we can define a distance between 2-parameter persistence mod-
ules by considering the bottleneck distances between persistence diagrams along 
all possible lines through the 2-parameter space. In the following definition,
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D(M`) denotes the persistence diagram of the 1-parameter moduleM`.

Definition 3 The matching distance, dM, between two 2-parameter persistence
modulesM andN is the supremum of the bottleneck distances between the persistence
diagrams on corresponding lines of non-negative slope in the two modules. Precisely,

dM = sup
`

{dB(D(M`),D(N`)) ·weight (slope(`))},

where the supremum is over all lines of nonnegative slope and weight(m) = 1√
1+q2

,

where q = max
(
m, 1

m

)
.

In the definition of the matching distance, a weight is assigned to each line `,
which depends on the slope `. A line with slope 1 gets the maximum weight,
and the weight approaches zero as the slope approaches zero or infinity. The
weight is chosen such that if the interleaving distance between two persistence
modules is 1, then the weighted bottleneck distance is at most 1 [8, 9].1

3 Computations and Analysis

Our datasets are point clouds with simple structure depending on a few pa-
rameters. Adjusting these parameters allows us to change the size of topo-
logical features (namely, components and holes) that are captured by the per-
sistence modules. We expect the matching distance between these persistence
modules to reflect the parameter differences in the underlying datasets.

From each dataset, we construct a density-Rips bifiltration. That is, our two
parameters are a density estimator and Euclidean distance. A density estima-
tor f is assigned to each point p such that f(p) is small if p has many nearby
neighbors and f(p) is large if p has no nearby neighbors; this causes points
with more neighbors to appear before points with few neighbors in the density
filtration.2 For any r ∈ R, the Rips filtration is constructed on f−1(−∞, r]. This
produces a 2-parameter family of simplicial complexes with inclusion maps in
the increasing directions of both density and distance.

We begin with very simple point-cloud datasets, each consisting of three points
in the xy-plane. We examine the matching distances while keeping two points
fixed and moving the third point around the plane. Three points are enough

1Prior to computing the matching distance, the persistence modules M and N are often nor-
malized. That is, the parameter axes for each module are rescaled so that the parameter values for
all generators and relations occur in specified intervals on each axis. For details, see [13].

2We used a k-nearest-neighbor density estimator, but many other options are available.
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to produce a density-Rips bifiltration that is nontrivial in both density and dis-
tance. Thus, we regard these datasets as the simplest datasets that allow us to 
study the effect of moving a single point on the matching distance.

The second collection of datasets consists of points sampled from two circles 
with radii r and separated by distance d. These datasets have nontrivial struc-
ture in persistent homology of degree zero and one. We generated many datasets 
with various values of d and fixed r , investigating how varying d  affects the 
matching distance computed from zero-degree persistent homology modules. 
We also fix d  a nd v ary r , i nvestigating t he m atching d istance b etween first-
degree persistent homology modules.

We computed two-parameter persistent homology using RIVET, an interac-
tive visualization software developed by Michael Lesnick and Matthew Wright 
[12]. A detailed description of RIVET and its algorithms appears in a compre-
hensive preprint by Lesnick and Wright [10]. Given point-cloud data, RIVET 
computes a 2-parameter persistence module, and then computes barcodes along 
linear slices of the persistence module. We approximated the matching dis-
tance from these barcodes using Python code written by Bryn Keller and Michael 
Lesnick [13], which uses a finite set of lines to approximate the supremeum in 
Definition 3 .3 We regard the matching distance as giving a measure of similar-
ity between two point-cloud datasets.

3.1 Three-Point Datasets

For our first investigation, each data set consisted of two fixed points A = (1, 1) 
and B = (6.1, 1), and a third point Ci in the xy-plane. Figure 6 shows the 
locations of A and B (in red), as well as the locations of all Ci (blue). Since 
A and Ci are always the closest pair of points, we assigned to these points a 
density parameter of 1, and then we assigned point B a density parameter of 2.

For concreteness, let Xr,s denote a 3-point dataset where Ci has coordinates 
(r, s) . That is, Xr,s = {A, B, (r, s)}. Let Xt,u = {A, B, (t, u)} be another 3-point 
dataset. We compute the matching distance between the 2-parameter persis-
tence modules constructed from Xr,s and Xt,u.

First, we fix s  =  u  =  3 . Figure 7  displays the matching distance between the

3The approximation algorithm requires us to specify the number of lines used in the approx-
imation. This is achieved by specifying a grid-size parameter, which determines the number of 
different slope and intercept values that the algorithm uses. For example, if grid-size is 20, then 
the algorithm uses 20 slope values and 20 intercept values to produce 400 lines, computing the 
bottleneck distance along each. In our experiments, we found we found little difference in the ap-
proximated matching distance when grid-size was set to 20 or to a large value, such as 50, though 
the computation time increases according to the square of the grid-size value.
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Figure 6: Data sets used in three point exploration. The red points A and B are 
two fixed points, and the blue points are the possibilities for the point Ci.

2-parameter persistence modules constructed from Xr,3 and Xt,3, for various 
choices of r and t. The horizontal axis gives r, and the color of each curve 
represents the value of t. Specifically, t  ranges from 0 , colored dark green, to 
3.3, colored brown, and the step size is .184.

We observe that when s and u are small, such as s = u = 3, as shown in Figure 
7, there is a relatively linear increase in matching distances as the t increases 
(above some threshold) with r fixed. Some of the curves display a  nonlinear 
region for small values of t; We note that these curves have t smaller than 1, 
which is the x-coordinate for A.

Next, we fix s  =  u  =  1 0. Figure 7 displays the matching distance between the 
2-parameter persistence modules constructed from Xr,10 and Xt,10, for vari-
ous choices of r and t. Similarly, Figure 8 shows how the matching distance 
depends on r and t in this case. It is clear that no linear trend in matching dis-
tances is present in these cases, as the matching distance increases faster as r 
increases. We note a prominent feature in Figure 8 is that the matching distance 
attains the value 0; the following proposition explains why this occurs.

Proposition 1 Suppose A and B are points on the xy-plane, such that the Euclidean 
distance between A and B is d > 0. Now suppose there are two points C1 and C2, 
both distance r < d away from A, with the distance between Ci and B as hi > d for 
i ∈ {1, 2}. Then the matching distance between the 2-parameter persistence modules 
constructed from the two point clouds {A, B, C1} and {A, B, C2} is 0. (See Figure 9)
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Figure 7: Distribution of matching distance between Xr,3 and Xt,3. The 
horizontal axis gives the value of t, the color of the plot gives the value of r, 

and the vertical axis gives the matching distance between two datasets.

PROOF: Since the distance between each Ci and A is smaller than the distance 
between each Ci and B, the density parameter 1 is assigned to C1, C2, and 
A, while point B is assigned density parameter 2. From such a point cloud 
{A, B, Ci}, we construct a bifiltration as shown on the left side of Figure 10, as 
we now explain, considering each density parameter value in turn.

Density 1: When the distance parameter ε = 0, only C1 and A appear, so we 
have two isolated points. When ε increases to r, C1 and A will connect to form 
an edge. As ε increases from r, the simplicial complex remains unchanged, 
since no other points exist to produce edges at this density.

Density 2: When the scale parameter ε = 0, all points A, B, C1 in the point cloud 
appear, so we have three isolated points. When ε increases to r, C1 and A will 
form an edge. This results in one connected component and one isolated point. 
When ε increases to d, an edge connects B to A. Since all points are connected 
at distance d, H0 homology doesn’t change as ε increases further.

Now consider the point cloud {A, B, C2}. The bifiltration constructed from this 
point cloud is nearly the same as that described above; the only difference is 
the distance value h2 at which the longest edge appears. However, this edge 
does not connect any components that were not already connected at distance 
d, so no new (zeroth) homology appears at distance h2. Thus, we obtain topo-
logically equivalent bifiltrations for the two data sets. This implies that the two
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Figure 8: Distribution of matching distance between Xr,10 and Xt,10. The
horizontal axis gives the value of t, the color of the plot gives the value of r,

and the vertical axis gives the matching distance between two datasets.

2-parameter persistence modules are the same, and so barcodes along any lin-
ear slice of the two modules are also the same. Therefore, the matching distance
between these modules is 0.

According to the proposition above, it would be easy to compute the prob-
ability of having matching distance of 0 if C1 and C2 are randomly selected
on circle OA and circle OB in Figure 9. The following corollary gives such a
probabilistic interpretation of the proposition; we leave the proof to the reader.

Corollary 1 SupposeA and B are points on the xy-plane with distance between them
d > 0. Let OA be a circle of radius r < d centered at A, and OB a circle of radius
r < d centered at B. Now suppose there are two pointsC1 andC2, which are randomly
selected on the two circles. Then, the two point clouds {A,B,C1} and {A,B,C2} clouds
have a matching distance of 0 with probability

(
1− 1

π
arccos−1

(
r
2d

))2
.

The following theorem gives a n-point generalization of the 3-point proposi-
tion. In the theorem, a dataset consists of n vertices of a regular polygon in the 
xy-plane, as well as one additional point.

Theorem 1 Suppose A1, A2, . . . , An are points on the xy-plane forming the vertices
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A B

Figure 9: Diagram of the points in Proposition 1. Points C1 and C2 are located 
in the orange arc, at distance r from A and distance greater than d from B.

of a regular polygon with side length d > 0. Now suppose there are two points C1 
and C2, both distance r > 0 (also r < d) away from the Ai that they are closest to, 
with the distance away from all other Ai greater than d. Then, the matching distance 
between the 2-parameter persistence modules constructed from the two point clouds 
{A1, A2, . . . , An, C1}, and {A1, A2, . . . , An, C2} will be 0.

PROOF: Similar to the proof for the proposition above, each point will be as-
signed a density parameter of 1 or 2. Since the distance between points C1, C2 
and the respective Ai that they are closest to is smaller than the distance be-
tween the Ci and all other Ai, density 1 is assigned to C1, C2, and the respec-
tive Ai that they are closest to (note that they could both be closest to the same 
Ai). All other Ai are assigned a density of 2. In the point clouds consisting of 
these points, we have a bifiltration for both density 1 and density 2.

In the bifiltration for density 1, only C 1 and the A i that it is closest to appear, 
so the proof follows the same steps as the one for proposition.

In the bifiltration for density 2, all points in the point cloud appear (all A i and 
C1). At ε = r, C1 and the Ai it is closest to form an edge, but no other edges 
form between any points. As ε increases to d, all edges of the regular polygon 
appear.

Similarly, we have the exact same bifiltration for the point cloud consisting of 
C2 and the Ai. Followed by the same reasonings in the proof for proposition, 
the matching distance between the two point clouds is 0.
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Figure 10: At left, the bifiltration constructed in the proof of Proposition 1. At 
right, a similar bifiltration that results in a nonzero matching distance.

3.2 Two-Circle Datasets

Our second investigation involved datasets consisting of points sampled from 
two circles with radii r, separated by distance d. For each dataset, two hundred 
points were selected randomly from a uniform distribution on each circle; Fig-
ure 11 displays an example. Each point was assigned a density estimator de-
fined as the distance to the 20th nearest neighbor.

Suppose that we fix the radius r and vary the separation distance d. Intuitively, 
the larger the change in separation distance, the more different we regard the 
point clouds. Thus, we expect that a large change in d will result in a large 
matching distance between the 2-parameter persistence modules constructed 
from the point clouds.

We generated 60 datasets using r = 3 and d ∈ {0.5, 1, 1.5, . . . , 30}. We computed 
2-parameter persistence modules for each dataset and computed the matching 
distance between each pair of modules.

Consider a pair of datasets, one with separation distance d1 and the other with 
separation distance d2. Figure 12 displays the matching distance between the 
persistence modules plotted against the difference in separation distance d2−d1. 
For the plot, we chose four representative values of d2 from those listed above:
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Figure 11: Example of circle dataset; the circles have radius r = 1 and are 
separated by distance d = 1.)

d2 ∈ {10, 15, 22, 28}. For each of these four values of d2, we plot the matching 
distance for those datasets with separation distance d1 such that the difference 
d2 − d1 in the range from 0.5 to d2 − 0.5.

Figure 12 (left) shows the trend when d2 is 10 or 15. As the separation distance 
d2 − d1 increases, the matching distance of the pairs of data sets increases ini-
tially, but then remains nearly constant. In the region of increasing matching 
distance, we note three linear segments, with a jump between each. Though 
the plots display nearly the same shape for d2 = 10 and d2 = 15, we note that 
the matching distance attains a higher value for d2 = 15, indicating that the 
matching distance reveals a greater difference between the persistence mod-
ules when one dataset consists of circles that are farther apart.

When the separation distance d2 is 22 or 28, as shown in Figure 12 (right), the 
matching distance of that pair follows almost the same trend as in Figure 12 
(left). However, when d2 = 22, we note some randomness, possibly due to 
sampling irregularities, when d2 − d1 is small. Also, we note only two linearly 
increasing segments, with a single jump, when d2 = 28. Interestingly, the near-
constant part of the plot is higher when d2 is the smaller of the two values, 
which is contrary to what we observed in Figure 12 (left).

In order to understand the structure observed in Figure 12, we looked into the 
barcodes involved in the matching distance calculation. Recall that the match-
ing distance between two 2-parameter persistence modules is the minimum 
weighted bottleneck distance between two barcodes, one from each persistence 
module. RIVET provides us access to these barcodes.

For example, consider the pair of datasets for d1 = 8 and d2 = 10. The match-
ing distance between the persistence modules is plotted as one of the red dots 
in Figure 12 (left). The barcodes that realize this matching distance are shown
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Figure 12: Distribution of matching distance for two-circle example

(as persistence diagrams) in Figure 13. We compared these persistence dia-
grams to understand the matching distance between the persistence modules. 
We observe that the persistence diagram for the dataset with separation dis-
tance d1 = 8 has only three dots with finite c oordinates4 (i.e., the barcode has 
only three finite b ars). In comparison, the persistence diagram for the dataset 
with separation distance d2 = 10 has five dots with finite coordinates (i.e., the 
barcode has only five finite bars). Given the small number of points, we manu-
ally matched the points and computed the matching distance. In this example, 
the two dots far from the diagonal are matched together in the optimal match-
ing, and the distance between that pair is what gives the matching distance. By 
identifying how points are matched in persistence diagrams, we could better 
understand the structure in Figure 12.

To understand the near-constant part of the plot, we looked at the persistence 
diagram that realize the matching distances between pairs of datasets. Let Md 
be the 2-parameter persistence module computed from the dataset with sep-
aration distance d. In Figure 12 (left), the near-constant portion of dots for 
d2 = 10 extends from d2 − d1 = 5 (that is, d1 = 5) to d2 − d1 = 9.5 (that is, 
d1 = 0.5). We examined the the calculation of the matching distance between 
M5 and M10, and also the matching distance between M0.5 and M10. We 
found that in both matching distance calculations, the line ` that minimizes the
bottleneck distance (thus realizing the matching distance) is the same. Let D`d 
be the persistence diagram obtained from Md along line `. We found that the
barcode D`10 has only one finite b ar. When matching D `10 to D `0.5 or D `5, this

4Our persistence diagrams for zero-degree persistent homology always have a dot at (0, ∞) 
since there is one connected component that persists at all distance scales.
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Figure 13: Persistence diagrams involved in the matching distance calculation 
for d1 = 8 (blue) and d2 = 10 (red).

finite bar is always matched to the diagonal, and this gives the maximum dis-
tance between matched points. Thus, for the persistence modules that produce 
the near-constant portion of the plot, the matching distance is determined by 
the distance of the finite bar in D `10 from the diagonal.

Since circles have nontrivial first h omology, w e p erformed a  s econd experi-
ment to investigate the effect of varying the circle radius on the matching dis-
tance between first persistent homology m odules. Specifically, we  generated 
data sets with circle radius r ∈ {0.2, 0.4, 0.6, . . . , 6} and fixed s eparation dis-
tance d = 3. We computed the 2-parameter persistence modules using first 
homology for each dataset, and compared them pointwise using the matching 
distance. In this experiment, we observed patterns very similar to those dis-
played in Figure 12: as the difference in radius increases, the matching distance 
first increases, but then becomes near-constant. Furthermore, the near-constant 
portion is slightly decreasing as the difference in radius increases.

Lastly, we wanted to determine whether our two-circle experiments are sensi-
tive to the presence of outliers, given that an important advantage of 2-parameter 
persistent homology is robustness against noise. In our previous experiments, 
we sampled points precisely from the circles, but now we introduced some 
noise. We added a small error to 20% or 40% of the data points, and re-
computed the matching distances. We found that the distribution of the match-
ing distance for noisy data shares almost the same features as for the original 
data sets. We conclude that the matching distance still provides information 
about the change in separation distance or circle radius, even in the presence 
of noisy data. This confirms that two-parameter persistent homology is robust 
against outliers, which is one of the primary motivations for this study.
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4 Discussion and Future Research

Our findings, though for very simple datasets, suggest that the matching dis-
tance can provide a notion of similarity for point-cloud data. This research 
provides a step towards a deeper understanding of what matching distance 
reveals about the similarity or difference between point-cloud datasets. More-
over, this leads to further questions regarding how to quantify the similarity 
between geometric data.

In order to better understand our results in Figure 12, we would like to study 
why the jumps appear in the increasing segments in the plot of matching dis-
tances. We would like to determine why the near-constant part of the plot is 
slightly decreasing as d2 − d1 increases. We are intrigued by the fact that the 
value of the matching distance along the near-constant part of the plot initially 
increases with d2, but then decreases when d2 gets sufficiently large. In our ex-
periments, the maximum matching distance occurs when d2 = 21. We would 
like to study this further.

In this work, we obtained 1-parameter persistence modules by restricting 2-
parameter persistence modules along lines of nonnegative slope. We would 
like to explore the structures that exist along lines of negative slope, but this 
is algebraically complicated and would likely involve zigzag persistence, as 
discussed in [4].

Furthermore, we would like to extend this research to the analysis of real-world 
data. To give one example, textual data such as Wikipedia articles can be con-
verted to high-dimensional vectors — e.g., using a word2vec algorithm. We 
would like to use the matching distance to explore similarities between arti-
cles, and to compare collections of the article vectors with random point-cloud 
data.
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