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Abstract. In order for an e-commerce platform to maximize its revenue, it must recommend
customers items they are most likely to purchase. However, the company often has business con-
straints on these items, such as the number of each item in stock. In this work, our goal is to
recommend items to users as they arrive on a webpage sequentially, in an online manner, in order to
maximize reward for a company, but also satisfy budget constraints. We first approach the simpler
online problem in which the customers arrive as a stationary Poisson process, and present an inte-
grated algorithm that performs online optimization and online learning together. We then make the
model more complicated but more realistic, treating the arrival processes as non-stationary Poisson
processes. To deal with heterogeneous customer arrivals, we propose a time segmentation algorithm
that converts a non-stationary problem into a series of stationary problems. Experiments conducted
on large-scale synthetic data demonstrate the effectiveness and efficiency of our proposed approaches
on solving constrained resource allocation problems.
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1. Introduction. Resource allocation has been considered an important task
by many e-commerce platforms, and it can essentially be formulated as a generalized
online matching problem. In an electronic marketplace, products are placed for sale on
a webpage as customers arrive sequentially, viewing the products and making purchase
decisions. As each customer arrives, the platform needs to display corresponding items
that the customer is likely to purchase. However, the tendency of each customer to
purchase a certain product is unknown, and the revenue generated by the sale of
different products varies. In a given session, we assume that customers arrive onto
the webpage randomly over time. The task at hand is to find a way to match each
customer to an item such that this matching maximizes the reward (i.e., the potential
revenue generated through the sale of items) with respect to certain constraints, such
as the stock of each item.

Resource allocation problems can be approached in either an offline or an online
manner. The offline problem assumes that the sequence of customer arrivals is known
in advance, while in the online problem, we consider customers arriving onto the web-
page as following an unknown stochastic process. Oftentimes, customers arriving in
an online manner are modeled as a stationary Poisson process, the rate of which is
unknown beforehand. The offline algorithm optimizes multiple functions simultane-
ously [3], whereas the online problem optimizes different sequences of functions at each
time. Although the offline problem is a less realistic problem, the optimal solution to
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the offline problem is necessary for the online setting, specifically in the evaluation of
regret, a measure of how well the online algorithm works in comparison to the offline
algorithm and its optimal solution. Current work on the online problem [1, 2, 6, 7]
mainly focuses on the theoretical aspects of the online problem and attempts to min-
imize the regret. Moreover, resource allocation problems are closely related to ad
allocation, which is also studied in the context of online matching problems. Some
notable examples include DisplayAds [10] and AdWords [9, 13].

In this paper, we propose several online algorithms for allocating products to
users, which extend and improve previous work. We first approach the online station-
ary problem, in which the sequence of customer arrivals is unknown, but the arrival
rates of customers are constant over time, by introducing an integrated algorithm
that performs online learning and matching together. We then proceed to the non-
stationary case, in which customer arrival rates vary over time, and propose another
time segmentation algorithm that tackles the customer heterogeneity. We theoreti-
cally verify the convergence of average regret in our algorithms, and experimentally
demonstrate their efficacy in providing near-optimal product recommendations. It
should be noted that although we mainly consider an e-commerce problem set-up,
resource allocation also have many other applications. One such application is, for
example, in healthcare. In [14], it is suggested that healthcare interventions such as
reducing infection spread or slowing disease progression rate may modify the opti-
mal strategies for constrained resource allocation. This connects to the exploration-
exploitation trade-off discussed in Subsection 3.2 of this paper.

The rest of the paper is organized as follows. Section 2 discusses the background
of the offline and online resource allocation problems, and some existing approaches
that we rely upon. Section 3 introduces an integrated algorithm that tackles the online
problem with stationary customer arrivals. Section 4 extends the problem to consider
heterogeneous customer arrivals, and proposes another algorithm that approximates
a non-stationary problem into a series of stationary problems. Section 5 demonstrates
experimentally the effectiveness of our proposed algorithms. Section 6 and Section 7
interpret the results of our work and propose future directions.

2. Background. We first review some existing approaches for the offline and
online matching problems that we build upon to design our online algorithms as well
as outline the framework of each approach.

2.1. Offline Problem. In the offline matching problem, we assume that the
distribution of customer arrivals and the preference of customers are both known.
Therefore, we can simply optimize the potential revenue by solving an optimization
problem, represented by the first term in (2.1). We add a regularization term, the
second term in (2.1), where µ accounts for regularization [17], ensuring that our linear
program is strongly convex and therefore has only one optimal solution. Adding this
regularization term is a standard way to reduce a linear programming problem into
a convex optimization problem [4]. In this problem, j indexes the customers, where
the total number of customers is m, and i indexes the items, where the total number
of items is n. Further, ri refers to the reward, or revenue, for the company when a
particular customer purchases item i, Pij is the customer preference matrix, which
contains the probability of customer j purchasing item i given they were offered
item i, and P̄j is the maximum value of Pij for each customer, i.e., P̄j = maxi Pij .
Additionally, xij refers to the probability that customer j is recommended item i, and
bi is the budget of item i.
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We formulate the following optimization problem:

(2.1) max
xij
i∈[n]
j∈[m]

n∑
i=1

m∑
j=1

riPijxij − µ
m∑
j=1

P̄j

n∑
i=1

xij log xij ,

s.t.
m∑
j=1

Pijxij ≤ bi,∀i ∈ [n];

n∑
i=1

xij = 1,∀j ∈ [m];

xij ≥ 0,∀i ∈ [n], j ∈ [m].

The objective function in (2.1) represents maximizing reward, or revenue, for
the company. Specifically, the first term in the objective function represents reward,
followed by a regularization term that ensures a unique optimal solution. The first
constraint is a budget constraint that guarantees we do not recommend an item more
of that item than we have in stock. The second constraint guarantees that each
customer gets recommended exactly one item, while the last constraint ensures that
the probability that a customer gets recommended a certain item is non-negative.

In order to solve our maximization problem, we convert our primal objective
function into its dual formulation, and then proceed to minimize the dual function.
Note that to ensure that strong duality holds, it suffices to show that our convex
optimization problem satisfies the Slater’s condition. Let x∗ be the optimal primal
solution, and additionally assume that the budget bi ≥ m

n . Under this assumption,
we have that x∗ij = 1

n is an interior point. For all j ∈ [m], we have that
∑n
i=1 x

∗
ij = 1,

and for all i ∈ [n],
∑m
j=1 Pijx

∗
ij ≤ bi. Therefore, strong duality holds, i.e. solving the

dual minimization problem is equivalent to solving the primal maximization problem.
We proceed to derive our dual function, where Λ denotes the dual variable. By

Lagrangian duality, the primal form in (2.1) is equivalent to the following:

min
Λi

max
xij

 n∑
i=1

m∑
j=1

riPijxij − µ
m∑
j=1

P̄j

n∑
i=1

xij ln(xij) +

n∑
i=1

Λi

bi − m∑
j=1

xijPij

 .

(2.2)

Under the Karush-Kuhn-Tucker (KKT) conditions, we can find the global maximum
of the above function by calculating its gradient with respect to xij , leaving us with

xij(Λi) = e
(ri−Λi)Pij

µP̄j
−1
.(2.3)

To fulfill the equality constraint in (2.1), we have that e−1
∑n
i=1 exp

(ri−Λi)Pij
P̄jµ

= 1,

Additionally, let

(2.4) Zj =
n∑
i=1

exp
(ri − Λi)Pij

P̄jµ
,

and this implies that

xij(Λi) =
1

Zj
exp

(ri − Λi)Pij
P̄jµ

.(2.5)
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If we now substitute xij into (2.2), we have that

(2.6) f(Λ) := µ
m∑
j=1

P̄j logZj + 〈Λ, b〉,

where Zj =
∑n
i=1 exp (

(ri−Λi)Pij
P̄jµ

) is known as normalization factor. To summarize,

µ accounts for regularization, as described before (2.1). Given optimal dual variable
Λ∗, the optimal primal solution x∗ is then

(2.7) x∗ij =
1

Zj
exp

(ri − Λ∗i )Pij
P̄jµ

.

The primal formulation (2.1) is thus converted to its dual form (2.6) by means of
Lagrangian duality. This is a well-studied topic in optimization, and more details
can be found in [11]. To obtain the optimal solution to the offline matching problem,
various first-order optimization algorithms can be applied, such as gradient descent
(GD) and stochastic gradient descent (SGD). In this work, the objective function is
minimized via GD with lingering radius (GDlin), a less computationally expensive,
state-of-the-art method [4] well-suited for solving resource allocation problems. Due
to our problem formulation, the gradients of our objective functions would not change
significantly in a sufficiently small gradient descent step, and therefore GDlin in general
leads to better performance.

2.2. Online Stationary Problem. The goal of an online matching algorithm
is to recommend products to customers as they arrive sequentially onto the webpage
in a way that not only maximizes reward, but also satisfies budget constraints. One
difficulty of the online problem is that as each customer arrives, their preference for any
particular item is unknown and must be learned in real time. To obtain a prediction of
the customer preferences in advance, e-commerce platforms often divide the customers
into different types, according to their demographics or other information. In the most
simplified online problems, each type of customer is assumed to arrive as a stationary
Poisson process. To learn their preferences Pij , which correspond to the likelihood
that a customer from type j buys item i, we apply reinforcement learning techniques.
By utilizing knowledge about the purchases of previous customers, we make product
allocation decisions for future arriving customers.

One commonly used technique to take the best possible action to maximize re-
ward, or to determine the best product to recommend to each customer type, is the
Upper Confidence Bound (UCB) algorithm [5]. The UCB algorithm is considered ideal
for our purposes mainly because it is not greedy, i.e., it does not always recommend an
item to a specific customer type if that item maximizes reward at a particular time.
The algorithm exemplifies the principle of optimism in face of uncertainty, recom-
mending items to each customer type until it exceeds some upper bound of certainty
of the expected reward of that item’s recommendation. This property allows us to
obtain an accurate estimate of Pij fairly early on, thus enabling us to achieve a more
accurate solution to the optimization problem. This approach is discussed in more
detail in Section 3.

In addition to using the UCB algorithm to recommend products to users, we
use online gradient descent, an online convex optimization method, to compute the
gradient of the objective function of each arriving customer, which is then used to
update the value of our dual variable Λ [18]. The online convex optimization compo-
nent of the algorithm is crucial in measuring the performance of our online integrated
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algorithm. We aim to compare our online solution to the optimal solution from the
offline problem, denoted by ft(Λ

∗, P ∗). In particular, Λ∗ refers to the optimal dual
variable and P ∗ refers to the ground truth preference matrix. Specifically, we seek to
minimize regret, which is defined as follows:

min
Λt,t∈[T ]

regretT =
T∑
t=1

min(ft(Λt, P
(t)))−

T∑
t=1

ft(Λ
∗, P ∗).(2.8)

The regret function essentially compares the online problem for each arriving customer
t to the optimal solution to the offline problem, where we know the sequence of
functions {f1, f2, ..., fT } in advance [15]. In other words, regret acts as a metric that
uses the offline problem as a benchmark for the online problem. The goal in solving the
online problem is to minimize this regret function, thus minimizing the loss incurred
due to error in optimization.

2.3. Online Non-stationary Problem. In the online non-stationary problem,
we consider a more realistic case: different types of customers arrive according to
non-stationary Poisson processes, in which their arrival rates are functions of time.
As in our integrated algorithm, we consider the regret of the online non-stationary
algorithm, defined in (2.8), and we again aim to minimize this regret function. Al-
though minimal literature exists on problems with non-stationary stochastic customer
arrivals, [16] discusses a non-stationary stochastic demand problem.

3. Online Integrated Algorithm. We now consider customer arrivals onto
a webpage in an online, or sequential, manner. Additionally, we assume no previ-
ous knowledge of customer preferences Pij , and learn this value as customers arrive.
The customers are assumed to arrive following a stationary Poisson process, where
the Poisson arrival rates are known. In this section, we describe the formulation
of the online stationary problem, and introduce an online integrated algorithm that
combines the Upper Confidence Bound (UCB) algorithm, which learns customer pref-
erences, with Online Gradient Descent (online GD), which tackles the optimization
component of the problem. By performing online learning and optimization together,
the integrated algorithm thus allows us to recommend the optimal product to each
customer, and study their purchasing behaviors at the same time.

3.1. Mathematical Formulation. In the online stationary problem, we as-
sume that a total of T customers arrive over the entire time period. The customers
arrive in a sequential manner, and when the tth customer arrives, the only informa-
tion we have is the information about the previous customers. Our objective is to
maximize the total expected reward for all customers by maximizing reward for any
given tth customer, where t ∈ [T ].

However, it is oftentimes too computationally expensive to learn the purchasing
behavior of every single customer and minimize the dual variable for each of them
separately. We therefore group the customers into different types based on their
demographics—as e-commerce platforms tend to do in practice—since customers from
the same background tend to display similar shopping behaviors. We assume that
there are m types of customers, and the customer preferences in each type are i.i.d.
We let the preference matrix Pij represent the probability that any customer of type
j buys item i, instead of the preference of a single customer. Additionally, we assume
the customers of type j arrive as a stationary Poisson process of rate λj . Therefore
by the superposition property of Poisson processes, we know that the probability that
the customer arrival is of type j is

λj∑m
s=1 λs

.
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The primal objective for the tth customer now becomes:

(3.1) max
xij

n∑
i=1

m∑
j=1

riPijxij
λj∑m
s=1 λs

,

s.t.
m∑
j=1

λj∑m
s=1 λs

Pijxij ≤
bi
T
, ∀i ∈ [n];

n∑
i=1

xij = 1, ∀j ∈ [m];

xij ≥ 0, ∀i ∈ [n], j ∈ [m].

Note that (3.1) now reflects the expected revenue we would obtain from the tth cus-
tomer arrival.

The above primal problem with the regularization term leads to the following:

min
Λi

max
xij

(
n∑
i=1

m∑
j=1

riPijxij
λj∑m
s=1 λs

− µ
m∑
j=1

λj∑m
s=1 λs

P̄j

n∑
i=1

xij log(xij)

+

n∑
i=1

Λi

bi
T
−

m∑
j=1

λj∑m
s=1 λs

Pijxij

),(3.2)

Similarly to the offline problem, assuming the Karush-Kuhn-Tucker (KKT) conditions
hold, we can globally maximize the Lagrangian (3.2) by calculating the gradient with
respect to xij , which implies:

xij(Λi) =
1

Zj
e

(ri−Λi)Pij
µP̄j ,(3.3)

where Zj =
∑n
i=1 e

(ri−Λi)Pij
µP̄j ensures the fulfillment of the equality constraint in (3.1).

Plugging in the form of xij from (3.3) to the Lagrangian (3.2) leads to the following
dual minimization problem:

(3.4) min
Λ
ft(Λ, P ) = min

Λ

µ m∑
j=1

λj∑m
s=1 λs

P̄j log(Zj) +
1

T
〈Λ, b〉

 .

Note that while ft denotes the objective function related to the tth customer, ft does
not depend on t. Similar to the offline case, after obtaining the optimal dual variable
Λ∗, we can obtain x∗ by applying (3.3).

In order to evaluate the performance of our online algorithm, we define the regret
function [18], which compares our online dual objective against the optimal dual
objective obtained in the corresponding offline problem:

Definition 3.1. Given an online algorithm and online minimization problem
(3.4), the regret of the algorithm at time T is:

regretT =
T∑
t=1

ft(Λt, P
(t))−

T∑
t=1

ft(Λ
∗, P ∗),
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where Λ∗ denotes the optimal dual variable in the offline problem and P ∗ is the un-
derlying ground truth customer preference matrix. At each iteration, we obtain the
preference matrix P (t) and dual variable Λt. Note that here the

∑T
t=1 ft(Λ

∗, P ∗) is
simply the optimal offline dual when the ground truth preference matrix is known.
Additionally, we define the average regret to be regretT

T .

Our goal of solving the online problem is to minimize this regret function, thus mini-
mizing the loss incurred due to error in optimization. Note that

min
Λt,t∈[T ]

regretT =
T∑
t=1

min(ft(Λt, P
(t)))−

T∑
t=1

ft(Λ
∗, P ∗),

which matches (2.8) as minimizing the regretT does not change the second term
because the values in the summation are fixed.

Note that in our problem set-up, customer preference P is initially unknown.
Not only do we need to solve the online stationary problem, we also need to gradually
learn P and to keep updating it as customers arrive. Therefore, when solving the
minimization problem in (3.4), the variable Pij will change as customers continue
arriving. In the following sections, we describe an integrated algorithm that allows us
to learn P and solve the optimization problem simultaneously.

3.2. Upper Confidence Bound (UCB) Algorithm. In Algorithm 3.1, we
introduce the UCB algorithm [12] used as part of our integrated algorithm. The UCB
algorithm, typically used in the context of multi-armed bandit problems, is relevant to
the online problem proposed here. It efficiently manages the trade-off between explo-
ration—learning of the customer preference matrix P , and exploitation—optimizing
ft(Λ, P ) during online matching given the current knowledge of P .

Here, we let D ∈ {0, 1}n×T denote a binary reward matrix, where each entry Dit

denotes whether or not the tth customer buys item i. By the time of the tth customer
arrival, we let Ni(t) denote the number of times item i has been selected and Ri(t)
be the amount of rewards we have already collected by assigning item i. The average
reward is denoted as r̄i(t) = Ri(t)/Ni(t). We define our UCB function as follows:

UCBi(t− 1) =

{
∞ if Ni(t− 1) = 0;

r̄i(t− 1) +
√

3 log(t)
2Ni(t−1) otherwise.

Note that the parameters in the definition of the upper confidence bound can in fact
be tuned depending on how much importance we place on the exploration component.

Algorithm 3.1 Upper Confidence Bound (UCB) Algorithm

Input: number of customer arrivals T , reward matrix D
Output: item assignments {i(t)}t=1,...,T

for t = 1, ..., T do
Choose the item to assign: i(t) = argmaxiUCBi(t− 1)
Observe reward D[i(t), t]
Ni(t) = Ni(t− 1) + 1;Ri(t) = Ri(t− 1) +D[i(t), t]

end for

In a typical setting, Algorithm 3.1 initially favors the exploration component, due
to small Ni(t− 1), but over time the algorithm would transition to a predominantly
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exploitatory phase, and r̄i(t − 1) would not be prone to large fluctuations as it was
already estimated with large number of selections Ni(t).

3.3. Online Gradient Descent (Online GD). Online GD [11] is an algorithm
similar to offline gradient descent. In the offline problem, since all the data is known
at the start of the matching process, we can compute the gradient of the full objective
function. However, in the online problem, since customers arrive one by one, our data
set grows over time as we learn more about the item preferences of each customer
type. Therefore, we can only use the data we have at a particular time to compute
gradients. Thus, we only iterate through the data set once, unlike in the offline GD,
where we loop through the data many times.

When applying online GD, we start from an initial Λ0 ∈ κ, where κ is a convex
set. Then we iterate through t = 1, ..., T , and at each iteration, we update Λt in the
following way:

yt+1 = Λt − ηt∇Λtft(Λt),

Λt+1 = projκ(yt+1) = argmins∈κ‖yt+1 − s‖.

Here, ηt ∈ R is the step size, and projκ(yt+1) is the projection of yt+1 onto a convex
set κ. Note that if yt+1 ∈ κ, then evidently Λt+1 = yt+1.

3.4. Integrated Algorithm. Combining the UCB algorithm and online GD, we
create an efficient integrated algorithm that solves the online stationary problem. Our
integrated algorithm relies on a learning component that updates customer preference
Pij , as well as an optimization component that finds the optimal assignment of items
that results in the highest expected reward. We assume that when the tth customer
arrives, we will first observe their type j and assign them to an item i using the UCB
algorithm. Then, based on whether the customer of type j purchases the item i or
not, we update P (t) to reflect a more accurate customer preference matrix: each entry

P
(t)
ij = R

(t)
ij /N

(t)
ij , where R

(t)
ij is the total number of times customers of type j purchase

item i, and N
(t)
ij is the total number of times item i gets assigned to customers of type

j until time t. We then use this P (t) in (3.4) and apply online GD to get the solution
for the dual variable. If the P (t) that we get at each iteration converges, we can halt
the UCB algorithm and only run online GD until the dual variables Λt also converge.
Our algorithm is summarized in Algorithm 3.2.

Note that since P (t) does not necessarily reflect the true preference matrix, the
optimization problem that we solve changes at each iteration as we update P (t). In
the following section, we theoretically show that as long as the number of customer
arrivals are sufficient, P (t) eventually converges to the true Pij .

3.5. Upper Bound of Average Regret. Recall that in the online model, our
goal is to minimize the regret, as defined in Definition 3.1. Here, we show that
using the integrated algorithm, the average regret converges to zero as the number of
customer arrivals approaches infinity.

Theorem 3.2. Consider Algorithm 3.2, we have:

lim sup
T→∞

regretT
T

= 0.

Proof. Recall that the optimal offline solution is the minimizer of (2.6), which can

be re-written as Λ∗ = argminΛ∈κ
∑T
t=1 ft(Λ, P

∗). Assuming Λ∗ ∈ κ, when projecting
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Algorithm 3.2 Online Integrated Algorithm

Input: Customer arrivals t = 1, ..., T , number of customer types m, number of
items n, budgets b ∈ Rn, rewards r ∈ Rn, initial preference matrix P (0) ∈ Rm×n,
initial dual variable Λ0 ∈ Rn, maximum number rounds of UCB Rmax.

Output: item assignments for t = 1, ..., T .

for t = 1, ..., T do
Observe the type of this customer: j = 1, ...,m.
if
∥∥P (t) − P (t−1)

∥∥ > ε and t ≤ Rmax then
Assign item i with maximum UCB value for customer type j.

else
Assign item i with Λt−1.

end if
Update P

(t)
ij = R

(t)
ij /N

(t)
ij .

Define ft(Λ) = ft(Λ, P
(t)) according to (3.4).

Λt = projκ{Λt−1 − ηt−1∇ft(Λt−1)}.
end for

yt+1 onto κ, we must have ‖Λt+1 − Λ∗‖ = ‖projκ(yt+1) − Λ∗‖ ≤ ‖yt+1 − Λ∗‖, where
yt+1 = Λt − ηt∇ft+1(Λt). Define 5t = 5Λft(Λt, P

(t)). We have that

‖yt+1 − Λ∗‖2 = ‖Λt − ηt 5t −Λ∗‖2 = ‖Λt − Λ∗‖2 + η2
t ‖ 5t ‖2 − 2ηt〈5t,Λt − Λ∗〉.

By the convexity of ft, which is ensured by appropriately tuning the regularization
parameter µ (see [17] for details), we get

(3.5)

ft(Λt, P
∗)− ft(Λ∗, P ∗) ≤ 〈5t,Λt − Λ∗〉

≤ 1

2ηt
(‖Λt − Λ∗‖2 − ‖Λt+1 − Λ∗‖2) +

ηt
2
‖ 5t ‖2.

Let D be the upper bound on diameter of the convex set κ; that is, ∀x, y ∈ κ, |x−y| ≤
D. In addition, as ft is assumed to be Lipschitz continuous, we let G be such that
‖5t ‖ ≤ G for all 1 ≤ t ≤ T and for all Λ ∈ κ, We define η = ηt = D

a
√
T

for 1 ≤ t ≤ T .

If we sum (3.5) over t we obtain

T∑
t=1

(ft(Λt, P
∗)− ft(Λ∗, P ∗)) ≤

1

2η
‖Λ1 − Λ∗‖2 +

η

2

T∑
t=1

‖ 5t ‖2

≤ 1

2η
D2 +

η

2
TG2

= GD
√
T .

Note that the function ft is different for the online and offline problems because in
the online problem, the preference P gets updated at each iteration. We have:

(3.6) ft(Λt, P
(t))−ft(Λ∗, P ∗) ≤ |ft(Λt, P (t))−ft(Λt, P ∗)|+ |ft(Λt, P ∗)−ft(Λ∗, P ∗)|.

If we sum over (3.6) for 1 ≤ t ≤ T , we get the following:

regretT ≤
T∑
t=1

|ft(Λt, P (t))− ft(Λt, P ∗)|+GD
√
T .
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Here, |ft(Λt, P (t)) − ft(Λt, P
∗)| represents the regret resulting from approximating

P ∗ with P (t). If we apply the UCB algorithm to obtain the approximations P (t) for
t = 1, ..., T , the total regret after T iterations is O(T log T ) [12]. That is, there exists
C > 0 such that

T∑
t=1

|ft(Λt, P (t))− ft(Λt, P ∗)| ≤ C
√
T log T .

Thus, we have

lim sup
T→∞

regretT
T

≤ lim sup
T→∞

C

√
log T

T
+GD

√
1

T
= 0

Thus, the average regret converges to 0 when T →∞.

4. Online Non-Stationary Problem. We now extend our previous discussion
to consider a more practical setting in which the customers arrive following non-
stationary Poisson processes. Removing the assumption of the stationary Poisson
processes leads to a more complex formulation of the online convex optimization
problem that cannot simply be solved using Algorithm 3.2. In existing literature of
the online optimization problem with heterogeneous customer arrivals, if the arrival
rates and customer preferences Pij are both known, we can apply methods such as
the Large-or-Small Algorithm [16]. However, there is no existing algorithm that can
perform online optimization without previous knowledge of arrival rates or customer
preferences Pij . The difficulty lies in that if we perform online learning for Pij , the
dual variables do not converge. Moreover, if the arrival processes are modeled as
non-stationary Poisson processes, then the probability that the next customer arrival
comes from type j is almost impossible to calculate.

In this section, we propose a time segmentation algorithm that can approximate
this probability and convert the non-stationary arrival problem into a series of station-
ary problems. We can then solve each stationary problem using the method discussed
in Section 3. We give a detailed description of this algorithm in Subsection 4.1, and
provide an upper bound of the average regret of this approach in Subsection 4.2.

4.1. Algorithm Description. In the online stationary problem, we obtain the
probability that the next customer arrival is of type j by directly invoking the super-
position property of Poisson processes. However, in a non-stationary Poisson process,
this probability continuously depends on time and thus cannot be simply computed as
a constant. To tackle this difficulty that arises, we assume that the Poisson rate func-
tion λj(t) changes slowly inside a sufficiently small time interval. This is a realistic
assumption since within a short time period—for example, 10 minutes—it is unlikely
that the density of customer arrivals would change drastically. The following discus-
sion thus relies on the assumption that the amount of the change of arrival rate func-
tion λj(t) in a specific time segment I, which is defined by maxt∈I λj(t)−mint∈I λj(t),
is bounded by some constant. As we shall see later, to perform an accurate and compu-
tationally feasible approximation, we would need both this constant to be sufficiently
small, and the length of the time interval I to be reasonably large. We make a further
assumption that the rate function λj(t) is bounded in any given time interval for all
1 ≤ j ≤ m. Note that the rate functions may still be discontinuous. An example rate
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function that satisfies the above assumptions would be:

λ(t) =

{
0.5 sin(t) + 30 0 ≤ t ≤ 1

0.01t+ 5 1 ≤ t ≤ 2
.

This represents a realistic setting when a website experiences heavier traffic during
the first hour, while the customer arrivals slow down in the second hour; however,
arrival rates within one hour do not change drastically.

We proceed to describe the main ideas behind the algorithm for the online non-
stationary problem. Recall the Piecewise Constant Approximation Theorem:

Theorem 4.1. If f is a continuous function defined on a compact set D ∈ R, it
can be uniformly approximated by a piecewise constant function.

Theorem 4.1 implies that we can use a piecewise constant function to approximate
each arrival rate function. In other words, there exists a series of time segments {I}
in which

max
t∈I

λj(t)−min
t∈I

λj(t) ≤ ε,

for a sufficiently small number ε. Inside each time segment, the rate functions can be
approximated as constants. In doing so, the non-stationary processes can be approx-
imated with multiple stationary Poisson processes in small time segments. However,
it is not computationally feasible to entirely rely on this approach. If we divide the
time span into small time segments based on the approximation in Theorem 4.1, the
length of time segments has to be extremely small in some cases in order to achieve
the desired accuracy. In such cases, we end up dealing with too many time segments.
Solving online stationary problems in a large number of time segments in these in-
stances leads to excessive computational cost. Therefore, we can only apply piecewise
constant approximation when the rate functions λj(t)’s all change extremely slowly
in a time segment of reasonable length. In our algorithm, we would refer to these
time segments as type A.

If the rate functions change moderately slowly, and we are unable to find a time
segment of sufficient length on which to perform piecewise constant approximation, we
turn to a different approach. Instead of approximating the arrival rates as constants,
we instead approximate the probability that the next customer arrival is of type j
directly. In particular, we find time segments in which the difference between the
upper and lower bounds of this probability is small. We then pick a random value
between the upper and lower bounds to be the approximated probability in that time
segment, without incurring significant loss in accuracy. In our algorithm, we refer to
these time segments as type B. To identify such a time segment, we first introduce
Lemma 4.2, which can be proved by contradiction.

Lemma 4.2. If f is a continuous function defined in some domain D, one can
divide D into disjoint segments I1, I2, ..., such that in each segment, the amount that
f changes is bounded by a given threshold v.

By choosing an appropriate threshold v � ε that bounds the amount of the change
of rate functions, one can control the amount of inaccuracy incurred by the approxi-
mation of the probability of next customer arrival being of type j. This is captured
in the following Theorem:

Theorem 4.3. Assume that during time period [t1, t2], for some v � ε > 0,

max
t∈[t1,t2]

λj(t)− min
t∈[t1,t2]

λj(t) ≤ v ∀1 ≤ j ≤ m.
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Let U(j), L(j) denote the upper and lower bound of probability that the arriving cus-
tomer is of type j during the time period [t1, t2]. Let Y =

∑m
j=1 maxs∈[t1,t2] λj(s) and

y =
∑m
j=1 mins∈[t1,t2] λj(s). Then,

(4.1) U(j) ≤
maxs∈[t1,t2] λj(s)

y
,

(4.2) L(j) ≥
mins∈[t1,t2] λj(s)

Y
.

It follows that if δ(j) = U(j)− L(j), we have:

(4.3) δ(j) ≤
mv2 + (y +mmins∈[t1,t2] λj(s))v

y2 +mvy
.

Proof. Note that maxs∈[t1,t2] λj(s) ≤ mins∈[t1,t2] λj(s) + v, Y ≤ y +mv, then by
(4.1) and (4.2), we get
(4.4)

δ(j) ≤
maxs∈[t1,t2] λj(s)

y
−

mins∈[t1,t2] λj(s)

Y
≤
mv2 + (y +mmins∈[t1,t2] λj(s))v

y2 +mvy

(4.3) demonstrates the relationship between the chosen threshold v and the difference
between the upper and lower bound δ(j). In the case when the rate functions change
moderately slowly, one can obtain an approximation of the probability that the next
customer arrival is of type j by controlling the changes of the arrival rate functions
inside each time segment. It is noteworthy that δ(j) not only depends on v, but also
depends on rate functions inside specific time segments. Therefore, even if we seek a
constant confidence bound δ(j), the desired values of v will vary at different times.

Algorithm 4.1 Time Segmentation

Input: rate functions λj(t), time span [t0, tend], parameters ε, δ, d > 0
Output: time segments I1, I2, ..., Il

while t < tend do
for j = 1, ...,m do

compute the largest tj s.t. maxs∈[t,tj ] λj(s)−mins∈[t,tj ] λj(s) ≤ ε
end for
t∗ ← minj∈[m] tj
if t∗ − t ≥ d then

Add [t, t∗] as one of the time segments, and mark it as type A; t← t∗

break
else

Solve mv2 + (
∑
j λj(t) +mλj(t)− δm

∑
j λj(t))v − δ(

∑
j λj(t))

2 = 0 for v
for j = 1, ...,m do

compute the largest t′j s.t. maxs∈[t,t′j ]
λj(s)−mins∈[t,t′j ]

λj(s) ≤ v
end for
t∗ ← minj∈[m] t

′
j

Add [t, t∗] as one of the time segments, and mark it as type B; t← t∗

end if
end while
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In Algorithm 4.1, we propose a time segmentation algorithm that divides the
entire time span into small time segments. Note that we always first look for time
segments of type A, in which we can perform piecewise constant approximation. How-
ever, if such time segments do not have sufficient length, we turn to look for time
segments of type B, for which we can approximate the probability of the next cus-
tomer arrival being a particular type. For the time segments {I(A)} that are marked
as type A, we select a random t ∈ I(A) and approximate the arrival rates as a fixed
number: λj(t) ≈ λj . We can then solve the non-stationary problem in this time
segment as an online stationary problem. On the other hand, for the time segments
{I(B)} that are marked as type B, we compute U(j) and L(j) as in (4.1) and (4.2).

We then approximate
λj∑m
s=1 λs

as a random number between U(j) and L(j). Note

that these approximated numbers do not necessarily sum up to one, but their sum
would not deviate too much from one as long as each δ(j) = U(j)−L(j) is sufficiently
small, which can be controlled by threshold v. In this way, we again approximate
the non-stationary problem as a stationary problem in this time segment. To solve
the online stationary problem in each time segment, we simply apply the integrated
Algorithm 3.2, using both UCB and online GD. In practice, when the number of cus-
tomer arrivals in each time segment is large, the dual variables should converge before
reaching the end of the time segment.

4.2. Upper Bound of Average Regret. To solve an online non-stationary
problem, we first apply Algorithm 4.1 to divide the time span into small time segments,
and then apply Algorithm 3.2 to solve the online stationary problem within each time
segment. As in Section 3, we now provide an analysis of the average regret bound
of this approach. Since the online non-stationary algorithm involves both the time
segmentation algorithm and the integrated algorithm, the regret computation here
requires our previous analysis of UCB and online GD. Our analysis over the average
regret bound here will be focused on a single time segment.

Theorem 4.4. Consider the online non-stationary algorithm described in Sub-
section 4.1, in a specific time segment I, we have:

(4.5) lim sup
T→∞

regretT
T

≤ Rδ

where T is total number of customer arrivals in I, δ is the confidence bound used for
type B time segments and R = m(µ log n+ r∗), where r∗ = maxi∈[n] ri.

Proof. As in the proof of Theorem 3.2, we define ft(Λ, P ) to be the dual objective

at time t. We let Λ∗ = argmin
∑T
t=1 ft(Λ, P

∗), where P ∗ is the ground truth preference
matrix. We denote Λt and P (t) as the dual variable and preference matrix obtained
by our algorithm at time t. Here, we additionally define f

′

t (Λt, P
(t)) to be the dual

objective function of the online non-stationary problem:

f
′

t (Λt, P
(t)) = µ

m∑
j=1

P̄
(t)
j log(Zj(Λt, P

(t)))φj(t) +
1

T
〈Λt, b〉,

where P̄
(t)
j = maxi P

(t)
ij , Zj(Λt, P

(t)) =
∑
i∈[n] exp (

(ri−Λt,i)P
(t)
ij

P̄
(t)
j µ

), and φj(t) represents

the ground truth probability that the next customer arrival is of type j at time t. The
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regret achieved at time t is thus:

(4.6)

regrettT = f
′

t (Λt, P
(t))− ft(Λ∗, P ∗)

≤ |f
′

t (Λt, P
(t))− ft(Λt, P (t))|+ |ft(Λt, P (t))− ft(Λt, P ∗)|

+ |ft(Λt, P ∗)− ft(Λ∗, P ∗)|,

As before, P (t) is the preference matrix we have at time t while P ∗ is the ground
truth preference matrix.

Using the same techniques as in the proof of Theorem 3.2, we can show that the
average of the last two terms in (4.6) will converge to zero as T → ∞. Hence, it
suffices to show the convergence of the average of the first term, which captures the
regret from approximating the non-stationary problem with a stationary problem.
Recall that the dual objective of the online-stationary problem is defined as follows
in (3.4):

ft(Λt, P
(t)) = µ

m∑
j=1

λj∑m
s=1 λs

P̄
(t)
j log(Zj(Λt, P

(t))) +
1

T
〈Λt, b〉,

where

Zj(Λt, P
(t)) =

n∑
i=1

exp

(
(ri − Λt,i)P

(t)
ij

µP̄
(t)
j

)
≤ n exp

(
r∗

µ

)
,

since P
(t)
ij ≤ P̄

(t)
j . Hence, we must have

log(Zj) ≤ log(n) +
r∗

µ
∀j ∈ [m].

Additionally, note that∣∣∣∣ λj∑m
s=1 λs

− φj(t)
∣∣∣∣ ≤ max

(
ε

mmins λs
, δ

)
,

where the first term in the maximum on the right hand side results from time segments
of type A, and the second term results from the confidence bound δ in time segments
of type B. Realistically, the number of customers who arrive at an online marketplace
per second are of the order of thousands or millions. Therefore, the customer arrival
rates λs’s are of substantial magnitude. We can choose ε sufficiently small such that

ε
mmins λs

� δ. Now, if we define R = m(µ log n + r∗), we can bound the difference

between ft(Λt, P
(t)) and f

′

t (Λt, P
(t)) with the following:

|f
′

t (Λt, P
(t))− ft(Λt, P (t))| ≤ Rδ,

It follows that:

(4.7) lim sup
T→∞

regretT
T

≤ lim sup
T→∞

∑T
t=1 |f

′

t (Λt, P
(t))− ft(Λt, P (t))|
T

≤ Rδ.

From Theorem 4.4, we can see that the average regret does not converge to 0, but
instead converges to a constant. In particular, δ corresponds to the confidence bound
that we use in the type B time segments. Theoretically, by setting δ sufficiently small,
we can control the average regret to converge to a number close to 0. Another trade-
off certainly needs to be taken into account: as we decrease the regret, computational
complexity will increase. However, as our numerical experiments later demonstrates,
as long as we keep the value of confidence bound reasonably small, the average regret
tends to become negligible as the number of customers get larger.
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5. Numerical Study. In this section, we performed a number of numerical ex-
periments to test the efficacy of our proposed algorithms, and all experiments were
run on macOS Sierra with a 2.7 GHz Intel Core i5 processor and 8GB memory, using
code written in Python. We create different synthetic datasets that simulate customer
preferences and arrivals following stationary or non-stationary Poisson processes. In
order to make our problem non-trivial, we choose set-ups which guarantee that cer-
tain products will be sold out, while other products will have remaining budget in the
optimal offline solution. We first apply Algorithm 3.2 to solve a set of online station-
ary problems and compare its empirical performance against a greedy heuristic. We
then present experiments with non-stationary Poisson customer arrival processes and
apply Algorithm 4.1 along with the integrated algorithm. In all of the experiments,
we examine the convergences of the average regrets and check whether they match
the theoretical results in Section 3 and Section 4. The results of these numerical
experiments confirm the effectiveness of our approach in tackling resource allocation
problems in different settings.

5.1. Online Stationary Experiments. We first apply Algorithm 3.2 to a series
of online stationary problems with varying numbers of customer arrivals. We compare
its performance with a greedy heuristic, which simply matches each incoming customer
to the product with largest reward available. The metric for evaluating algorithm
performance is the average regret, as defined in Definition 3.1.

We test our online stationary problem with four different sizes of total customer
arrivals: 1, 000, 10, 000, 100, 000, 1, 000, 000. Each of them has the same initial set-up:

• There are m = 10 types of customers and d = 10 products to be assigned.
• The jth type of customer arrives as a stationary Poisson process with constant

arrival rate λj = 0.1j.
• Each customer’s ground truth preference is drawn from a normalized beta

distribution Beta(α, β), where 1 ≤ α ≤ 3 and 3 ≤ β ≤ 6, so that the buying
behavior of different types of customers differ from each other. Our algorithm
does not have any previous knowledge of the ground truth preference matrix
P ∗; instead, it learns preferences as the customers arrive.
• The budgets of products range between 10% and 30% of the total population,

while their rewards range from 0.1 to 1. The products with higher rewards
tend to have lower budgets, and there exists a trade-off between the number
of products that can be assigned and the reward value it can generate.

With the above set-up, we demonstrate the potential of integrated algorithm in solving
a challenging resource allocation problem.

We first examine the algorithm’s ability in learning customer preferences. Recall
that in the beginning of the algorithm, we do not have any past knowledge of Pij .
As each customer arrives, we assign them to a product either by UCB or by the
solution we reach from online GD. After a type j customer gets assigned a product
i, they will accept or decline the item based on their buying preferences. Based on
this new outcome, we update the entry Pij to more accurately reflect this customer’s
preferences. We expect that as more customers arrive and get assigned to different
types of products, our preference matrix P will eventually converge to the ground
truth matrix P ∗. In the experiment with 100,000 customers, we perform the UCB
algorithm for the first 20,000 incoming customers and rely on the solution from online
GD afterwards. Figure 1 shows the convergence of P under this setting, in which we
can see that P hits the convergence horizon, approaching P ∗ in the first 5,000 customer
arrivals. After we stop applying the UCB algorithm, the value of ||P −P ∗||F remains
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Fig. 1: The Frobenius norm between the ground truth P ∗ and our preference matrix
P with every thousand customer arrivals.

stable because the customer preferences that we have learned closely matches the
actual purchasing behavior. We additionally note that P no longer approaches P ∗

quickly after the first few thousand arrivals. This is because after the application of
the UCB algorithm in the beginning, the algorithm develops a good understanding
of which customers have higher probabilities of purchasing certain products, thus
avoiding matching those customers to products they are unlikely to buy. Therefore,
it is difficult for the customer preferences for those products to approach extreme
accuracy. However, since most entries of P and P ∗ are sufficiently close, the remaining
inaccuracy will not prevent the algorithm from making an optimal product allocation,
and the regret introduced is minimal.

Number of
Customers

Offline Dual Optimal
Objective Value

Online Dual
Objective Value

Average
Regret

Runtime

1,000 324.93 861.18 0.536 0.7s

10,000 3251.91 4671.50 0.142 7.5s

100,000 32480.30 29947.76 0.051 120s

1,000,000 325171.14 295788.51 0.032 300s

Table 1: Results of online stationary experiments. We obtain the optimal offline dual
objective by applying the first-order method GDlin [4].

In Table 1, we record the average regret and runtime obtained by Algorithm 3.2.
We can clearly see that the average regret decreases as the size of data gets larger.
While the performance of the integrated algorithm is far from optimal in the first 1,000
customer arrivals, the dual variable already converges to the near-optimal solution
when the size of the customer reaches 100,000, thus leading to a much smaller average
regret. To further reduce the computational costs, we additionally choose to apply
UCB and online GD sufficient number of times such that the dual variable no longer
experiences drastic changes, i.e., when ||Λt − Λt−1|| < γ for some small threshold
γ. When this threshold condition is reached at time t = T , we would simply assign
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products based on ΛT from then on. We observe that in the experiment with 100,000
customer arrivals, after applying around 20,000 rounds of UCB and around 40,000
rounds of online GD, the dual variable already converges and requires no further
computation. Therefore, we expect the runtime of the algorithm to remain at a
considerably small value, as shown in the last column.

(a) Item selection by the greedy algorithm. (b) Item selection by Algorithm 3.2.

Fig. 2: Number of times each product is selected.

We have compared the results of Algorithm 3.2 with those of the greedy heuristic
by directly comparing the revenue generated from the two approaches. In the greedy
heuristic, each incoming customer is shown the product available with the highest
reward until that product is fully consumed. In Figure 2, we show the number of
times that each product is presented to customers by the greedy algorithm and the
integrated algorithm, respectively. We can tell that the integrated algorithm is not
greedy since it does not select an item solely based on its reward value. However,
each customer might have a different preference for the product with highest reward,
so intuitively we expect this approach to be somewhat naive and not necessarily lead
to the optimal outcome.

Number of
Customers

Offline
Revenue

Greedy Algorithm
Revenue

Integrated Algorithm
Revenue

1,000 324.93 198.00 154.00

10,000 3251.81 2024.80 2841.40

100,000 32413.36 20365.60 31438.10

1,000,000 324240.92 203584.80 315435.10

Table 2: Revenues generated with the offline approach, the greedy algorithm and
Algorithm 3.2.

This disparity in customer preferences is also indicated by our experiment results,
which are shown in Table 2. The first column records the optimal revenue that we
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can achieve if we are to solve the corresponding offline problem. When the number
of customer arrivals is small (e.g., 1,000), the greedy approach gives a higher revenue
than the integrated algorithm; this is because the integrated algorithm has not gone
through a sufficient number of online GD iterations for the dual variable to converge.
As the sizes of data later increases, we observe that the revenue generated by the
integrated algorithm is closer to the optimal revenue achieved in the offline problem
and also exceeds that of the greedy heuristics. We additionally note that there can
be cases where the greedy heuristics might give better performance. For instance,
when the customer preferences for each product are close to each other, choosing the
product with the highest reward is essentially the optimal solution. However, since
customer preferences in realistic settings tend to have more variance, the integrated
algorithm would almost always allocate the better product.

5.2. Online Non-Stationary Experiments. We now move on to test the
performance of the proposed online non-stationary algorithm, which combines Algo-
rithm 3.2 and Algorithm 4.1. Recall that we do this by converting the non-stationary
problem into a series of stationary problems and then solving each of the stationary
problems accordingly. In this subsection, we present two representative experiments,
each having initial set-ups that make the problem non-trivial: the first experiment
comes with extreme budget constraints, while the second is closer to a realistic setting,
where the products have diverse rewards.

5.2.1. Experiments with Extreme Budget Constraints. In the first set of
experiments for the non-stationary problem, the following set up is considered:

• There are m = 10 types of customers and d = 10 products to be assigned.
• Each type of customer is associated with an arrival rate function that changes

fairly slowly. Figure 3 shows some example rate functions that we consider.
• We draw the ground truth customer preference matrix P ∗ randomly from

a Uniform(0, 1) distribution, sampling with replacement, with probability
weights on 0.9 and 0.1, as we want to create scenarios where the probability
of a customer getting recommended each item is low or high.
• One product has infinite budget, two have small budgets (10% of the popu-

lation) and the rest have minimal budgets (1% of the population).
• The reward of each product is set to be uniformly 1.

Fig. 3: The rate functions λj(t) of each type of customer used in the experiment with
60,000 customer arrivals. There are two trigonometric functions, four linear functions
and four quadratic functions.
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(a) Customers Type 4. (b) Customer Type 9.

Fig. 4: Number of customer arrivals each hour in the 1M experiment.

We performed experiments using three different sizes of data, which includes: (1)
a population of 6,000 people arriving in an hour, (2) a population of 60,000 people
arriving in 10 hours, and (3) a population of 1,000,000 people arriving in 24 hours.
We scaled the rate functions in accordance with the length of the time span to keep
the experimental set-ups consistent. In Figure 4, we plot the number of customer
arrivals each hour in the experiment with 1,000,000 customers for two different types
of customers. We can clearly observe that the numbers vary with the hours, and that
different types of customers have different arrival patterns.

In Figure 5, we plot the number of each product assigned to the customers in
the experiment with 1,000,000 customer arrivals. The result is as expected: all the
products with minimal or large budgets have been sold to customers who have higher
preference for those products, and the only product that has remaining budget is the
one with infinite budget. As before, we not only care about the assignment of items,
but also how close our dual variable is to the optimal solution. We thus move on to
compute the online dual objective and evaluate its performance via average regret.

Fig. 5: The item assignment of the 1M experiment with extreme budget constraints.
Items are sorted in ascending order by values of their budget constraints.

Table 3 reports the results of the experiments across all three different sizes of
data. We computed the optimal offline dual objective mentioned in Subsection 2.1.
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We computed the online dual objective using (3.4), and the total regret using Def-
inition 3.1. We observe that average regret decreases as we increase the size of
data, which confirms the theoretical result in Theorem 4.4. When applying the non-
stationary algorithm, we set the number of rounds of UCB and online GD we wish
to apply inside each time segment, which mainly determines the runtime of the algo-
rithm. Here, as we make the size of the data larger, the number of rounds of UCB
and gradient computations needed to achieve the convergence of the dual variable
increases accordingly, and the runtime scales up roughly linearly.

Number of
Customers

Offline Dual Optimal
Objective Value

Online Dual
Objective Value

Average
Regret

Runtime

6,000 612.54 900.58 0.0454 5s

60,000 6222.43 6843.15 0.0101 40s

1,000,000 98547.03 105854.78 0.0076 940s

Table 3: Results of experiment with extreme budget constraints. We obtain the
optimal offline dual objective by applying GDlin.

5.2.2. Experiments with Varying Rewards. We also performed another ex-
periment with varying reward values such that the assignment of the items are not
solely based on their budget constraints and customer preferences, which reflects a
more realistic setting. The set-ups of this experiment remain the same as the previous
experiment, with the following exceptions:

• Instead of applying the extreme budgets constraints as before, we select one
product to have fairly large budget (66.67% of the population) and let the
rest of the products have fairly small budgets (10% of the population).
• The rewards of products vary from 0.2 to 1. In particular, the product with

the most budget is associated with a reward value of 0.2, so this product
should be the least favorable to most customers.

Fig. 6: The item assignment of the experiment with 1,000,000 customer arrivals and
varying rewards. Items are sorted in descending order by values of their rewards.

The result of the experiment with 1,000,000 customer arrivals can be seen in
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Figure 6. Observe that our algorithm ensures that the four items with highest rewards
have been fully sold out, while the rest still have remaining budgets in the end. It is
noteworthy that even the items with low rewards have been sold to some extent, due
to the exploration component of the UCB algorithm, as explained in Subsection 3.2.
Overall, such a solution matches our expectation of a near-optimal solution.

We again compared the results across three different sizes of data, which can be
seen in Table 4. As before, we can observe that average regret decreases as the number
of customer arrivals increase. The runtime is similar to the first set of experiments,
which are reasonable in terms of the size of data. Overall, our experiments have shown
that the non-stationary algorithm has a good potential of being applied to real-world
online product allocation problems.

Number of
Customers

Offline Dual Optimal
Objective Value

Online Dual
Objective Value

Average
Regret

Runtime

6,000 608.97 549.35 0.0199 4s

60,000 6217.12 5539.41 0.0114 36s

1,000,000 97060.83 95482.46 0.0025 957s

Table 4: Results of experiment with varying rewards.

6. Conclusion. In this work, we propose algorithms that tackle the online re-
source allocation problem, in which we aim to recommend each customer with an item
in ways that not only maximize potential reward, but also satisfy budget constraints.
In order to find the optimal solution to our online objective function, we first must
learn the preferences, or Pij , for each customer type. To learn the probability that
a customer in a certain type purchases a given item, we use the Upper Confidence
Bound (UCB) algorithm, which decides which item to recommend to a customer.
When the customer arrives, we observe whether or not they have purchased the item
recommended to them and update our customer preference variable, Pij . We incor-
porate this value into our objective function, and apply online Gradient Descent to
minimize our dual function. Over time, as more customers arrive, the estimations
for the Pij values become more accurate, and the UCB algorithm is able to make
better recommendations, ones that have a higher probability of reward. Overall, our
online stationary algorithm combines reinforcement learning with online optimization
to minimize our dual function and find the optimal solution. Our tests on this novel
algorithm support our theory that regret of this algorithm approaches zero when the
number of customers is sufficiently large, and that our algorithm produces a better
solution than greedy heuristics.

Although our online stationary algorithm performs well, customers do not always
arrive following a stationary Poisson process. In a more realistic scenario, the rate
at which customers arrive varies over time. This motivated us to consider the online
non-stationary problem, in which customers arrive onto the webpage following a non-
stationary Poisson process. When we remove the assumption of customer arrival
following a stationary Poisson processes, we are met with complexity in formulating
the online convex optimization problem, as this type of problem cannot simply be
solved using the proposed online stationary algorithm. An additional difficulty lies in
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that if we do online learning for Pij , the dual variables will not necessarily converge.
Moreover, if the arrival processes are modeled as non-stationary Poisson processes,
then the probability that the new arriving customer comes from type j is almost
impossible to compute. Our non-stationary algorithm approaches these difficulties
by dividing the non-stationary problem into several stationary problems, under the
assumption that the arrival rate functions of different customers change fairly slowly
in a small time segment. We have shown theoretically that the regret of the online
non-stationary algorithm should approach a small value near zero when the number
of customers is sufficiently large. Our empirical results with both extreme budget
constraints and non-trivial budget constraints also support this theoretical result.

7. Future Work. There are many rich, exciting directions that one can pursue
with this work. In the product recommendation model we propose above, we have
considered a rather simplified scenario, matching each customer with one product
at a time and aiming to maximize the expected profit brought by this assignment.
However, one can in fact make the current model more realistic by introducing more
complications: (1) When each customer arrives, an e-commerce platform can in fact
display a set of products to the customer at the same time. (2) The user engagement
that a website wishes to maximize is not necessarily the reward values, but the number
of clicks or the dwell time that a user spend on the webpages. (3) Sometimes there
are more business contraints to consider, e.g., one needs to guarantee a fixed number
of selections for a certain product.

One potential future direction of this work is to take the additional settings above
into the model construction, and develop variants of the proposed algorithms that can
deal with these more complicated situations. Specifically, it would be useful to improve
the practicality of the algorithm by considering a dynamic segmentation approach,
such as recursive partitioning. Since we group customers by buying preferences, which
is static, we run into the problem of a positive feedback loop: by recommending the
same products to each customer type, we may reinforce our recommendations over
time. Dynamic segmentation approaches, therefore, would be useful in circumventing
this issue.

Further, the budget constraints considered in the non-stationary experiments are
mostly extreme constraints, in which one product has a much larger budget than the
others. However, existing work like [8] suggests that inventory levels may also have an
impact a firm’s strategies. It would be interesting to consider other types of budget
constraints and examine how the algorithm adapts to different budget scenarios.

In addition, improvements can also be made towards the performance of the
proposed online stationary and non-stationary algorithms. While the runtime of the
algorithms are reasonable considering the large scale of the data, one might further
decrease the runtime of these algorithms with the application of parallel computing.
This would enable our algorithms to have the potential of being applied in real-world
settings, where e-commerce companies oftentimes need to deal with even larger scale
of customer arrivals in a shorter period of time, e.g., a million customer arrivals within
a second. Throughout our analysis of algorithm performance, we have only tested our
algorithms with synthetic data; therefore, we are also interested in understanding how
they perform when dealing with real-world datasets.
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Appendix A. Notations. Table 5 records symbols used throughout the paper.

n Number of items
m Number of customer types
i Item indices, i ∈ [1, n]
j Customer type indices , j ∈ [1,m]
ri Reward in terms of revenue for the company for a given

customer buying certain item i
bi Budget constraint of item i, b ∈ Rn
xij Probability that a customer of type j gets recommended

item i
Pij Probability that a customer of type j will buy item i given

that they are offered item i
P ∗ Ground truth preference matrix
Λ∗ Optimal dual variable
P̄j For a given customer of type j, his highest possibility of

buying any particular product, i.e., P̄j = maxi Pij
µ Regularization parameter
Λ Dual variable vector of dimension n
ηt Step size in optimization algorithm at an iteration

Table 5: Table of Notations
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