
Stochastic Automata Networks and Tensors with Application to

Chemical Kinetics

Marie Neubrander∗

Advisor: Roger B. Sidje†

Department of Mathematics, University of Alabama
Tuscaloosa, Alabama

Abstract

Often, given a system of biochemical reactions, it is useful to be able to predict the system’s future
state from the initial quantities of the involved molecules. There are methodologies for developing
such predictions, ranging from simple approaches such as Monte Carlo simulations to more sophisticated
higher-order tensors and stochastic automata networks. Many revolve around solving the chemical master
equation that arises in the modeling of the underlying biochemical kinetics. This work considers the case
of dealing with the resulting high-dimensional data and shows how tensor representations allow us to
cope with the “curse of dimensionality” that significantly complicates such problems. A key outcome
in this work is the demonstration of the inherent differences and similarities between two prominent
modeling methods, by computational examples on one hand and a mathematical proof on the other
hand. Applications where biochemical reactions occur are found in a variety of scenarios, including
enzyme kinetics and genetics. Tensor-based solutions may have applications in dealing with many other
high dimensional data outside of strictly chemical reaction systems.

1 Introduction

In all fields of study, there is an ever increasing need to effectively handle large quantities of data. In
particular, models for complex real-world systems frequently require huge data sets that must be stored
to allow for efficient mining, analysis, and computations. In this context, one often has to manage high-
dimensional data—data with a large number of variables being captured; multidimensional arrays, also
known as tensors, are a useful means of handling such data.

One area of particular interest that deals with high dimensional data is in analyzing biochemical reaction
systems; in this work, we model these systems as continuous time Markov processes via the chemical master
equation (CME), as is discussed for instance in [3, 4, 7, 8, 9]. Such systems consist of a collection of species of
molecules and a set of chemical reactions, each with an associated reaction rate; the primary aim is to predict
the probability of having certain quantities of each species present at various time points. A particular focus
of the literature on the CME is in the creation of the CME operator (effectively, a transition matrix) as this
problem is large scale, high dimensional, and fundamental to the goal of predicting probabilities.

In 2011, Hegland et al. [3] initiated a method for using tensors in the CME and in the generation of the
CME operator; in 2014, Kazeev et. al [4] showed how tensor train decomposition can further improve the
efficiency of this tensor-based approach. Prior to these developments, Wolf [9] had earlier introduced a CME

∗mneubrander@crimson.ua.edu
†roger.b.sidje@ua.edu

 Copyright © SIAM
 Unauthorized reproduction of this article is prohibited

116

method based on stochastic automata networks. However, the work [9] did not present its algorithm in a
straightforward programmatic form, nor did it dwell on improving efficiency via tensor train compressions
as in [4]. Consequently, most of the subsequent attention in the literature has gone to non-SAN approaches.

In this work, we notice the potential for further exploration of SAN-based methods and remodel the
algorithm presented in [9] into a more compact algebraic representation. Via computational examples and
mathematical proof, we demonstrate the fundamental similarity between Hegland et al.’s operator and Wolf’s.
This similarity reveals that tensor compressions that were subsequently applied in Kazeev et al. [4] with the
representation in Hegland et al. [3] could have been done with the representation in Wolf [9] as well.

The paper first introduces in Section 2 fundamental mathematical tools, including tensors, stochastic
automata networks, and notations for representing chemical reactions; in Section 3, we outline the basic
principles of the CME. Section 4 describes in detail two prominent methods used in modeling via the CME,
compares results of the two methods via computational examples, and gives a mathematical proof that
the similarities seen in the examples hold in all cases—this is the main contribution of the work. Finally,
Section 5 presents ideas for generalizing our results and for potential future works.

2 Mathematical Background and Notation

Before beginning modeling reaction systems, we will first go over necessary notations and definitions relating
to matrices, tensors, automata networks, and chemical reactions.

2.1 Matrices and Tensors

An N -dimensional (or order-N) tensor is an array X∈ RI1×I2×···×IN where for n = 1, 2, . . . , N , the size of
the nth dimension is In and the indexing range is therefore 1 to In (or 0 to In − 1 if indexing is zero-based);
elements are referenced by the notation Xi1,i2,...,iN —which corresponds to the element (i1, i2, . . . , iN) of X—
for in in the nth dimension’s indexing range [5]. As shown in Figure 1, one-dimensional and two-dimensional
tensors are vectors and matrices, respectively; a three-dimensional tensor may be visualized in a 3D structure
and thought of as several equal-sized matrices stacked on top of each other.

Figure 1: Visualization of 1st, 2nd, and 3rd order tensors in RI , RI×J , and RI×J×K , respectively.

While these can be easily visualized in 1D, 2D, and 3D as gridpoints as is shown in Figure 2, visualization
is harder in higher dimensions, but the concept of gridpoints extends to integer lattices or hyper-rectangles.
One additional concept necessary to define for tensors are slices, which are given by fixing all indices of a

Figure 2: 1D, 2D, and 3D gridpoint visualization.

117

tensor except for two [5]. As an example, the stacked matrices composing the 3rd order tensor of Figure 1
are slices fixed on the third index.

Basic Operations: Addition, Multiplication, etc.

Throughout this work, we employ several standard matrix operations; the two most relevant are addition
and multiplication. Matrix addition is performed on two I×J matrices A and B where the resultant matrix
C has element cij given by

cij = aij + bij

This definition of matrix addition extends naturally to higher order tensors. Standard matrix multiplication
between an I × J matrix A and an J ×K matrix B yields an I ×K matrix C with element cik given by

cik =
J∑
j=1

aijbjk.

Extending such matrix multiplication to 3rd or higher order tensors leads to schemas of varying sophistica-
tion [5].

Advanced Operations: Kronecker, etc.

Beyond standard matrix multiplication and addition, we can also define several more complex operations,
such as the Hadamard, Khatri-Rao, and Kronecker products [5]; of these, the Kronecker product (also known
as the tensor product) is the most important to this work. This product of two matrices A (size I × J) and
B (size K × L) is denoted A⊗B and results in a matrix of size (IK)× (JL). It is defined as

A⊗B =


a11B a12B . . . a1JB
a21B a22B . . . a2JB

...
...

. . .
...

aI1B aI2B . . . aIJB

 ,

which contains each element of A scalar-multiplied by B [5].

2.2 Stochastic Automata Networks

Now that we have introduced tensors, we turn to automata networks with an underlying continuous time
Markov Chain methodology.

2.2.1 Finite Automata and Regular Expressions

Before expanding to the concept of stochastic automata, we will first introduce finite automata, a simple
but powerful mechanism for machines to recognize patterns. Given an input, a finite state automata can
transition between various states and determine whether the final state matches a desired output [1]. There
exist two types of finite automata: non-deterministic (NFA) and deterministic (DFA); our focus will be on
DFA. DFA consist of a set of states (including a starting state and a final state), set of inputs, and a function
indicating how states transition between each other. Additionally, in DFA, any given set of inputs leads to
exactly one set of transitions and one output [1]. One useful way of representing DFA is via diagrams or
tables of state changes.

2.2.2 Transition Diagrams and Tables

The concept of DFA becomes substantially clearer through an example. For instance, say we wanted to
represent the regular expression (a|b)?abb using DFA (as is presented in [1]). Here, we are taking in strings

118

of any length of a′s and b′s; we are looking specifically for a string beginning with any combinations of a
and b, followed by the sequence abb. In this example, a and b make up the input alphabet and the state
of reaching abb is the final state. Figure 3 contains the corresponding DFA transition diagram and table,
where states have been enumerated from 0 to 3 with 0 as the starting state and 3 as the ending state. In
the diagram, the arrows indicate the state transitions caused by the set of inputs. In the table, the left
“State” column indicates a state before a transition; after input a or b, there is a transition to the state in
the corresponding column. A blank entry indicates there is no change, corresponding to a self-loop in the
diagram.

0start 1 2 3

b

a b

a

a

b

b

a

State a b
0 1
1 2
2 1 3
3 1 0

Figure 3: DFA transition diagram (left) and table (right) for the regular expression (a|b)?abb.

To see the automata in action, take for instance the input string aabb, which results in one possible
transition between states given by

0
a−→ 1

a−→ 1
b−→ 2

b−→ 3.

While these representations may not be realistic for very large-scale examples, they do provide benefits for
visualizing and understanding the functioning of systems [1].

2.2.3 Stochastic Automata Networks

In order to outline stochastic automata networks, we must first define stochastic automata. Stochastic
automata with finite number of states are similar to finite automata in that there is a finite set of states with
a transition function mapping a next state for each given state; like DFA, a single transition from a particular
state leads to a unique state. However, unlike in finite automata, in stochastic automata, each transition
has a certain probability of happening. For a given state, the sum of probabilities of leaving the state via
different transitions should sum to one. A stochastic automata network is then formed by analyzing the
interaction of several stochastic automata together; an example of this in the context of chemical reaction
systems will be given in Section 3.2.

2.3 Biochemical Reaction Systems

The final background we will introduce is the language and notation used to represent biochemical reaction
systems. Additionally, we will define the Michaelis-Menten Reaction System—a simple but important system
that will frequently serve as an illustrative example.

2.3.1 General Reaction Systems

When discussing a reaction system, there are several key components, including the species of molecules
involved with the reactions, the quantities of each species present, the equations for the reactions themselves,
and the rates at which the reactions occur; the notations presented in this section are similar to but modified
from notations seen in other literature in the field, such as in [4, 9]. First, we define J to be the number of
types of molecular species in the reaction system; the species are given by Sj for j = 1, 2, . . . , J . Additionally,
we want to describe the quantities of the various species present at some point in time; for this, letting N be

119

the set of natural numbers including 0, we define a state to be a nonnegative integer vector

x := (x1, x2, . . . , xJ) ∈ NJ ,

meaning x is a state in which species Sj has a quantity of xj molecules. For a system consisting of M
possible states, the state space is defined to be the set{

xm = (x
(m)
1 , x

(m)
2 , . . . , x

(m)
J) ∈ NJ

}M
m=1

where the state xm may be identified simply by its state index m. Transitions between states occur via a
number of I chemical reactions Ri, for i ∈ N from 1 to I. The equations for the reactions are given by

Ri : si1S1 + si2S2 + . . . + siJSJ
ci−→ si,J+1S1 + si,J+2S2 + . . . + si,2JSJ , (2.1)

where the positive ci ∈ R is the rate of reaction Ri, assumed to be constant here, although it can be
variable in cases not considered here (such as a change of temperature or volume). The values si1, . . . si,2J
are stoichiometric coefficients indicating how much of each species is involved in either side of the reaction;
we assume that the molecules appear in the same order on both sides of the equation. The coefficient of
species Sj on the left-hand side of reaction Ri is given by sij ; its coefficient on the right-hand side is given
by si,J+j . A convenient way of representing this information is via an I × 2J stoichiometry matrix in which
entry (i, j) represents the corresponding coefficient sij ; it has the form s11 . . . s1J s1,J+1 . . . s1,2J

...
...

...
...

sI1 . . . sIJ sI,J+1 . . . sI,2J

 ∈ NI×2J . (2.2)

Using a similar notation, we also define an I ×J stoichiometry change matrix that indicates how much a
given reaction changes the quantities of each species. Entry (i, j) represents how much reaction Ri changes
molecule type Sj and is given by si,J+j − sij ; this matrix has the forms1,J+1 − s11 . . . s1,2J − s1J

...
...

sI,J+1 − sI1 . . . sI,2J − sIJ

 ∈ ZI×J . (2.3)

Based on the stoichiometric coefficients, we define the following three types of species [9]:

• Reactants: Have a non-zero coefficient on the left side of the reaction (2.1); the set of reactant species
for Ri are notated by REA(i).

• Products: Have a non-zero coefficient on the right side of the reaction (2.1); the set of product species
for Ri are notated by PRO(i).

• Catalysts: Have non-zero coefficients on both the right and left-hand sides of the reaction (2.1) and
a zero value in the change matrix (2.3); the set of catalyst species for Ri are given by CAT(i) =
REA(i) ∩PRO(i). 1

Finally, we want to be able to analyze the probability of being in a particular state at a given time t. To
do so, we define a probability vector p(t). This column vector is given by

p(t) := p := [p1, p2, . . . , pM]T

in which each entry pm represents the probability of being in state xm at time t.

1The work in [9] makes the assumption without loss of generality that catalysts have equivalent stoichiometric coefficients
on both sides of the reaction; we follow this assumption.

120

2.3.2 Application Example: Michaelis-Menten Reaction System

In the above section, we defined the general form of representing reaction systems. Here, we demonstrate a
specific reaction system—specifically, the Michaelis-Menten system—which will be used in several illustrative
examples.

In the Michaelis-Menten reactions, a substrate (S) is catalyzed by an enzyme (E) to form an intermediate
substrate-enzyme complex (ES) and a product (P) [7]. Throughout our exposition, the Michaelis-Menten
species S1, S2, S3, S4 are represented by S,E,ES, P , respectively. For instance, the state [2, 1, 0, 0] indicates
the presence of two substrate S, one enzyme E, zero intermediate ES, and zero product P . This system
models three reactions defined as 

R1 : S + E
c1→ ES

R2 : S + E
c2← ES .

R3 : ES
c3→ P + E

(2.4)

From here, we can write the reactions in their full forms to see all stoichiometric coefficients and the
stoichiometry matrix (2.2), which in this example turns out to be

S E E P → S E ES P 1 1 0 0 0 0 1 0 S + E
c1→ ES

0 0 1 0 1 1 0 0 ES
c2→ S + E

0 0 1 0 0 1 0 1 ES
c3→ P + E

Additionally, the entries of the stoichiometry change matrix (2.3) work out in this example to be

S E ES P −1 −1 1 0 S + E
c1→ ES

1 1 −1 0 ES
c2→ S + E

0 1 −1 1 ES
c3→ P + E

In the coming sections, we will elaborate on how one can use this form of representation to analyze and make
predictions on these systems.

3 The Chemical Master Equation (CME)

In the above sections, we defined how we can mathematically represent biochemical reaction systems; here,
we briefly outline how to set up the chemical master equation to model these systems. Particularly, we are
interested in predicting the probability of being in a particular state after a given amount of time.

3.1 Overview

To set up the chemical master equation, we represent a reaction system as a continuous time Markov process
in which the future state is dependent on the current state [9, 7, 4, 8]. In addition to the previous components,
we also use a CME operator (effectively a transition matrix) A where element amk,m 6= k is the propensity
of changing to state m when the system is currently in state k to model these systems. Starting with an
initial probability vector p(0), the probabilities of being in each state at each period of time are found by
solving the system of differential equations [4]

d

dt
p = A · p

p(0) = p0

(3.1)

which has exact solution
p(t) = exp(tA)p(0). (3.2)

121

One important question that arises when performing this modeling is what are the possible states? First,
we will focus on a finite set of states that we know are all possible reachable states from a given starting state;
eventually, we will discuss the set of states as all possible combinations of molecules for a given quantity of
molecules.

3.2 Application Example: Michaelis-Menten

To clearly illustrate the functionality of the chemical master equation, let us examine a small example
involving the following five states and transition matrix corresponding to the reaction system (2.4):

x1 = [2, 1, 0, 0]

x2 = [1, 0, 1, 0]

x3 = [1, 1, 0, 1]

x4 = [0, 0, 1, 1]

x5 = [0, 1, 0, 2]

A =


−2 1 0 0 0

2 −1.1 0 0 0
0 0.1 −1 1 0
0 0 1 −1.1 0
0 0 0 0.1 0

 (3.3)

The transition matrix and list of possible states are calculated using the initial state (here, x1), reactions,
and propensities; in this example, we will take the states and matrix as given. Later, we will generalize the
concept of obtaining the state space and a transition matrix.

To show the transitions between states, we can use a transition diagram as was discussed in Section 2.2.2—
in this transition diagram, the states are x1,x2, . . . ,x5, and transitions occur via reactions R1, R2, and R3.
Note that as each of these reactions has a different probability of occurring, this is a stochastic automata
model. This is illustrated in Figure 4; here, we assume we start in state x1. Furthermore, beyond thinking of
this model as simply transitioning from one state vector x to another, we may think of the four components
of the state vector as the combination of four stochastic automata—one for each type of molecule—and we
may see this as a stochastic automata network with its state space a hyper-rectangle or lattice from the cross
product of the components. We will see in Section 4.2 how this can be conveniently formalized with tensors.

x1start x2 x3 x4 x5
R1

R2

R3 R1

R2

R3

Figure 4: Stochastic Automata: Michaelis-Menten 5-State Example

Now, we wish to predict the probability of being in a particular state at time t. Assuming state one to
be the starting state, there is a 100% chance of being in state one at time zero, so

p(0) =


1
0
0
0
0

 .

Using Equation (3.1), we can now calculate the probability vector for some time t; for example, with t = 10
and t = 100, the resulting probability vectors are

p(10) =


0.1802
0.3485
0.2007
0.1742
0.0963

 , p(100) =


0.0005
0.0009
0.0128
0.0122
0.9736

 .

122

In this example, at time t = 10, there is the highest probability of the system being in state 2. However,
by t = 100, it is most likely that the system will be in state 5. Figure 5 further illuminates the change
in probabilities over time, plotting the probabilities of being in each state (y-axis) from times 0 to 100 in
intervals of 20 (x-axis).

Figure 5: Probabilities of being in states 1-5 at times 0, 20, 40, 60, 80, and 100.

Recall that in this example, we both took the transition matrix as given and assumed that we were dealing
only with a finite and known list of reachable states. Neither of these assumptions, however, are realistic
to what the real modeling problem looks like. In fact, our most fundamental question arises in determining
how we generate the transition matrix, which will from this point forwards be generalized and referred to
as the CME operator [3, 4]. Furthermore, it is known that, without an imposed bound on the molecules’
quantities, the state space can be arbitrarily large. We further introduce and explore these problems in the
following sections.

3.3 Truncated State Space

The goal of the CME operator is to capture the transition from any one state to any other. However,
there could theoretically be a countably infinite number of possible states that a system could be in. As
such, we must truncate the state space, or put a bound on the quantity of each molecule we will represent
in our model [4]. Each type of molecule Sj is given a maximum amount nj ∈ N that may be present in
any given state; i.e. each Sj can have anywhere from 0 to nj molecules, so the state space consists of
M = (n1 + 1)(n2 + 1) . . . (nJ + 1) possible states. The state space is then given by the lattice or hyper-
rectangle [9]

{(x1, x2, . . . , xJ) ∈ NJ | 0 ≤ xj ≤ nj , j ∈ {0, 1, . . . , J}}.
This results in A ∈ RM×M and p ∈ RM where M is extremely large in realistic applications. For example,
if nj ≈ 100 and J = 5 species, then M is already 1010. For the rest of the paper, the term state space will
refer to the truncated state space described in this section, unless stated otherwise.

4 The Chemical Master Equation via Tensors

As we just saw, with M,J � 1, the problem of modeling biochemical reaction systems is high dimensional,
which presents an opportunity for incorporating higher-order tensors [3, 4]. Particularly, notice that instead
of enumerating the states and writing A as a matrix, one may instead write the CME operator as an order
2J tensor

A ∈ R(n1+1)×···×(nJ+1)×(n1+1)×···×(nJ+1),

where the entry Ax1, ..., xJ , xJ+1, ..., x2J
represents the propensity of transitioning from state (xJ+1, . . . , x2J)

to state (x1, . . . , xJ), such that each molecule Sj changes from quantity xJ+j to xj .

4.1 Classic Approach

In 2011, Hegland et al. [3] introduced a method for generating the CME operator as a sum of rank-one
tensors; this work formed an important basis for similar tensor approaches. Notably, in 2014, Kazeev

123

et. al [4] presented the incorporation of tensor train decompositions to the computational procedure of [3]
while Dolgov and Khoromskij [2] also used tensor train decompositions in application to the CME. These
developments had the core benefit of improving the efficiency of storage and computation of the CME
operator, which, as we have seen, can grow to be very large very quickly such that perpetually storing it in
its entirety is neither appealing nor feasible. These works have sparked a substantial exploration of tensor
train decompositions in the CME, such as the adaptive procedure in [8].

4.1.1 Algorithm

We give an overview of the algorithm to generate the matricized version of the CME operator using a sum
of tensors as initiated by Hegland et al. [3]. We use the algorithmic version and notation in Kazeev et al. [4]
where the resultant CME operator matrix A is generated by

A =
I∑
i=1

(Sηi − II) ∗Mωi ,

in which each II indicates the identity operator and each reaction Ri yields corresponding Sηi and Mωi

matrices that we will detail below. A reaction’s Mωi is a diagonal matrix associated to a vector ωi of its
diagonal entries. For each reaction Ri and species Sj , define the intermediate vector composed of binomial
coefficients

ωij =

((
0

sij

)
, · · · ,

(
nj
sij

))
. (4.1)

Using these, ωi is given by

ωi = ci

J⊗
j=1

ωij .

Similarly, a reaction’s matrix Sηi is defined by first creating matrices Sηij , j = 1, . . . , J (one for each species);

these Sηij matrices are shifted identity matrices in which the amount and direction shifted is dependent on

the corresponding values of nj and the change matrix at (i, j). The formulation of the matrix is [4]

Sηi =

J⊗
j=1

Sηij .

In [4], the quantized tensor train approximations of the ωij are formed before the Kronecker products are
computed; although this was a crucial aspect of Kazeev et al. [4], this highly beneficial tensor compression
step is noted as a comment in Algorithm 3 but is not applied in Algorithm 1 because our own focus is on
the formation of the operator via Kronecker products.

Further meanings behind these matrices and how they are computed are demonstrated through Algo-
rithms 1, 2, and 3 where the operator diag(v) forms the diagonal matrix with the elements of the vector v
on its diagonal. Refer to [4] for a more detailed explanation of this presentation of the approach2; refer to [3]
for a more detailed explanation of the original presentation of the approach.

2The indices with i from 1 to I correspond to indices s from 1 to R in [4]. This modification simplifies the comparison with
the method presented in Section 4.2.

124

Algorithm 1: Classic Approach [4, Alg. 1]

Data: stoichmatrix, nsize, c
// stoichmatrix is the stoichiometry matrix; refer to Equation 2.2

// nsize = (n1 + 1, . . . , nJ + 1); jth element is nj + 1

// c = (c1, . . . , cI); vector of reaction rate constants with ith element = ci.

Result: A

1 I ← number of reactions // #rows of stoichmatrix

2 J ← number of species // #cols of stoichmatrix / 2

3 changes ← stoichiometry change matrix // create from stoichmatrix; refer to Equation (2.3)

4 M ← number of states // product of elements of nsize

5 II ← identity matrix of size M
6 A ← zero matrix of size M

7 for i ← 1:I do
8 for j ← 1:J do
9 Sηij ← shifted identity matrix resulting from Algorithm 2

10 ωij ← vector resulting from Algorithm 3

// Do kronecker products to generate Sηi and Mωi

11 if j = 1 then
12 Sηi ← Sηij // matrix

13 ωi ← ci∗ ωij // vector

14 else
15 Sηi ← Sηi ⊗ Sηij // matrix

16 ωi ← ωi ⊗ ωij // vector

17 end

18 end
19 Mωi ← diag(ωi)
20 A ← A + (Sηi − II) ∗Mωi

21 end

Algorithm 2: Create Sηij

Data: nsize(j), changes(i, j)
// Input data values come from Algorithm 1

Result: Sηij
1 t ← |changes(i, j)|
2 Sηij ← zero matrix of size nsize(j)

3 Replace Sηij (1 : nsize(j)− t, 1 + t : nsize(j)) with identity matrix of size t // as in Equation (4.11a)

4 if changes(i, j) > 0 then
5 Sηij ← transpose of Sηij // as in Equation (4.11b)

6 end

Algorithm 3: Create ωij

Data: nsize(j), sij
// Input data values come from Algorithm 1

Result: ωij

1 nj ← nsize(j)− 1

2 ωij ←
((

0
sij

)
, . . . ,

(
nj

sij

))
// vector components are binomial coefficients, refer to Equation (4.1)

// Kazeev et al. [4] achieve their compression by applying a QTT Approx to ωij

125

4.1.2 Application Example: Michaelis-Menten

In this example, we expand on that given in Section 3.2; there, S and P both have maximum values of 2
while E and ES have maximum values of 1. Thus, we have n1 = n4 = 2 and n2 = n3 = 1, so the size of
the state space is given by 3 × 2 × 2 × 3 = 36; the resulting matricized CME operator A will have a size
of 36× 36. When using Algorithm 1, the generated matrix is shown in Figure 6; a blank indicates that the
corresponding location has a zero value, while non-zero values are given in their positions. When looking
at this matrix, note that it is slightly different from the matrix given in Equation (3.3). The entries of the
latter can be found in the former, though not necessarily with the same state number; this is expected, as
that small state space is a subset of this one.

Figure 6: The shape and 42 non-zero values of the CME operator generated in Section 4.1.2. Columns sum
to zero, except on boundary states where probability leaks occur (more on this in Section 4.3.1).

4.2 SAN Approach

Prior to and separate from the approach summarized in Section 4.1 above, Wolf presented a method for
computing the CME operator in 2007 [9]. Here, we further examine Wolf’s methodology and show later
that it is essentially equivalent to the more publicized classic tensor approach of [3] and made more efficient
by [4], which is a striking discovery that has not been noted until now and is the main contribution of this
work.

4.2.1 Modeling Method

This section presents the fundamental components of the methods from [9] (with slight modifications to
some notations).

First, to go from state x to state x′, Wolf [9] defines a function nexti(x) = x′ with x′ given by

x′j =


xj if Sj ∈ CAT(i) or Sj 6∈ REA(i) ∪PRO(i)

xj − sij if Sj ∈ REA(i) \CAT(i)

xj + si,j+J if Sj ∈ PRO(i) \CAT(i)

126

There is additionally the function

ratei(x) =

{
ci ·
∏
Sh∈REA(i)

(
xh

sih

)
if nexti(x) 6= x

0 else

which determines the transition rate of a state x acted on by reaction Ri and is used to define a state’s
exit rate as rate(x) = rate1(x) + . . . + rateI(x). It is from these that [9] defines the transition rate matrix
Q ∈ RM×M with entries

Q(x,x′) =


− rate(x) if x = x′∑
i:nexti(x)=x′

ratei(x) if x′ 6= x

0 else

Here, it is important to note that Q is analogous to the transpose of the CME operator A from Equations (3.1)
and (3.2). The work in [9] was to show how to generate Q using a tensor representation through the Kronecker
product. To accomplish this, [9] first defines the vector

depij =

((
0

sij

)
, . . . ,

(
nj
sij

))
∈ N(nj+1) (4.2)

for each reactant Sj ∈ REA(i). For species Sj that are not reactants of Ri, [9] instead defines

indij = (1, . . . , 1) ∈ N(nj+1).

Using these vectors, [9] defines (nj + 1) × (nj + 1) matrices Depij (d) and Indij (d)—these shift the

corresponding dep and ind vectors to a dth diagonal. For k, l such that (k + d) = l where 1 ≤ k, l ≤
(nj + 1), −nj ≤ d ≤ nj , the element at position (k, l) of Depij (d) is equal to the kth element of depij and

the element at position (k, l) of Indij (d) equals 1. All other entries are set to zero. Using these definitions, [9]

defines a matrix E
(i)
j for each reaction Ri and species Sj given by

E
(i)
j =


Indij (0) if Sj 6∈ REA(i) ∪PRO(i)

Depij (0) if Sj ∈ CAT(i)

Depij (−sij) if Sj ∈ REA(i) \CAT(i)

Indij (si,j+J) if Sj ∈ PRO(i) \CAT(i)

(4.3)

and a corresponding diagonal matrix D
(i)
j given by

D
(i)
j = diag(E

(i)
j 11) (4.4)

where 11 is a column vector of entirely ones. Wolf [9] finally generates Q as

Q =
I∑
i=1

ci

 J⊗
j=1

E
(i)
j −

j⊗
j=1

D
(i)
j

 . (4.5)

Note that this usage of sums of Kronecker products presents the opportunity for the potential addition
of tensors train decompositions in a fashion analagous to that presented in [4]; we will comment more on
this in Section 4.3.3.

4.2.2 Algebraic version and Algorithm

Evidently, the method presented in [9] is largely based on if/else statements, particularly in the creation of

the matrix E
(i)
j in Equation (4.3).

127

Here, we remodel these conditional statements into a more compact algebraic representation that we use
to implement an automated algorithm in MATLAB to generate Q. First, we examine the values for the
diagonal shift d in Depij (d) and Indij (d) used in Equation (4.3) in the four different cases.

• If Sj is not involved in reaction Ri, so Sj 6∈ REA(i) ∪ PRO(i), then sij = si,J+j = 0. Thus,
si,J+j − sij = 0.

• If Sj is a catalyst in reaction Ri, so Sj ∈ CAT(i), then sij = si,J+j . Thus, si,J+j − sij = 0.

• If Sj is a reactant (but not catalyst) in reaction Ri, so Sj ∈ REA(i) \CAT(i), then si,J+j = 0. Thus,
si,J+j − sij = −sij .

• If Sj is a product (but not catalyst) in reaction Ri, so Sj ∈ PRO(i) \CAT(i), then sij = 0. Thus,
si,J+j − sij = si,J+j .

For all cases, the shift value is then given by si,J+j − sij . Now, we examine the usage of Dep versus
Ind matrices. Note that if Sj 6∈ REA(i) ∪ PRO(i) or Sj ∈ PRO(i) \ CAT(i) then sij = 0; for any
n ∈ Z, n ≥ 0,

(
n
0

)
= 1. Thus, for such Sj the entries of depij would be all ones, which is the definition of

indij , so we can re-write the formulation using only Dep matrices and corresponding dep vectors. Using

these observations, we re-write the definition of matrix E
(i)
j in Equation (4.3) as

E
(i)
j = Depij (si,J+j − sij). (4.6)

Algorithms 4, 5, and 6 are pseudo-codes, based on this re-formulation of the work in [9].

Algorithm 4: SAN Approach

Data: stoichmatrix, nsize, c
// stoichmatrix is the stoichiometry matrix; refer to Equation 2.2

// nsize = (n1 + 1, . . . , nJ + 1); jth element nsize(j) is nj + 1

// c = (c1, . . . , cI); vector of reaction rate constants with ith element = ci.

Result: Q

1 I ← number of reactions // #rows of stoichmatrix

2 J ← number of species // #cols of stoichmatrix / 2

3 changes ← stoichiometry change matrix // create from stoichmatrix; refer to Equation 2.3

4 M ← number of states // product of elements of nsize

5 Q ← zero matrix of size M
6 for i← 1: I do
7 for j ← 1: J do

8 create depij using Algorithm 5

9 create E
(i)
j using Algorithm 6

10 create D
(i)
j using Equation (4.4)

// Do kronecker products to get E(i) =
⊗J
j=1 E

(i)
j and D(i) =

⊗J
j=1 D

(i)
j

11 if j = 1 then

12 E(i) ← E
(i)
j ; D(i) ← D

(i)
j

13 else

14 E(i) ← E(i) ⊗ E
(i)
j ; D(i) ←D(i) ⊗ D

(i)
j

15 end

16 end

17 Q← Q + ci ∗ (E(i) −D(i))

18 end

128

Algorithm 5: Create depij

Data: nsize(j), sij
// Input data values come from Algorithm 4

Result: depij

1 nj ← nsize(j)− 1

2 depij ←
((

0
sij

)
, . . . ,

(
nj

sij

))
// vector components are binomial coefficients; refer to Equation (4.2)

Algorithm 6: Create E
(i)
j

Data: depij , changes(i, j)
// Input data values come from Algorithm 4

Result: E
(i)
j

1 l← length of depij // is equal to nj + 1

2 t ← |changes(i, j)|
3 E

(i)
j ← zero matrix of size l

4 if changes(i, j) > 0 then

5 Replace E
(i)
j (1 : l − t , 1 + t : l) with diag(depij(1 : l − t)) // as in Equation (4.10a)

6 else

7 Replace E
(i)
j (1 + t : l , 1 : l − t) with diag(depij(1 + t : l)) // as in Equation (4.10b)

8 end

4.2.3 Application Example: Michaelis-Menten

We use the method from Section 4.2.2 to compute Q for the same state space given in Section 4.1.2, where
S and P have the three possible values from 0 to 2 and E and ES have the two possible values 0 and 1; the
resulting matrix Q is given in Figure 7.

Figure 7: The shape and 32 non-zero values of the CME operator from Section 4.2.3. Rows sum to zero.

129

It is immediately clear that the matrices in Figures 6 and 7 are not the same—they have different numbers
of non-zero elements. Upon closer inspection, however, it is apparent that off-diagonal elements of QT are
equal to the off-diagonal elements of A. In the following section, we further explore these differences and
similarities; it turns out that this off-diagonal similarity holds true in the general case.

4.3 Comparison of Methodologies

In the above section, we saw that the two generation methods led to different, but similar, CME operators.
A key difference between them is that the sum of each column of the transpose of Q in Section 4.2.3 is zero
(see also Section 3.2), whereas this is not the case for A in Section 4.1.2. This indicates that, when using
Q, each resulting probability vector will sum to 1; on the other hand, using A in Section 4.1, the resulting
probability vectors may sum to a value less than 1—that is, we see ‘probability leaks’.

4.3.1 Probability Leaks

The source of the probability leaks stems from truncating the state space. To clearly see why this is the case,
say, for instance, that a Michaelis-Menten system had starting state [2, 1, 1, 2]—it would then be possible to
transition to state [1, 0, 2, 2]. Say, however, that the model uses the state space of Sections 4.1.2 and 4.2.3,
which limits the quantity of ES to 1. This possible state is not found in the state space, and thus the
propensity to transition to it from the starting state is not included in the CME operator; as a result, the
computed probability vector should, intuitively, not sum to one, as not all possible states are represented.

However, Equation (4.5), through the creation and subtraction of the diagonal D
(i)
j matrices, ensures as

in Figure 7 that the rows sum to zero and thus eliminates the probability leaks. When examining probability
leaks, we refer to possible states outside of the state space as sinks. For a given initial state, as the size of the
state space increases the classic tensor approach, the amount of probability lost to the sinks will decrease.

4.3.2 Equivalence of Non-Diagonal Elements

As was shown in the Michaelis-Menten computational examples, there appeared to be numerical equivalency
between the off-diagonal elements of each method’s CME operator. Here, we indeed prove that the off-
diagonal elements resulting from the classic method [3, 4] are identical to the transpose of those resulting
from the SAN method [9].

Recall that each algorithm is performed iteratively—for each reaction, they generate several matrices and
sum them together—and that the classic methodology’s algorithm is summarized by the equation

A =

I∑
i=1

(Sηi − II) ∗Mωi

where A is the CME operator, with

Sηi = Sηi1 ⊗ · · · ⊗ SηiJ , Mωi = diag(ci ∗ ωi1 ⊗ · · · ⊗ ωiJ),

as described in Section 4.1.1 and shown in Algorithms 1, 2, and 3. The SAN methodology is summarized by

Q =
I∑
i=1

ci

 J⊗
j=1

E
(i)
j −

J⊗
j=1

D
(i)
j

 ,

where Q is analagous to the CME operator in transposed form, as is described in Section 4.2. Since Mωi

and
⊗J

j=1 D
(i)
j are diagonal matrices, demonstrating the equality of the off-diagonal elements of A and QT

can be reduced to demonstrating that

I∑
i=1

Sηi ∗Mωi =

 I∑
i=1

ci

J⊗
j=1

E
(i)
j

T

=
I∑
i=1

ci

J⊗
j=1

E
(i)
j

T

, (4.7)

130

and so, if for each i ∈ [1, I] we have

Sηi ∗Mωi =

ci

J⊗
j=1

E
(i)
j

T

,

then Equation (4.7) will hold true. Thus, we aim to show in expanded form that

(Sηi1 ⊗ · · · ⊗ SηiJ) ∗ diag(ci ∗ ωi1 ⊗ · · · ⊗ ωiJ) = (ci ∗E(i)
1 ⊗ · · · ⊗E

(i)
J)T .

Owing to properties of the Kronecker product, this can be re-written as

(Sηi1 ∗ diag(ωi1))⊗ · · · ⊗ (SηiJ ∗ diag(ωiJ)) = (E
(i)
1)T ⊗ · · · ⊗ (E

(i)
J)T .

Thus, the proof is complete if we show that

Sηij ∗ diag(ωij) = (E
(i)
j)T (4.8)

for any reaction Ri and species Sj . To prove Equation (4.8), first note that, as was mentioned previously,

the vector depij for reaction Ri and molecules Sj used in creating E
(i)
j is equivalent to ωij (refer to Algo-

rithms 3, 5); we have

depij = ωij =

((
0

sij

)
, · · · ,

(
nj
sij

))
. (4.9)

Next, note that E
(i)
j ∈ R(nj+1)×(nj+1) is given by



1 + t

↓



0 · · · (depij)1

·
. . .

nj + 1− t → · (depij)nj+1−t , Sj ∈ PRO(i) (4.10a)

·
...

0

nj + 1− t

↓



0
... ·

1 + t → (depij)1+t · , Sj 6∈ PRO(i) (4.10b)

. . . ·
(depij)nj+1 · · · 0

,

where, consistent with the notation in Algorithms 2 and 6, t refers to the absolute value of entry (i, j) of the
change matrix. Now, note that Sηij ∈ R(nj+1)×(nj+1) is given by

131



nj + 1− t

↓



0
... ·

1 + t → 1 · , Sj ∈ PRO(i) (4.11a)

. . . ·
1 · · · 0

1 + t

↓



0 · · · 1

·
. . .

nj + 1− t → · 1 , Sj 6∈ PRO(i) (4.11b)

·
...

0

Multiplying Sηij from (4.11) by diag(ωij) = diag(depij) from Equation (4.9) yields the matrix in R(nj+1)×(nj+1)

given by



nj + 1− t

↓



0
... ·

1 + t → (ωij)1 · , Sj ∈ PRO(i) (4.12a)

. . . ·
(ωij)nj+1−t · · · 0

1 + t

↓



0 · · · (ωij)1+t

·
. . .

nj + 1− t → · (ωij)nj+1 , Sj 6∈ PRO(i) (4.12b)

·
...

0

132

and we see from Equations (4.10) and (4.12) that

Sηij ∗ diag(ωij) = (E
(i)
j)T .

Thus, we see that the off-diagonal elements of A are equivalent to the off-diagonal elements of QT .

4.3.3 Tensor Train

The work presented thus far has discussed the comparison of the CME operators developed in the tensor and
SAN representations; it was also noted that Kazeev et al. [4] importantly used tensor train decomposition
to further compress the Kronecker products of Hegland et al. [3]. An open question that the work did not
address is if the savings of the tensor train compressions of Kazeev et al. [4] applied to the SAN formulation
of Wolf [9] would be more economical or less economical than to its application to Hegland et al. [3]. Below
is a brief background on tensor train to lay the groundwork towards investigating that problem (note that
the tensor train presented here is demonstrated for illustrative purposes; the decomposition incorporated
into [4] is the quantized tensor train variant).

In the tensor train decomposition (presented in [6] and used in reference to the CME in [4, 2]) of a tensor
A ∈ RI1×I2×...×IN , one is able to compute the value of Ai1,i2,...,iN through a series of vector and matrix
multiplications where the vectors and matrices to be multiplied come from a new set of N tensors. In these
multiplications, the ithn slices of the nth tensors are multiplied with each other to attain element Ai1,i2,...iN .
The sizes of the dimensions of the component tensors are chosen such that a scalar is attained [4]; for a more
detailed description of the functionality of tensor train, refer to [6].

Figure 8: Visual representation of Tensor Train Decomposition.

In Figure 8, a 4-dimensional tensor A has been decomposed into four 3-dimensional tensors, G(1),G(2),G(3),
and G(4). The value at A2,3,2,1 is calculated by multiplying the row-vector from the 2nd frontal slice of G(1),

the matrix from the 3rd frontal slice of G(2), the matrix from the 2nd frontal slice of G(3), and the column
vector from the 1st frontal slice of G(4).

Accessing elements of the original tensor is computationally intensive for a tensor with many dimensions.
However, tensor train is less storage intensive than storing the original tensor, and hence is very promising
in CME applications, where tensor representations can become very large. Given that Kazeev et al.’s work
added to the efficiency of Hegland et al.’s method via the introduction of tensor train decompositions, the
proven similarity presents motivation to explore the addition of tensor train decompositions to our modified
version of Wolf’s algorithm.

5 Conclusion

Building on the more commonly known foundation of matrices, we are able to extend to multi-linear algebra
using higher-order tensors. As our presentation showed, doing so is beneficial for the representation of big
data sets of high dimensions, but comes with its own set of challenges, particularly with application to the
chemical master equation. Our work reviewed two methods for using tensors to develop solutions to the

133

chemical master equation; the first is the classic method presented by Hegland et al. in On the Numerical
Solution of the Chemical Master Equation with Sums of Rank One Tensors and further explored by Kazeev
et al. in Direct Solution of the Chemical Master Equation Using Quantized Tensor Train; the second is
that presented by Wolf in her work Modelling of Biochemical Reactions by Stochastic Automata Networks.
Though the classic formulation has received substantially more recognition in the literature, we proved key
similarities between the approaches. We wrapped our comparison by raising the open question of how
compression methods would have fared if the SAN approach was instead used in subsequent works such as
Kazeev et al.

Having explored a potentially close relationship between stochastic automata networks and higher-order
tensors, this work motivates exploring higher-order tensors in other stochastic automata problems and con-
tinuous time Markov processes outside of chemical reaction systems. This is very important as we see these
types of problems appearing in nearly all fields, from physics to neuroscience that we seek to investigate by
incorporating tensors and tensor decompositions. Furthermore, there are other problems within the applica-
tion focus of chemical reaction systems. One such problem that arises in the modeling of biological systems is
not just finding the probabilities of being in certain states after a time interval, but also finding the marginal
probabilities of having certain quantities of specific molecules regardless of what other molecules are present
(so, regardless of the state as a whole). In general, tensor decomposition shows great potential for large-data
representation and modeling.

References

[1] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools, Pearson
Addison–Wesley, 2nd ed., 2007.

[2] S. Dolgov and B. Khoromskij, Simultaneous state-time approximation of the chemical master equa-
tion using tensor product formats, Numerical Linear Algebra with Applications, 22 (2015), https:

//doi.org/10.1002/nla.1942.

[3] M. Hegland and J. Garcke, On the numerical solution of the chemical master equation with sums of
rank one tensors, ANZIAM Journal, 52 (2011), https://doi.org/10.21914/anziamj.v52i0.3895.

[4] V. Kazeev, M. Khammash, M. Nip, and C. Schwab, Direct solution of the chemical master equation
using quantized tensor train, PLOS Computational Biology, 10 (2014).

[5] T. Kolda and B. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), pp. 455–500.

[6] I. Oseledets, Tensor-train decomposition, SIAM J. Scientific Computing, 33 (2011), pp. 2295–2317,
https://doi.org/10.1137/090752286.

[7] H. Qian and L. Bishop, The chemical master equation approach to nonequilibrium steady-state of
open biochemical systems: linear single-molecule enzyme kinetics and nonlinear biochemical reaction
networks., International Journal of Molecular Sciences, 11 (2010), pp. 3472—-3500, https://doi.org/
10.3390/ijms11093472.

[8] H. D. Vo and R. B. Sidje, An adaptive solution to the chemical master equation using tensors, The
Journal of Chemical Physics, 147 (2017), p. 044102, https://doi.org/10.1063/1.4994917.

[9] V. Wolf, Modelling of biochemical reactions by stochastic automata networks, Electron. Notes Theor.
Comput. Sci., 171 (2007), pp. 197—208, https://doi.org/10.1016/j.entcs.2007.05.017.

134

https://doi.org/10.1002/nla.1942
https://doi.org/10.1002/nla.1942
https://doi.org/10.21914/anziamj.v52i0.3895
https://doi.org/10.1137/090752286
https://doi.org/10.3390/ijms11093472
https://doi.org/10.3390/ijms11093472
https://doi.org/10.1063/1.4994917
https://doi.org/10.1016/j.entcs.2007.05.017

	Introduction
	Mathematical Background and Notation
	Matrices and Tensors
	Stochastic Automata Networks
	Finite Automata and Regular Expressions
	Transition Diagrams and Tables
	Stochastic Automata Networks

	Biochemical Reaction Systems
	General Reaction Systems
	Application Example: Michaelis-Menten Reaction System

	The Chemical Master Equation (CME)
	Overview
	Application Example: Michaelis-Menten
	Truncated State Space

	The Chemical Master Equation via Tensors
	Classic Approach
	Algorithm
	Application Example: Michaelis-Menten

	SAN Approach
	Modeling Method
	Algebraic version and Algorithm
	Application Example: Michaelis-Menten

	Comparison of Methodologies
	Probability Leaks
	Equivalence of Non-Diagonal Elements
	Tensor Train

	Conclusion

