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Keep on Trucking

Executive Summary

In the past century, as energy usage rapidly increased and fossil fuel consumption and carbon
emissions have increased along with it, transportation has accounted for a large share of this.
With e-commerce and delivery increasing in popularity and trucks accounting for around a
third of transport-related carbon emissions and 20% of the global demand for oil [1], it is
important to evaluate more energy-efficient and sustainable alternatives. One example of
such is using electricity powered semi-trucks instead of semi trucks fueled by diesel. Multiple
companies are already in the process of producing electric semi-trucks including Freightliner
and Tesla, whose electric semis are supposed to enter production this year. Transitioning to
electric semi-trucks could help with both reducing the environmental impact of trucks and
reducing the total operating cost in the long run.

We predicted the percentage of semis that would be electric in the next twenty years by
using Markov chains. Semi-trucks were split into short-haul, regional-haul, and long-haul,
and a model was created for each type of truck. Operating costs were calculated using values
found in the ”Truck Usage Data” and the cost of operating an electric and diesel truck per
mile ($1.26 vs $1.51). Purchasing costs were based on the prices of current day cab and
sleeper semi-trucks along with base prices for Tesla electric semis. The difference in costs
was used to estimate the probability values of replacing diesel trucks with electric trucks.
These probability values were placed into three separate transition matrices for each type of
semi and were then used in calculating the number of electric cars in the next 5 and 10 years
in tandem with the number of inoperable diesel semi-trucks each year. We predicted the
population of inoperable diesel semi-trucks in the next 8 years with the transition matrices
to calculate the number of electric cars in 20 years. Our model predicts that in 5 years, 10
years, and 20 years, electric semi-trucks will make up 27.39%, 69.49%, and 97.77% of the
number of semis, respectively.

In view of that imminent, sharp increase in electric truck use, a model was also created
to determine the amount of infrastructure necessary to completely transition all American
fleets. Because fully charging electric vehicle batteries is slow and inefficient, we first devel-
oped an optimal pit stop schedule for long-haul single driver trips. We took into account the
variety of ranges and charging times of electric vehicles in order to do this. This strategy
was used in conjunction with a Monte Carlo simulation to simulate the resource needs of a
large population of trucks on five shipping corridors. Interestingly, all five revealed an opti-
mal stopping interval of 90 minutes. Finally, another Monte Carlo simulation revealed the
optimal number of charging stations per truck stop, which ranged from 14 to 29 depending
on average traffic and related factors.

In order to model which of the corridors should be developed for electrification we first cre-
ated an importance score based on three different factors: economic growth, environmental
consideration, and total cost for installation. Economic growth was found based on money
saved by the decreased idling times of DCFC chargers and total average traffic. Environmen-
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tal consideration was based off of the average number of electric vehicle policy / actions in
the state. Total cost was calculated using values found from the previous part on number of
charging stations and chargers needed per trucking corridor. These values were then normal-
ized and used to rank the five corridors in part 2. The results showed that the Minneapolis
to Chicago corridor should be targeted first followed by Los Angeles to San Francisco then
San Antonio to New Orleans then Jacksonville to D.C. then Boston to Harrisburg.
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Global Assumptions

G-1. There are currently 1.7 million semi trucks in operation in the United
States. [2]

• Justification: It is reasonable to assume that this provided data is about the
United States because there are around 2 million semi trucks on the road in the
United States. [10]

1 Shape Up or Ship Out

1.1 Defining the Problem

Develop a model to predict the percentage of semi trucks that will be electric 5, 10, and 20
years from 2020.

1.2 Assumptions

1-1. There are no electric semi trucks currently in operation.

• Justification: Production has started for electric semi-trucks, but they will hit
the roads in 2020. [11]

1-2. The market for semi-trucks demands the production of 210,466 semi-trucks
per year.

• Justification: Since the production of Class 8 trucks in 2019 was 210,466 ac-
cording to Truck Production Data, 2020 MathWorks Math Modeling Challenge
[17], the market is assumed to be constant.

1-3. Electric semi trucks have the same life expectancy as diesel semi-trucks (12
years).

• Justification: Since electric semi-trucks are a new invention, the average life
expectancy of an electric semi-truck cannot be observationally determined yet.
The life expectancy will most likely depend on the owner’s willingness to replace
its battery.

1-4. The total difference in cost between electric and diesel semi-trucks is pro-
portional to the probability that a diesel semi-truck will be replaced with
an electric semi-truck.

• Justification: Since there is no data on the consumers purchasing electric cars,
we assumed that a greater difference in cost will make consumers replace more
diesel semi-trucks with electric semi-trucks.
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1.3 Variables Used

Symbol Definition Units Value
Qe Quantity of Electric Semis Replaced from Inoperable trucks ...
Qd Quantity of Diesel Semis Converted from Inoperable trucks ...
Pe Proportion of Electric Semi-Trucks ... ...
PS Replacement Probability (Short Haul) ... ...
PR Replacement Probability (Regional Haul) ... ...
PL Replacement Probability (Long Haul) ... ...
P0 Amount of Semi Trucks in 2019 trucks 1,734,721

1.4 Developing the Model

To predict the future percentages of electric and diesel semi-trucks in the next 5, 10, and
20 years, we divided semi-trucks into three types and created a model for each: short haul,
regional haul, and long haul. We created three transition matrices (one for each type of semi
truck) to input into the following Markov chain to do this.

Electric Diesel

0.01

P

0.99 1-P

The model assumed that 0.01 of the electric cars would revert back to diesel, possibly after
seeing some of the disadvantages of electric semi-trucks, including its high charge time or
lower on-the-road time per refuel.

We looked into the costs of diesel and electric trucks. There were two types of diesel trucks
found when researching purchase costs: day cabs, which are ideal for shorter routes and
would likely be used for short and regional hauls, and sleeper trucks, which are ideal for
longer routes and would likely be used for long hauls [3]. The average prices for these were
found along with prices for electric semi-trucks which were based off of the base prices for
the Tesla semi-trucks set to start production in 2020: $150,000 for a 300-mile range truck
(likely to be used for short hauls) and $180,000 for a 500-mile range truck (likely to be used
for long hauls). Operating costs were then calculated and found to be $1.51 per mile for
diesel semi-trucks and $1.26 per mile for electric semi-trucks [12].

Using those values and annual travel mileage found in ”Truck Usage Data” from the 2020
MathWorks Math Modeling Challenge which was 42,640 miles for short-haul, 70,000 miles
for regional, and 118,820 miles for long haul [17], the total cost over the course of 12 years
(the average lifetime of a truck) and annual operating cost were calculated as shown in Table
1:
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Type
Purchase

Cost

Annual
Operating

Cost

Total
Operating

Cost
Total Cost

Diesel
Short Haul $80,000 $64386.40 $772,636.80 $852,636.80
Regional $80,000 $105,700 $1,268,400 $1,348,400

Long Haul $125,000 [15] $179,418.20 $2,153,018.40 $2,278,018.40

Electric
Short Haul $150,000 [16] $53,726.40 $644,716.80 $794,716.80
Regional $150,000 $88,200 $1,050,000 $1,208,400

Long Haul $180,000 [16] $149,713.20 $1,782,300 $1,976,558.40

Table 1: Semi-truck Operation and Purchase Costs

With the values found in Table 1, we calculated the difference between electric semi-truck and
diesel costs for purchase, operation, and total difference. In Table 2, a positive value indicates
that a diesel semi-truck cost (purchase, operating, or total) is greater than the corresponding
electric semi-truck cost; a negative value indicates a greater electric semi-truck cost.

Type Difference in Purchasing Difference in Operating Total Difference
Short Haul -$70,000 $127,920 $57,920
Regional -$70,000 $210,000 $140,000

Long Haul -$55,000 $356,460 $301,460

Table 2: 12-Year Difference in Costs for Diesel and Electric Semi-Trucks

The values in Table 2 were then used to calculate P, the probability of a diesel semi-truck
being replaced by an electric semi-truck in the first year, for each of the transition matrices.
Short haul, regional haul, and long haul received P values of 0.2, 0.4, and 0.6, respectively,
due to an increase by a factor of around 2 between short haul and regional haul and regional
haul and long haul total cost differences. These P values are then inserted into the following
transition matrices to run a Markov chain model.

PS =

D E
D 0.8 0.2
E 0.01 0.99

PR =

D E
D 0.6 0.4
E 0.01 0.99

PL =

D E
D 0.4 0.6
E 0.01 0.99

These transition matrices are used to calculate the proportion of diesel and electric cars in
MATLAB.
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From the Truck Production Data sheet [17], we calculated the total number of trucks pro-
duced for short-haul, regional haul, and long-haul based off of values given for total number
of tractors produced and total number of long haul tractors produced. Number of short and
regional haul trucks were found by subtracting the number of long hauls produced from the
total. Short haul was then found by multiplying that value by 10% as short haul trucks are
5% of all semi-trucks while regional haul trucks are 45% [2] meaning that short haul trucks
would account for 10% of the total of short haul and regional trucks combined.

Figure 1: Production of short-haul, regional haul, and long-haul trucks

The values in Figure 1 were used to find the number of inoperable diesel semi-trucks in the
next five years and the next ten years. Since the lifetime of a semi-truck is about 12 years,
the semi-trucks that were produced from 2008-2012 will be inoperable in the next five years,
the sum of these would be the number of inoperable trucks by the next five years that could
be potentially replaced by electric trucks.

To find the number of electric and diesel cars in the next twenty years we predicted the
amount of inoperable diesel semi-trucks from 2020-2027 with the assumption of a constant
demand of 210,466 semi-trucks per year.
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1.5 Executing the Model

Using the Markov chain and the three different transformation matrices (for short, regional,
and long haul) above, we were able to forecast the number of electric semi-trucks and the
number of diesel semi-trucks in use in 5, 10, and 20 years from 2020 by using MATLAB. We
did this by simulating Markov chains with an initial condition of all diesel semi-trucks. We
can calculate the amount of electric and diesel semi-trucks in a given year by multiplying
the probability of a semi-truck being electric or diesel by the amount of inoperable trucks
in that year. This is calculated by using semi-truck production data from 12 years (the life
expectancy of a semi-truck) prior to the forecasted year.

Figure 2: Markov chain produced in MATLAB

Short Haul Regional Haul Long Haul Total
5 years 12,577 170,234 261,829 444,640
10 years 45,945 530,515 620,694 1,197,154
20 years 64,849 716,815 810,108 1,591,772

Table 3: Quantity of Electric Semi-Trucks Replaced from Inoperable Semi-Trucks, Qe

(rounded down to the nearest whole truck)

Short Haul Regional Haul Long Haul Total
5 years 11,913 50,184 39,070 101,167
10 years 20,385 66,461 45,462 132,308
20 years 22,749 71,574 48,623 142,946

Table 4: Quantity of Diesel Semi-Trucks Replaced from Inoperable Semi-Trucks, Qd (rounded
down to the nearest whole truck)

To determine the proportion of semi-trucks that will be electric 5, 10, and 20 years from
2020, we then take the quotient of the quantity of electric semi-trucks and the total number
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of semi-trucks, which is found by analyzing the production data of diesel trucks of the past
12 years, assuming that a semi-truck is used immediately after its production:

Pe =
Qe

P0

The resulting proportions of electric semi-trucks for each type of haul in 5, 10, and 20 years
from 2020 are shown in Table 5.

Proportion
5 years 0.2563
10 years 0.6901
20 years 0.9176

Table 5: Proportion of Electric Semi-Trucks, Pe (rounded)

1.6 Results and Discussion

Seeing as the total cost difference of long haul semi-trucks was the greatest, our assumption
that this difference is proportional to the probability of changing to electric resulted in the
largest proportion of electric trucks being long haul. Short-haul electric semi-trucks had the
smallest total difference in cost between diesel short-haul semi-trucks, but the growth was
still substantive. The growth of the diesel semi-trucks was steadily increasing, and the short
haul diesel semi-trucks almost doubled from 5 years to 20 years in trucks due to its smaller
P value. The totals of the quantities of semi-trucks replaced from inoperable semi-trucks
after 20 years add up to the population if the trucks were not rounded down to the nearest
whole truck.

1.6.1 Strengths and Weaknesses

The Markov chain model allows for multiple factors to be accounted for in determining the
amount of electric cars at a given year after 2019. The model accounts for all of the factors
given to us and includes an extra factor in the type of semi-truck. The model accounts for
the annual new production rates and life expectancy by using the values 12 years prior to the
predicted year in calculating how many inoperable diesel cars are expected to be replaced
by electric cars. It accounts for the cost difference between electric and diesel semi-trucks
by comparing the total difference between the three types of semi-trucks when determining
the probability of converting an inoperable diesel semi-truck to an electric semi-truck. The
model implicitly accounts for the current fleet of operational semi-trucks.

The Markov chain model does have a weakness in its determination of probability values
for different types of semi-trucks. Once the trucks are released to the market, the values
for these can be determined on the basis empirical data. It is also weak in its inability to
determine the amount of electric semi-trucks that will replace operable diesel semi-trucks.
This can be factored into the model once 2020 data is released for this purpose. The model
fails to take hybrid cars into account, but the Markov chain can be modified to include a
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third state of hybrid vehicles.

Another weakness of the model is the assumption that the market for semi-truck demand
is constant. In a real-world situation, the demand would fluctuate based on a variety of
factors, such as pricing, competition, and battery improvements. Using a Markov Chain
Monte Carlo to take these factors into account would result in more accurate P values based
on market conditions to put into the transition matrices.

2 In It for the Long Haul

2.1 Defining the Problem

Even if all shipping companies switched over to electric semis tomorrow, the infrastructure
necessary for making electric semis feasible still requires significant capital investment. The
purpose of this model is to determine the most effective distribution of Electric Vehicle
Supply Equipment (EVSE) along common shipping corridors in terms of money and time
saved.
In order to answer this, we will also find the best charging schedule for drivers.

2.2 Assumptions

2-1. The state of charge of a LiFePO4 rechargeable battery exponentially ap-
proaches 100%.

• Justification: Rechargeable batteries charge similarly to capacitors in that the
amount of charge determines the charging speed. The more charge in the bat-
tery, the slower more charge will enter. This creates a charge over time relation
proportional to 1− e−kx [13][14].

2-2. The range of a semi truck is directly proportional to its state of charge.

• Justification: Batteries emit a constant voltage.

2-3. All EVSEs use Direct Current Fast Charging hardware, which greatly de-
creases charge time.

• Justification: We will prove this is optimal in Part 3.

2-4. Semi-trucks will look to recharge upon reaching a state of 20% or less.

• Justification: This reduces both risk of running empty and drivers’ range
anxiety [4].
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2.3 Variables Used

Symbol Definition Units Value
I Idle Time at Charging Station Minutes ...
C0 Initial State of Charge [0, 1] N/A 20%
Cf Final State of Charge [0, 1] N/A ...
R Range Miles ...
D Distance Miles ...
t80 Charge Time to 80% Minutes ...
Imin Minimum Time at Charging Station Minutes 10
Ttot Annual Average Daily Truck Traffic Trucks/Day ...

2.4 Developing the Model

Ultimately, the number of stations along a given route will depend on how often the truck
needs to stop to recharge. The time taken to charge, however, must be carefully considered.
Because of Assumption 2-1, it would be a waste of time to charge to 100% every time; simple
algebra shows that with exponential approach, it would take the same amount of time to
charge the first 70% that it would to charge the final 30%.

In order to quantify this, we created a model to find the optimal charging value, Cf , that
minimizes the total charging time, I, on a trip given the range of the truck R, the trip
distance D, and the 80% recharging time t80:

I (Cf , R,D, t80) =

⌈
D

(Cf − C0)R

⌉(
t80 ·

ln (1− Cf )

ln 0.2
+ Imin

)
Explanation: The equation is essentially number of stops · idle time per stop.

The number of stops is given by
⌈

D

(Cf−C0)R

⌉
, or the total distance divided by the range

possible with the current charge. It is rounded up to avoid a non-integer number of stops.

The total time per stop is given by t80 ·
ln(1−Cf)

ln 0.2
+ Imin, where Imin is the baseline time lost

by making a stop [4]. t80 ·
ln(1−Cf)

ln 0.2
is derived from the general exponential approach equation

Cf = 1− e−kt given the point (t80, 0.8).

From all this, it is confirmed that waiting for 100% charge is highly disadvantageous, and in
order to minimize wait time, trucks should be charged to a mid-range state.
The following graph shows an example of this minimum value, calculated using the range
and charging speed of the Freightliner eCascadia [9], a middle-of-the-road electric semi-truck
expected to hit the markets in 2021:
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Figure 3: Freightliner eCascadia, R = 250 mi, D = 600 mi, t80 = 180 min

2.5 Executing the Model

2.5.1 Optimal Stations per Shipping Corridor

To address the first problem stated in Part 2, in order to determine the number of stops
needed along a given shipping corridor of distance D, we will use a Monte Carlo simulation
with our formula for number of stops:⌈

D

(Cf − C0)R

⌉
We will hold C0 constant at 0.2 (Assumption 2-4) and randomly vary R and Cf to test how
frequently different trucks will need to stop.

• R values will be normally distributed with µ = 300 and σ = 100 conferring with the
projected ranges of commercial electric semis [4].

• Cf values will be uniformly distributed between 0.2 and 1 to simulate varied pit stop
schedules used by drivers.

The Monte Carlo simulation was run for 1000 unique trucks, calculated for each of the given
shipping corridors.

2.5.2 Optimal Charging Stations per Truck Stop

To address the second problem, another Monte Carlo simulation was used to determine the
average number of trucks at a given station at any time, and thus, the optimal number of
chargers for the station. The formula is as follows:

Avg. Trucks Present =
∑
i

Ii
1440min

,

Ii =
t80i

ln 0.2
ln(1− Cf )− ln(1− C0),
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where Ii is the time spent at the station by an individual truck derived from the exponential
approach equation. Dividing by the number of minutes in a day provides the probability of
encountering the truck at the station at any time.
To find this value, we ran the formula with 1000 different trucks with different idle times
due to initial charge and charging speeds. So the Monte Carlo simulation was run varying
the C0, Cf , and t80 values.

• C0 values will be normally distributed with µ = 0.6 and σ = 0.125, as before.

• Cf values will be uniformly distributed between C0 and 1, to simulate varied charging
schedules used by drivers.

• t80 values will be uniformly distributed between 30 and 300 to account for the projected
charging times of commercial electric semis [4].

2.6 Results and Discussion

Shown below are the results from the first Monte Carlo simulation, which found the optimal
number of charging stops for each shipping corridor. It is worth noting that for all of them,
it is almost exactly one stop every 90 minutes. This is unreasonable for diesel engines, but
it makes sense given the nature of the electric batteries.

Figure 4: Monte Carlo simulation results, showing mean number of stops taken
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The following table shows the results from the second Monte Carlo simulation, which found
the optimal number of charging stations at any given truck stop using its Annual Average
Daily Truck Traffic:

Corridor
# of Charging
Stations

Miles per Charg-
ing Station

# of EVSE per
Station

San Antonio to New Orleans 6 87.5 17
Minneapolis to Chicago 5 87.1 29
Boston to Harrisburg 4 87.4 14

Jacksonville to Washington D.C. 8 89.6 28
Los Angeles to San Francisco 3 85.3 28

It is worth comparing these numbers to a similar metric, the average number of Teslas at a
supercharger, recently measured to be about 9 [5]. Since in this scenario, all semi-trucks are
electric, the slightly increased numbers still make sense but are not unreasonable for a truck
stop.

2.6.1 Strengths and Weaknesses

Due to the nature of the Monte Carlo simulations used, these models are fairly robust in that
they account for a wide range of possibilities. The numbers, both constants and variables,
were based on widely agreed-upon statistics.

However, the outputs - particularly for the first simulation - showed a larger-than-optimal
standard deviation. There were a few significant outliers which required far more stops than
the other trucks. We expect that this is an unrealistic product of our model, which could
create an individual that would choose to refuel for a very small amount of time multiple
times in a row.

Furthermore, a large part of our methodology was based on our Assumption 2-1, which
holds that charging strictly conforms to the 1− e−kx shape. Slight differences in real-world
battery charging could possibly be amplified in the final results.

3 I Like to Move It, Move It

3.1 Defining the Problem

Create a model that ranks which trucking corridors should begin development of charging
stations first and use this model to rank the five trucking corridors from the previous part.

3.2 Assumptions

3-1. The cost per mile of Semi Shipping is $2.75.

• Justification: This is the current middle-of-the-market average value. [7].
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3-2 The cost is $22,626 to install one DCFC station.

• Justification: The mean cost of installing a DCFC Station was 22,626 based on
data published by the U.S. Department of Energy [6].

3-3. 50% trucks using the corridors are long-haul shipments.

• This statistic is found in the Keep on Trucking Information Sheet provided by
the MathWorks Math Modeling Challenge 2020 [2].

3.3 Variables Used

Symbol Definition Units Value
F Cost per Mile of Semi Shipping $/Mile 2.75
V Net value per minute of Semi Shipping $/Mile ...
Tavg Average Daily Truck Traffic of the route Trucks/Day ...
S Total Cost of Charging Station Installations $ ...
X Importance Score for each corridor - ...
E Community Environmental Measures - ...
G Increase in GDP from Trucking Time $/Year ...

3.4 Developing the Model

In order to rank which trucking corridors to develop first, we will consider three metrics:

1. Economic Growth - i.e. GDP increase,

2. Environmental considerations, and

3. Cost to implement the necessary infrastructure.

All metrics for each of the five corridors will be normalized, equally weighted, and combined
into a final importance score for each corridor, X, as follows:

X = Gnorm + Enorm + Snorm

For the first metric, economic growth, G, was calculated by the money saved by decreased
idle charging times of DCFC chargers. V , the dollar value of an on-route semi’s time, was
calculated using the average cost of semi shipping, F = 2.75/mi (Assumption 3-1), and the
average number of trucks using the corridor, Tavg. Tavg was found by taking 50% of the
average value of the Annual Average Daily Truck Traffic (AADTT) for each corridor (per
Assumption 3-3).
For each corridor, V was found by the following formula:

V =
FD

D · 1min
1mi

+ I
,
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where D is the length of the corridor and I is the total idle time while charging, calculated
using recharge and range values from the Freightliner eCascadia.
The Tavg values for each of the five corridors are shown below:

Corridor Tavg
San Antonio to New Orleans 7,144.05

Minneapolis to Chicago 8,010.75
Boston to Harrisburg 4,646.43

Jacksonville to Washington D.C. 4,757.54
Los Angeles to San Francisco 6,987.43

Thus, the total economic value generated is given by

G = V · Tavg.

For the second metric, E, environmental considerations were based off of number of state
actions on electric vehicles found in a report conducted by the NC Clean Energy Tech-
nology Center [8]. Actions consisted of setting targets for zero-emission vehicle, plans for
transportation electrification plans, and exemptions of charging stations from public utility
regulation. Number of actions was categorized into five levels:

Level # of Actions
0 none
1 1 to 2
2 3 to 5
3 6 to 9
4 10 or more

Table 6: Environmental Consideration Levels

Environmental considerations was considered as communities who were more environmen-
tally conscious and had more incentives and actions regarding electric vehicles would likely
be more motivated to support development of charging stations. The environmental consid-
eration score per trucking corridor was calculated by averaging the levels of all the states
and are listed in Table 7.

For the third metric, the cost of charging station installations, S, is based on the cost to
install one DCFC station and the solution to Part 2, as follows:

Avg. Trucks Present = chargers/station

S = $22, 626 · chargers/station · stations

These metrics are then normalized through the use of min-max normalization to weight the
values the same and be able to add them together in determining the Importance Score. The
formula is as follows:

Normalized Value =
xi − xmin

xmax − xmin
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3.5 Executing the Model

Trucking Corridors E S G
San Antonio to New Orleans 3 $2,692,494 $9,644

Minneapolis to Chicago 3.67 $3,280,770 $10,814
Boston to Harrisburg 3.8 $1,583,820 $6,272

Jacksonville to Washington D.C. 2.5 $5,068,224 $6,421
Los Angeles to San Francisco 4 $2,534,112 $9,432

Table 7: Importance Score for Trucking Corridors

Trucking Corridors E S G X
San Antonio to New Orleans 0.33 0.32 0.74 1.39

Minneapolis to Chicago 0.78 0.49 1 2.27
Boston to Harrisburg 0.87 0 0 0.87

Jacksonville to Washington D.C. 0 1 0.03 1.03
Los Angeles to San Francisco 1 0.27 0.70 1.97

Table 8: Normalized Importance Score for Trucking Corridors

3.6 Results and Discussion

The results showed that the Minneapolis to Chicago corridor should be targeted first followed
by Los Angeles to San Francisco then San Antonio to New Orleans then Jacksonville to D.C.
then Boston to Harrisburg.

3.6.1 Strengths and Weaknesses

The strength of our model is that we consider three different variables.
A weakness of the model is that there are other variables that could be considered in the
making of the model such as electric vehicle usage in the states and how much each route is
used. A second weakness is that the cost has a high standard deviation, which could greatly
affect the results of the model.
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Code Used

Part 1

format longG
% 2008 - 2015 product ion o f d i e s e l semit rucks
product ion = . . .

[ 3 5 5 0 . 5 , 3 1 9 5 4 . 5 , 5 7 9 3 0 ; 2 3 0 0 . 9 , 2 0 7 0 8 . 1 , 4 6 7 1 5 ; 3 7 7 9 . 8 , 3 4 0 1 8 . 2 , 4 4 3 7 2 ; 7 4 2 3 . 7 , 6 6 8 1 3 . 3 , 7 1 3 2 5 ; 7 4 3 6 . 1 , 6 6 9 2 4 . 9 , 8 0 5 5 8 ; 7 0 6 6 . 7 , 6 3 6 0 0 . 3 , 6 7 8 9 6 ; 1 0 3 2 9 . 5 , 9 2 9 6 5 . 5 , 7 4 7 9 9 ; 1 0 7 9 9 . 5 , 9 7 1 9 5 . 5 , 9 5 7 6 9 ] ;
% 2008 - 2019 number o f i nope rab l e semit rucks ( short , . . .

r e g i ona l , long )
inope rab l e = . . .

[ 3550 . 5 , 2300 . 9 , 3779 . 8 , 7423 . 7 , 7436 . 1 , 7066 . 7 , 10329 . 5 , 10799 . 5 , 6835 . 5 , 6808 . 6 , 10323 . 9 , 10944 . 2 ; 31954 . 5 , 20708 . 1 , 34018 . 2 , 66813 . 3 , 66924 . 9 , 63600 . 3 , 92965 . 5 , 97195 . 5 , 61519 . 5 , 61277 . 4 , 92915 . 1 , 98497 . 8 ; 57930 , 46715 , 44372 , 71325 , 80558 , 67896 , 74799 , 95769 , 55927 , 70866 , 91551 , 101024 ] ’ ;
% 2019 product ion o f d i e s e l semit rucks
product ion shor t = 10944 . 2 ;
product ion r e g i o n a l = 98497 . 8 ;
product ion long = 101024;
% TRANSITION MATRICES
T = [ 1 , 0 ] ;
% Trans i t i on matrix f o r Markov chain d e s c r i b i n g the switch . . .

to e l e c t r i c
P1 = [ 0 . 8 , 0 . 2 ; 0 . 01 , 0 . 9 9 ] ; % shor t haul
P2 = [ 0 . 6 , 0 . 4 ; 0 . 01 , 0 . 9 9 ] ; % r e g i o n a l haul
P3 = [ 0 . 4 , 0 . 6 ; 0 . 01 , 0 . 9 9 ] ; % long haul

% Ca lcu la t e the propor t ion o f semit rucks that switch to . . .
e l e c t r i c

P = {{} , {} , {}} ;
f o r i = 1 :20

P{1}{ i } = T ∗ P1 ˆ i ; % shor t haul
P{2}{ i } = T ∗ P2 ˆ i ; % r e g i o n a l haul
P{3}{ i } = T ∗ P3 ˆ i ; % long haul

end

% Pred i c t the product ion o f e l e c t r i c semit rucks in the next . . .
8 year s :

% Pred = Prop N(1 , 1) ∗ Prod (N)
p r e d i c t i o n s = ze ro s (8 , 3) ; % three types o f semitruck
f o r i = 1 :8

f o r j = 1 :3
% number o f e l e c t r i c semit rucks N years a f t e r 2019
p r e d i c t i o n s ( i , j ) = P{ j }{ i } (1 , 2) ∗ product ion ( i , j ) ;

end
end
% Ensures that product ion i s not below zero .
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p r e d i c t i o n s ( p r e d i c t i o n s ¡ 0) = 0 ;

% Converts P to an array o f the propor t i on s .
Prop = ce l l 2mat ( c e l l f u n ( @cell2mat , c e l l f u n ( @transpose , P, . . .

’ UniformOutput ’ , f a l s e ) , ’ UniformOutput ’ , f a l s e ) ) ;

% Ca lcu la t e the number o f
% shor t haul semit rucks a f t e r 5 years - I (1 , 1) ∗ Prop 5
shor t 5 = sum( inope rab l e ( 1 : 5 , 1) .∗ Prop ( 1 : 5 , 1 : 2 ) ) % # . . .

ok ¡ ∗NOPTS ¿
% shor t haul semit rucks a f t e r 10 years - I (1 , 2) ∗ Prop 10
shor t 10 = sum( inope rab l e ( 1 : 1 0 , 1) .∗ Prop ( 1 : 1 0 , 1 : 2 ) )
% shor t haul semit rucks a f t e r 20 years - I (1 , 3) ∗ Prop 20
shor t 20 = sum( inope rab l e ( 1 : 1 2 , 1) .∗ Prop ( 1 : 1 2 , 1 : 2 ) )
% r e g i o n a l haul semit rucks a f t e r 5 years - I (2 , 1) ∗ Prop 5
r e g i o n a l 5 = sum( inope rab l e ( 1 : 5 , 2) .∗ Prop ( 1 : 5 , 3 : 4 ) )
% r e g i o n a l haul semit rucks a f t e r 10 years - I (2 , 2) ∗ Prop 10
r e g i o n a l 10 = sum( inope rab l e ( 1 : 1 0 , 2) .∗ Prop ( 1 : 1 0 , 3 : 4 ) )
% r e g i o n a l haul semit rucks a f t e r 20 years - I (2 , 3) ∗ Prop 20
r e g i o n a l 20 = sum( inope rab l e ( 1 : 1 2 , 2) .∗ Prop ( 1 : 1 2 , 3 : 4 ) )
% long haul semit rucks a f t e r 5 years - I (3 , 1) ∗ Prop 5
long 5 = sum( inope rab l e ( 1 : 5 , 3) .∗ Prop ( 1 : 5 , 5 : 6 ) )
% long haul semit rucks a f t e r 10 years - I (3 , 2) ∗ Prop 10
long 10 = sum( inope rab l e ( 1 : 1 0 , 3) .∗ Prop ( 1 : 1 0 , 5 : 6 ) )
% long haul semit rucks a f t e r 20 years - I (3 , 3) ∗ Prop 20
long 20 = sum( inope rab l e ( 1 : 1 2 , 3) .∗ Prop ( 1 : 1 2 , 5 : 6 ) )

% Diagram of the Markov chain
P = [ 0 . 8 , 0 . 2 ;

0 . 01 , 0 . 9 9 ] ;
mc = dtmc (P) ;
f i g u r e ;
graphplot (mc) ;
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Part 2
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