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ABSTRACT
We consider the problem of allocating resources to meet an
uncertain demand. There are well studied approaches to
solve this problem when distributional information is known
about the demand. We consider this resource allocation prob-
lem when we lack information about the statistics of the de-
mand. These types of resource allocation problems, where
there is only minimal information available about the de-
mand, arises naturally in many instances. The motivation
for studying this problem is the allocation of resources (test-
ing kits, masks) for pandemic control. While resources are
being allocated, there is only minimal information known
about the demand size. Decision makers have to solve some
version of the Caterer’s problem when making advance reser-
vation of resources (processing, storage) in the cloud for
new applications. We develop deterministic and randomized
competitive algorithms for the Caterer’s problem. Unlike the
closely related online Ski-rental problem, the Caterer’s prob-
lem does not satisfy the principle of equality and this makes
the Caterer’s problem more challenging. We prove the opti-
mality of the randomized algorithms by using Yao’s Lemma
and developing matching lower bounds for the problem.

1 INTRODUCTION
In many realistic scenarios, resource allocation decisions
are made under uncertainty. When allocation decisions are
made, a decision maker may only have access to limited, pos-
sibly probabilistic information about potential resource de-
mands in the future. Nevertheless, the decision maker seeks
to minimize cost or maximize profit using the available infor-
mation.

Several paradigmatic resource allocation frameworks can
be captured by simple examples. In a single stage resource
allocation problem, the decision maker only makes a single
resource allocation decision under uncertainty. A classical
example of a single stage resource allocation problem is the
newsvendor problem. [1]
In the newsvendor problem [2], a newsvendor decides the
number of newspapers to be ordered on a given day. The
quantity of newspapers that will be demanded is unknown,
and any leftover newspapers are discarded. Each newspaper
sold generates a profit, and each newspaper ordered incurs a
cost and the objective of the newsvendor is to determine the
number of newspapers to order to maximize the expected
profit. In the case where the distribution of the number of
newspapers that will be demanded is known, this problem is
a crucial building block of stochastic inventory theory and is
studied extensively in the management science literature [3,

4].
There are, however, many instances where the demand distri-
bution is not known ahead of time. In this case, it is not possi-
ble to minimize the expected cost or maximize the expected
profit. When no information is available about distribution
of the demand, alternative formulations are needed. One ap-
proach [5] is a decison theoretic approach based on a hybrid
of Hurwicz and Bayes decision rules that takes into account
the decision maker’s attitude towards risk. Another approach
developed in [6] uses a possibility distribution instead of
a probability distribution to characterize the demand. In
this paper, we develop an alternative approach to mitigate
worst-case outcomes [7] . In contrast to single stage resource
allocation, a multi stage resource allocation problem involves
the decision maker performing multiple resource allocations.
The ski rental problem [8] is a quintessential example of this
paradigm.

In the ski-rental problem, a skier decides at the beginning
of each day whether to rent skis for that day for 1 dollar, or to
buy skis for 𝑏 dollars. However, the skier does not know how
many days of skiing are left in the season – if she skis for less
than𝑏 days the optimal strategy is to rent the skis on each day,
but if she skis for more than𝑏 days it is optimal to buy the skis
immediately. Since the number of skiing days is not known
ahead of time the online approach is to develop a strategy
that performs well compared to the optimal strategy in the
worst-case situation. Fundamentally, the ski rental problem
allows us to develop a framework in which allocation deci-
sions are made incrementally without any information about
the future.

In this paper, we develop an algorithm for a single alloca-
tion decision made with limited knowledge of the future. The
motivation for the problem is deciding the quantity of safety
and testing equipment to pre-stock in preparation for health
crises. The demand for such equipment, or even the distribu-
tion of the demand for such equipment, may be functionally
unknown especially if the health issue in question is poorly
understood. If the allocation is insufficient, then additional
supplies must be obtained at the last minute. Doing so may
incur a fixed cost (independent of the quantity ordered), as
well as variable costs per unit of additional resources. No-
tably, the per-unit cost for resources at a time of need may be
significantly different from the cost to stockpile a single unit.

This decision problem is a single stage optimization prob-
lem like the newsvendor problem, and the decision maker
does not have any information about the demand distri-
bution. However, the unknown demand resembles the un-
known number of ski days in the ski-rental problem. As in
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previous works, we motivate this novel single stage decision
problem under uncertainty using a stylized framework called
the Caterer’s Problem.

1.1 Caterer’s Problem.
A caterer enters into a contract to serve all people attending
an event. The number of people attending the event is not
known in advance, but a lower bound ℓ ≥ 1 and an upper
bound 𝑢 ≤ ∞ on the number of guests may be known. The
caterer has to decide how many plates to prepare without
advance knowledge of the number of guests.

We scale costs such that the cost to the caterer to pre-
pare one plate is 1 dollar. If the number of plates prepared is
greater than the number of guests, excess plates are wasted.
However, if the initial number of plates prepared is less than
the number of guests, then the caterer must prepare addi-
tional plates at a cost of 𝛼 dollars per plate, and will also incur
a fixed charge of 𝑏 dollars to get these additional supplies to
the event. The caterer’s objective is to choose is the number
of plates to prepare in advance such that the total cost of
fulfilling the contract is minimized.

Remarks.

(1) It is easy to include a fixed cost to the initial allocation.
This cost will be incurred by all algorithms. The per-
formance bounds derived in this paper will provide an
upper bound on the performance if there is a fixed cost
for the initial allocation.

(2) The assumption that the initial allocation is made at
unit cost is without loss of generality. If the initial cost
per unit is 𝑐 dollars, then we can scale down the fixed
charge 𝑏 and the cost of providing additional resources
𝛼 by 𝑐 (i.e., make these costs 𝑏/𝑐 and 𝛼/𝑐 respectively)
and re-formulate the problem with unit cost.

The Caterer’s problem can be used to model several single
stage stochastic allocation problems.

• An example of 𝛼 = 0 is a long term leasing problem. In
this problem, a customer wants to enter into a multi-
period lease for some item. The customer knows that
he is going to need the item for between ℓ and 𝑢 time
periods. The cost of leasing the item per period is one
dollar and the cost of buying the item is 𝑏 dollars. Un-
like the ski-rental problem, the customer cannot ex-
tend the lease at the end of each time period but has
to commit to a multi-time period lease. A natural ques-
tion to ask is how long should the initial leasing period
be before the customer buys the item (if necessary).

• The 𝛼 = 0 case also models the problem of a contract
with a non completion penalty of 𝑏. These kinds of con-
tracts with contract violation penalties are commonly
used to avoid litigation if a contract is not completed.

• With 𝛼 > 1, then the caterers problem can be used to
model the problem of ordering test kits where the cost
of providing one unit of additional resource can be
greater that the initial allocation cost due to increased

market demand. As in the Caterer’s Problem, 𝑏 can
be viewed as the fixed cost of getting the additional
resources.

• With the increasing use of the cloud to provide com-
puting infrastructures, companies enter into advanced
reservation contracts with cloud service providers for
processing and storage resources. The cost of provid-
ing resources are cheaper if they are made in advance.
Companies have to estimate future needs and make
the reservations but the actual need may be different
from the estimated needs. If additional resources have
to be purchased in real time, then the cost of these
resources will be typically be higher.

Like the newsvendor problem, the caterer’s problem is a one
stage decision problem. Since the distribution of the number
of guests is not known, we use the competitive ratio to mea-
sure the efficiency of the solution to the Caterer’s problem.

1.2 Competitive Ratio
The caterer would ideally like to meet the demand at mini-
mum total cost. Since the demand or any probabilistic infor-
mation about the demand is not known ahead of time, the
caterer has to develop a strategy that gets close to the mini-
mum cost solution for the worst case demand. This idea of
computing solutions to problems where there is uncertainty
in the inputs has been used extensively in the computer sci-
ence literature [7]. The most common approach to handling
uncertainty in the input is the idea of competitive ratio [8].
Let 𝑦 denote the unknown input to the algorithm. In our case
𝑦 is the unknown demand. Let𝑂𝑃𝑇 (𝑦) denote the solution to
the optimization problem when the value of 𝑦 is known. Let
𝐴𝐿𝐺 (𝑦) denote the solution provided by the algorithm when
the input is 𝑦. The competitive ratio 𝜆𝐴𝐿𝐺 of the algorithm
𝐴𝐿𝐺 is defined as

𝜆𝐴𝐿𝐺 = max
𝑦

𝐴𝐿𝐺 (𝑦)
𝑂𝑃𝑇 (𝑦) . (1)

In other words, the competitive ratio of 𝐴𝐿𝐺 is the worst case
ratio of the solution provided by the algorithm to the optimal
solution over all the inputs. We would like the competitive
ratio of the algorithm to be as small as possible. Note that
𝜆𝐴𝐿𝐺 ≥ 1 since 𝑂𝑃𝑇 (𝑦) is solution when the value of 𝑦 is
known and it is not possible to do better. The challenge is
to develop an algorithm 𝐴𝐿𝐺 that comes close to𝑂𝑃𝑇 for all
possible values of 𝑦.

1.3 Deterministic and Randomized
Competitive Algorithms

If the algorithm 𝐴𝐿𝐺 does not use any randomness and finds
a solution independent of the input then it is termed a de-
terministic algorithm. For some problems, including the
Caterer’s problem, it is possible to do better if the algorithm
uses a random initial allocation. If randomization is used,
then the value of the solution provided by 𝐴𝐿𝐺 will be a ran-
dom variable. In this case, we use 𝐸 [𝐴𝐿𝐺 (𝑦)] to denote the
expected value of the solution provided by the randomized
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algorithm 𝐴𝐿𝐺 when the input is 𝑦. Note that the random-
ized algorithm cannot use any information about 𝑦 when per-
forming randomization. The performance of a randomized
algorithm is the expected competitive ratio that is defined as

𝜆𝐴𝐿𝐺 = max
𝑦

𝐸 [𝐴𝐿𝐺 (𝑦)]
𝑂𝑃𝑇 (𝑦) .

We develop a randomized algorithm and show that its com-
petitive ratio is at most that of the optimal deterministic
algorithm.

1.4 Solution Technique
The techniques used for the Ski-rental problem cannot be
extended directly to the Caterer’s problem. This is due to the
fact that the Ski-rental problem has the property of principle
of equality [9]. This property ensures that the competitive
ratio for the problem is constant across the entire range of
the unknown parameter. This is exploited either explicitly
or implicitly in the analysis of Ski-rental and similar online
problems. In fact [9] has unified these techniques to derive
solutions to a wide range of online algorithms. However this
technique cannot be used for the Caterer’s problem. For the
Caterer’s problem, the competitive ratio is at the highest
value upto some value of the parameter and then decreases.
A critical component of the analysis it to find the threshold
value of the parameter until which the competitive ratio re-
mains at its worst case value. If the upper bound 𝑢 on the
demand is low, then the principle of equality will hold and
we can use a modified version of the analysis of the Ski-rental
problem in [9] to derive a competitive algorithm. For the
general Caterer’s problem part of the analysis is to find the
threshold until which the competitive ratio remains at its
worst case value.

2 PROBLEM DEFINITION
We now formally define the Caterer’s problem. Assume that
a caterer has agreed to cater to all the people attending an
event. The only information known about the number of
people (demand) 𝑦 attending the event is that ℓ ≤ 𝑦 ≤ 𝑢

where ℓ ≥ 1 and 𝑢 ≤ ∞. The caterer has to serve one plate to
each guest. Without loss of generality, the cost of each plate
is one dollar. The caterer has to decide the number of plates
(initial allocation) 𝑥 that he is going to prepare in advance. If
the demand𝑦 ≤ 𝑥 , then no additional cost is incurred and the
total cost is 𝑥 . The excess resource 𝑥 − 𝑦 is not utilized. If the
demand 𝑦 > 𝑥 , then the caterer has to augment the number
of plates to meet the demand. Augmenting resources incurs
a fixed cost of 𝑏 whenever there is any augmentation and
a per unit cot of 𝛼 dollars. Augmenting 𝑦 − 𝑥 plates incurs
a augmenting cost of 𝑏 + 𝛼 (𝑦 − 𝑥) dollars and a total cost of
𝑥 + 𝑏 + 𝛼 (𝑦 − 𝑥). Therefore, when an initial assignment 𝑥 is
made when the demand is 𝑦, the total cost𝑇𝐶 (𝑥,𝑦) is

𝑇𝐶 (𝑥,𝑦) =
{
𝑥 + 𝑏 + 𝛼 (𝑦 − 𝑥) if 𝑥 < 𝑦

𝑥 if 𝑥 ≥ 𝑦

If the demand 𝑦 is known ahead of time, then the optimal
cost of meeting the demand𝑂𝑃𝑇 (𝑦) is

𝑂𝑃𝑇 (𝑦) = min {𝑦,𝑏 + 𝛼𝑦} .
The first term is to assign 𝑦 initially, incurring a cost of 𝑦. The
second term is the cost incurred when the initial allocation
𝑥 = 0 and the augmentation cost is 𝑏 + 𝛼𝑦. The optimum cost
is the minimum of these two options. Note that the second
option can be optimal for 𝑦 ≥ 𝑏

1−𝛼 if 𝛼 < 1. The competitive
ratio 𝜆 is defined as the worst case ratio of the cost incurred
by the algorithm to the optimal cost.

𝜆𝑑 = min
𝑥

max
ℓ≤𝑦≤𝑢

𝑇𝐶 (𝑥,𝑦)
𝑂𝑃𝑇 (𝑦) .

If a randomized algorithm is used, then the initial allocation
is a random variable 𝑋 with density function 𝑝 (𝑥). The objec-
tive of the randomized algorithm is to determine 𝑝 (𝑥) such
that

𝜆𝑟 = min
𝑝 (𝑥)

max
ℓ≤𝑦≤𝑢

𝐸𝑥 [𝑇𝐶 (𝑋,𝑦)]
𝑂𝑃𝑇 (𝑦)

where 𝐸𝑥 [ ] is the expectation with respect to density func-
tion 𝑝 (𝑥) . We assume that the demand𝑦 is picked by an adver-
sary who has knowledge of the choice made by the optimizer.
In the case where the optimizer uses a randomized strategy,
we assume an oblivious adversary [7] that knows the strategy
but does not know the exact outcome of the randomization
process. We now outline a deterministic algorithm to obtain
the best competitive ratio for the Caterer’s problem.

3 DETERMINISTIC COMPETITIVE
ALGORITHM

In a deterministic strategy, the caterer develops an approach
that makes the initial allocation 𝑥 a function of the known
problem parameters: the lower bound ℓ, the upper bound
𝑢, the fixed cost 𝑏 and the per unit augmenting cost 𝛼 . The
general approach for determining the worst case demand 𝑦

that maximizes the competitive ratio is to assume that 𝑦 is
picked by an adversary that knows the value of 𝑥 . In order to
keep the derivation of the competitive ratio simple, we first
show a simple result that bounds the optimal deterministic
allocation 𝑥∗ for the case when 𝛼 < 1. This result helps us
unify the analysis for the cases 𝛼 < 1 and 𝛼 ≥ 1 in the rest of
the paper.

LEMMA 3.1. If 𝛼 < 1, then the initial assignment 𝑥∗ that
minimizes the competitive ratio satisfies 𝑥∗ ≤ 𝑏

1−𝛼 .

PROOF. We prove this result by contradiction. Assume that
the minimum competitive ratio is attained by an initial as-
signment 𝑥∗ > 𝑏

1−𝛼 . If the adversary picks a demand 𝑦 < 𝑥∗,
then the worst case competitive ratio is attained when 𝑦 = ℓ .

In this case the competitive ratio is 𝑥∗
ℓ which decreases when

𝑥∗ decreases. If the adversary picks 𝑦 > 𝑥∗, then the cost for
the caterer is 𝑥∗ +𝑏 + 𝛼 (𝑦 − 𝑥∗) and the optimum cost is 𝑏 + 𝛼𝑦
(since 𝑦 > 𝑥∗ > 𝑏

1−𝛼 ). Therefore the competitive ratio is

𝑥∗ + 𝑏 + 𝛼 (𝑦 − 𝑥∗)
𝑏 + 𝛼𝑦

= 1 + (1 − 𝛼)𝑥∗
𝑏 + 𝛼𝑦

.
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Since 𝛼 < 1, this is also an increasing function of 𝑥∗. There-
fore, the competitive ratio can be decreased by decreasing 𝑥∗.
This contradicts the assumption that 𝑥∗ attains the minimum
competitive ratio. □

Since the adversary knows that 𝑥∗ ≤ 𝑏
1−𝛼 , he will also set

𝑦 ≤ 𝑏
1−𝛼 . In this case𝑂𝑃𝑇 (𝑦) = 𝑦. When 𝛼 > 1 the the optimal

cost𝑂𝑃𝑇 (𝑦) = 𝑦. Therefore, when computing the competitive
ratio, we can assume that the optimal cost is 𝑦 for all values
of 𝛼 . We can now outline the performance of a deterministic
competitive algorithm for our problem.

THEOREM 3.2. There is a deterministic competitive algo-
rithm with a competitive ratio of

𝜆𝑑 = max

{
1
2

[
1 +

√
1 + 4𝑏

ℓ

]
, 𝛼

}
PROOF. Assume that the caterer picks an initial assign-

ment of 𝑥∗. If the adversary picks a demand 𝑦 ≤ 𝑥∗, then
the worst case competitive ratio is attained when 𝑦 = ℓ and
the competitive ratio is 𝑥∗

ℓ . We call this the left competitive
ratio. If the adversary picks some 𝑦 > 𝑥∗ then the worst case
competitive ratio is

𝑥∗ + 𝑏 + 𝛼 (𝑦 − 𝑥∗)
𝑦

= 𝛼 + 𝑏 + (1 − 𝛼)𝑥∗
𝑦

.

By Lemma 3.1 we know that the optimal cost is 𝑦. The ad-
versary wants to make this expression as large as possible.
The maximum value is called the the right competitive ra-
tio. There are two cases to consider to compute the right
competitive ratio.

• If 𝑏 + (1 − 𝛼)𝑥∗ ≥ 0, then the adversary sets 𝑦 = 𝑥∗ + 𝜖

and the right competitive ratio is

lim
𝜖→0

𝑥∗ + 𝑏
𝑥∗ + 𝜖

= 1 + 𝑏

𝑥∗

The caterer determines the initial assignment 𝑥∗ that
makes the left and right competitive ratios equal.

𝑥∗

ℓ
= 1 + 𝑏

𝑥∗
.

Solving for 𝑥∗, we get

𝑥∗ =
1
2

[
ℓ +

√
ℓ2 + 4𝑏ℓ

]
and the optimal competitive ratio 𝑥∗

ℓ is

𝜆1
𝑑
=

1
2

1 +
√
1 + 4

(
𝑏

ℓ

) (2)

•
• If 𝑏 + (1 − 𝛼)𝑥∗ < 0, then the adversary can set 𝑦 = ∞

to make the right competitive ratio 𝛼 . In this case, the
overall competitive ratio of the algorithm is 𝛼 .

• If 𝑏 + (1 − 𝛼)𝑥∗ < 0 then

□

The critical value of 𝛼 (denoted by 𝛼𝑐 ) above which the
competitive ratio is 𝛼 is

𝛼𝑐 =
1
2

1 +
√
1 + 4

(
𝑏

ℓ

) (3)

After some algebra, this condition can also be written as

𝑏 + 𝛼𝑐 ℓ − 𝛼2𝑐 ℓ = 0 (4)

Therefore,

𝜆𝑑 =


1
2

[
1 +

√
1 + 4

(
𝑏
ℓ

)]
if 𝑏 + 𝛼ℓ − 𝛼2ℓ > 0

𝛼 if 𝑏 + 𝛼ℓ − 𝛼2ℓ ≤ 0

A natural question to ask is whether the caterer can improve
its performance by randomization. In the next section, we
show that the expected competitive ratio of a randomized
competitive algorithm is at least as good as the deterministic
algorithm.

4 RANDOMIZED COMPETITIVE ALGORITHM
We now see how to exploit randomness to improve the ex-
pected competitive ratio. In a randomized algorithm, the
initial allocation 𝑋 is a random variable. Therefore the com-
petitive ratio is also a random variable. We choose the proba-
bility density function of𝑋 to minimize the expected compet-
itive ratio. The algorithms that we derive in this section are
optimal randomized algorithm. A randomized competitive
algorithm is termed optimal, if we can show that it is not
possible to derive any randomized algorithm that has lower
competitive ratio. This is shown by deriving a lower bound
on the achievable competitive ratio using Yao’s principle [10].
The functional form of the probability density function that
minimizes the competitive ratio is different for the case when
unit incremental cost 𝛼 = 0 and when the unit incremental
cost 𝛼 > 0. Therefore, we treat these two cases separately. It
is possible to use limiting arguments to derive the optimal
pdf for the case where 𝛼 = 0 from the general case but we
outline a direct derivation. We follow the following steps in
the derivation of the randomized competitive algorithm.

• We ignore the upper bound 𝑢 (equivalent to setting
𝑢 = ∞) and derive a randomized competitive algorithm
for the 𝛼 = 0 case in Section 4.1 and for 𝛼 > 0 in Section
4.2.

• In Section 5, we show how to modify the procedure
where the upper bound 𝑢 is smaller than the threshold
derived in Section 4.2.

• The matching lower bounds are derived in Section 5
that show that the derived randomized competitive
algorithms are optimal.

Since a deterministic competitive algorithm is a special case
of a randomized competitive algorithm (where all the weight
is placed at one allocation), the optimal randomized compet-
itive algorithm always does at least as well as a deterministic
algorithm.
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4.1 Randomized Algorithm for 𝛼 = 0 for Large
𝑢

In this section we assume that the unit cost for augmenta-
tion is zero and the upper bound 𝑢 = ∞. Assume that the
caterer picks the initial allocation randomly. The adversary
who picks the actual demand 𝑦 knows that the caterer is
randomizing as well as the pdf of the initial allocation. The
adversary, however, does not know the actual initial alloca-
tion 𝑋 (which is a random variable) drawn by the caterer. Let
𝑝 (𝑥) denote the probability density function of 𝑋 . Let E[𝑋 ]
denote the expected value of 𝑋 . The expected cost E [𝐶 ′ (𝑦)]
when 𝑥 is picked using the probability density function 𝑝 (𝑥)
and the actual demand is 𝑦 is given by

E
[
𝐶 ′ (𝑦)

]
=

∫ 𝑦

ℓ

(𝑥 + 𝑏) 𝑝 (𝑥)𝑑𝑥 +
∫ ∞

𝑦

𝑥𝑝 (𝑥)𝑑𝑥

= E[𝑋 ] + 𝑏
∫ 𝑦

ℓ

𝑝 (𝑥)𝑑𝑥

If the demand is 𝑦, then the optimal cost is 𝑦. If 𝜆𝑟 is the
expected competitive ratio then,

E[𝑋 ] + 𝑏
∫ 𝑦

ℓ

𝑝 (𝑥)𝑑𝑥 = 𝜆𝑟𝑦.

Differentiating this with respect to 𝑦, then

𝑏𝑝 (𝑦) = 𝜆𝑟 .

Therefore 𝑝 (𝑥) is a constant. Assume that 𝑝 (𝑥) is a uniform
distribution between ℓ and (to be determined) upper bound
𝑤 . This is where the derivation of the optimal pdf varies from
the optimal pdf for the standard ski-rental problem. In the
ski-rental problem, it is easy to show [7]) that the pdf is upper
bounded by the fixed cost 𝑏 and the optimal expected com-
petitive ratio is constant in the interval [1, 𝑏]. This has also
been referred to as the principle of equality ([9] and is crucial
for deriving the optimal pdf. We not not have this property
for the caterer’s problem. If we assume that the competitive
ratio is constant in the interval [ℓ, 𝑏] it leads to a sub-optimal
pdf. Therefore, determining the upper bound is an impor-
tant component of deriving the optimal pdf. In Section 6, we
show that the value of 𝑤 is also part of the pdf to prove the
optimality of the derived competitive ratio. We define the pdf
𝑝 (𝑥) as

𝑝 (𝑥) =
{

1
𝑤−ℓ if ℓ ≤ 𝑥 ≤ 𝑤

0 Otherwise

Therefore the expected cost E [𝐶 ′(𝑦)] is

E[𝑋 ] + 𝑏
∫ 𝑦

ℓ

𝑝 (𝑥)𝑑𝑥 =

(
ℓ +𝑤
2

)
+ 𝑏

(
𝑦 − ℓ

𝑤 − ℓ

)
=

(
𝑏

𝑤 − ℓ

)
𝑦 +

(
ℓ +𝑤
2

)
− 𝑏ℓ

𝑤 − ℓ

The expected cost of the algorithm is of the form 𝛾 + 𝛽𝑦 where
𝛾 and 𝛽 are constants, independent of 𝑦. We know that the
optimum cost is 𝑦. We ideally want the expected cost of the
algorithm to be of the form 𝛽𝑦 without the constant 𝛾 . This
will make the competitive ratio 𝛽. It turns out that this strat-
egy results in the optimal competitive algorithm as we show

in Section 6. In order to make the constant term zero, we
want to find𝑤 such that(

ℓ +𝑤
2

)
− 𝑏ℓ

𝑤 − ℓ
= 0.

Solving for𝑤 , we get

𝑤2 = ℓ2 + 2𝑏ℓ =⇒ 𝑤 = ℓ

√
1 + 2

(
𝑏

ℓ

)
.

Therefore

𝜆𝑟𝑦 =
𝑏

𝑤 − ℓ
𝑦 =

𝑏

ℓ

(√
1 + 2

(
𝑏
ℓ

)
− 1

) 𝑦

Therefore

𝜆𝑟 =

(
𝑏
ℓ

)
√
1 + 2

(
𝑏
ℓ

)
− 1

=
1
2

1 +
√
1 + 2

(
𝑏

ℓ

) (5)

where the first equality follows from the definition of 𝜆 and
the second equality follows by rationalizing the denominator,
Figure 1 shows the probability density function as well as the
competitive ratio for the randomized competitive algorithm.
Note that the competitive ratio is 𝜆𝑟 from ℓ to 𝑤 and then
asymptotically drops to one when𝑦 increases beyond𝑤. Note
that the competitive ratio of the deterministic algorithm is

𝜆𝑑 =
1
2

1 +
√
1 + 4

(
𝑏

ℓ

)
and the expected competitive ratio of the randomized algo-
rithm is

𝜆𝑟 =
1
2

1 +
√
1 + 2

(
𝑏

ℓ

) .
4.2 Randomized Competitive Algorithm for

𝛼 > 0 for Large𝑢
We now address the problem of determining a randomized
competitive algorithm for the case where 𝛼 > 0. As in the
case for 𝛼 = 0 the optimal pdf does not satisfy the principle
of equality. The caterer chooses 𝑥 with probability density
function 𝑝 (𝑥). This 𝑝 (𝑥) is chosen carefully to minimize the
expected competitive ratio. For any given𝑦, the expected cost
when the allocation is done with probability density function
𝑝 (𝑥) is

E [𝐶 (𝑦)] =
∫ 𝑦

ℓ

[𝑥 + 𝛼 (𝑦 − 𝑥) + 𝑏] 𝑝 (𝑥)𝑑𝑥 +
∫ ∞

𝑦

𝑥𝑝 (𝑥)𝑑𝑥

and the optimal cost if𝑦 is known ahead of time is𝑦. Regroup-
ing the 𝑥 terms from both the integrals, we get

E [𝐶 (𝑦)] = E[𝑋 ] +
∫ 𝑦

ℓ

[𝛼 (𝑦 − 𝑥) + 𝑏] 𝑝 (𝑥)𝑑𝑥 = 𝜆𝑟𝑦 (6)

where 𝜆𝑟 is the competitive ratio. Differentiating with respect
to 𝑦 we get

𝛼

∫ 𝑦

ℓ

𝑝 (𝑥)𝑑𝑥 + 𝑏𝑝 (𝑦) = 𝜆𝑟 .
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Figure 1: Probability Density Function as a function of 𝑥
and Competitive Ratio as a function of𝑦 for the 𝛼 = 0 Case

Differentiating again with respect to 𝑦, we get

𝛼𝑝 (𝑦) + 𝑏𝑝 ′(𝑦) = 0.

The solution to this system is

𝑝 (𝑥) = 𝐴𝑒−𝛼𝑥/𝑏

for some constant 𝐴. The lower bound for this distribution
is ℓ. We let 𝑤 to be the upper bound. The value of 𝑤 will be
calculated later. Therefore

𝑝 (𝑥) = 𝑘𝑒−𝛼𝑥/𝑏 ℓ ≤ 𝑥 ≤ 𝑤

where

𝑘 =
𝛼

𝑏

1

𝑒−
𝛼ℓ
𝑏 − 𝑒−

𝛼𝑤
𝑏

. (7)

Therefore the caterer picks the initial assignment 𝑥 ac-
cording to the probability density function 𝑝 (𝑥). We use 𝑋 to
represent the random initial assignment. Then

E [𝑋 ] = 𝑘𝑏

𝛼2

[
(𝛼ℓ + 𝑏) 𝑒−

𝛼ℓ
𝑏 − (𝛼𝑤 + 𝑏) 𝑒−

𝛼𝑤
𝑏

]
(8)

Plugging 𝑝 (𝑥) in the second term of Equation [6], we get∫ 𝑦

ℓ

[𝛼 (𝑦 − 𝑥) + 𝑏] 𝑝 (𝑥)𝑑𝑥 = 𝑘𝑏 (𝑦 − ℓ)𝑒−
𝛼ℓ
𝑏 .
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Figure 2: Probability Density Function as a function of 𝑥
and Competitive Ratio as a function of𝑦 for the 𝛼 > 0 Case

Plugging these expressions in Equation [6] and simplifying,
we get

𝜆𝑟𝑦 =
𝑘𝑏

𝛼2

[(
𝑏 + 𝛼ℓ − 𝛼2ℓ

)
𝑒−

𝛼ℓ
𝑏 − (𝑏 + 𝛼𝑤) 𝑒−

𝛼𝑤
𝑏

]
+ 𝑘𝑏𝑦𝑒−

𝛼ℓ
𝑏 (9)

As in the case for 𝛼 = 0, we want the expected cost to be a
linear function of𝑦 without a constant term. In order to make
the constant term zero, we want to find𝑤 such that

(𝑏 + 𝛼𝑤) 𝑒−
𝛼𝑤
𝑏 =

(
𝑏 + 𝛼ℓ − 𝛼2ℓ

)
𝑒−

𝛼ℓ
𝑏 (10)

This equation has a solution only if

𝑏 + 𝛼ℓ − 𝛼2ℓ ≥ 0. (11)

Note that this is exactly the same as Equation [4]. Therefore,
the set of 𝛼 for which the randomized algorithm provides a
competitive guarantee better than 𝛼 is also the set of 𝛼 for
which the deterministic competitive algorithm has a com-
petitive ratio 𝜆1𝑟 . Once we solve for𝑤 in Equation [10] it deter-
mines the normalizing constant 𝑘 by equation [7]. The value
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of𝑤 can be represented in terms of Lambert𝑊 -function as

𝑤 =
𝑏

𝛼
𝑊

[
𝛼ℓ

(
𝑏 − 𝛼ℓ − 𝛼2ℓ

)
𝑏2

+ 1

]
(Lambert 𝑊 function is defined as follows: If 𝑥𝑒𝑥 = 𝑧 then
𝑥 =𝑊 (𝑧)). Since we have made the constant term zero, the
coefficient of𝑦 in Equation [9] is the competitive ratio. There-
fore,

𝜆𝑟 = 𝑘𝑏 exp
(
−𝑐ℓ
𝑏

)
Substituting for 𝑘 from Equation[7],

𝜆𝑟 =
𝛼𝑒−

𝛼ℓ
𝑏

𝑒−
𝛼ℓ
𝑏 − 𝑒−

𝛼𝑤
𝑏

.

Substituting from Equation [10], we can write

𝜆𝑟 =
𝑏 + 𝛼𝑤

(𝑤 − ℓ) + 𝛼ℓ
(12)

Computing the value of𝑤 Numerically
It is easy to devise a iterative scheme to solve for𝑤 . We take
log on both sides of Equation [10] and rearrange terms to get

𝑤 = ℓ + 𝑏

ℓ
log

[
𝑏 + 𝛼𝑤

𝑏 + 𝛼ℓ − 𝛼2ℓ

]
.

In the iterative scheme we start off with𝑤0 = ℓ and the value
of𝑤 in iteration 𝑖 represented by𝑤𝑖 is computed as

𝑤𝑖 = ℓ + 𝑏

ℓ
log

[
𝑏 + 𝛼𝑤𝑖−1

𝑏 + 𝛼ℓ − 𝛼2ℓ

]
𝑖 = 1, 2 . . .

We can stop when |𝑤𝑖 −𝑤𝑖−1 | < 𝜖.

In this section, we considered randomized competitive al-
gorithms for the Caterer’s Problem ignoring the upper bound.
If the specified upper bound 𝑢 is greater than the computed
value of𝑤 , then we use the probability density function de-
rived in this section. If the value of 𝑢 < 𝑤 , then it is possible
to improve the competitive ratio by taking into consideration
the upper bound 𝑢.

5 IMPROVING THE COMPETITIVE RATIO
FOR SMALL UPPER BOUNDS

We outline how to improve the expected competitive ratio of
the randomized algorithm when the specified upper bound
𝑢 is less than the value of 𝑤 computed in the last section.
In designing the shape of the optimal probability density
function for the randomized algorithm, we did not use any
information about the upper bound. Therefore, the shape of
the probability density function is determined by the value
of 𝛼. In particular, if 𝛼 = 0, the probability density function
is uniform and if 𝛼 > 0, the probability density function will
be exponential. Since the upper bound is 𝑢, the algorithm
will not put any mass beyond 𝑢. The idea then it to truncate
the distribution at 𝑢. In the next two sections we derive the
new distribution with the upper bound for the case 𝛼 = 0 and
𝛼 > 0.

5.1 Competitive Algorithm for 𝛼 = 0 for Small
𝑢

We now consider the case when 𝛼 = 0. If𝑢 ≥ 𝑤 , then the prob-
abilistic algorithm developed in the last section is optimal. If
𝑢 < 𝑤 , then it is possible to improve the competitive ratio by
changing the probability density function. In the last section
the value of𝑤 was chosen carefully to eliminate the constant
term in the expected cost. We will use the same approach
in this section. Since 𝑢 is given, we cannot choose the up-
per bound but instead we add a point mass 𝜙 at 𝑢 and scale
down the uniform distribution between ℓ and 𝑢 by a factor of
1−𝜙. The value of 𝜙 is chosen carefully to again eliminate the
constant term in the expected cost. Note that the probability
density function for the initial allocation 𝑋 is a mixture of a
scaled uniform distribution U (ℓ,𝑢) between ℓ and 𝑢 and a
point mass 𝜙 at 𝑢.

𝑋 ∼

{
U (ℓ,𝑢) with probability 1 − 𝜙

𝑢 with probability 𝜙

Then

E[𝑋 ] =
∫ 𝑢

ℓ

𝑝 (𝑥)𝑑𝑥 + 𝑢𝛼 = (1 − 𝜙)
(
ℓ + 𝑢
2

)
+ 𝑢𝜙

=
1
2
(ℓ + 𝑢) + 𝜙

2
(𝑢 − ℓ)

The expected cost E[𝐶 (𝑦)] when the number of guests is 𝑦 is
therefore

E[𝐶 (𝑦)] = E[𝑋 ] + 𝑏
∫ 𝑦

ℓ

𝑝 (𝑥)𝑑𝑥

=
1
2
(ℓ + 𝑢) + 𝑐𝜙

2
(𝑢 − ℓ) + 𝑏 (1 − 𝜙)

(
𝑦 − ℓ

𝑢 − ℓ

)
=

1
2
(ℓ + 𝑢) + 𝜙

2
(𝑢 − ℓ) − 𝑏 (1 − 𝛼)

(
ℓ

𝑢 − ℓ

)
+𝑏 (1 − 𝛼)

(
1

𝑢 − ℓ

)
𝑦

We want the constant term in the expected cost to be zero.
Therefore,

1
2
(ℓ + 𝑢) + 𝜙

2
(𝑢 − ℓ) − 𝑏 (1 − 𝜙)

(
ℓ

𝑢 − ℓ

)
= 0.

Solving for 𝜙 , we get

𝜙 =
2𝑏ℓ −

(
𝑢2 − ℓ2

)
2𝑏ℓ + (𝑢 − ℓ)2

The competitive ratio 𝜆𝑟 is the coefficient of 𝑦 and is given by

𝜆𝑟 = (1 − 𝜙) 𝑏

(𝑢 − ℓ) .

Substituting for 𝜙 , we get

𝜆𝑟 =
2𝑢𝑏

2𝑏ℓ + (𝑢 − ℓ)2
.

Note that when

𝑢 = ℓ
√
1 + 2𝜃
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is the limiting case where the upper bound does not impact
the competitive ratio and in this case 𝜙 = 0 and

𝜆𝑟 =
1
2

1 +
√
1 + 2

(
𝑏

ℓ

) (13)

which is the same as Equation [5].

In general, when 1 ≤ 𝑢
ℓ <

√
1 + 2

(
𝑏
ℓ

)
, the expected com-

petitive ratio of the modified randomized algorithm with the
scaled uniform distribution will be strictly better than the
randomized algorithm with just the uniform distribution. It
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Figure 3: Probability density function and Competitive Ra-
tio given lower bound ℓ and upper bound𝑢.

is easy to verify that if 𝑢 satisfies Equation [11], (that is 𝑢 = 𝑤),
then the competitive ratio reduces to the same expression as
Equation [12].

5.2 Competitive Algorithm for 𝛼 > 0 for Small
𝑢

As in the case of 𝛼 = 0, it is possible to improve the compet-
itive ratio of the randomized algorithm when 𝛼 > 0 if the
upper bound 𝑢 < 𝑤 , where the value of 𝑤 is computed by
solving Equation [10]. As in the case of 𝛼 = 0, we scale the

distribution (in this case the exponential distribution) and
add a point mass at𝑢. The scaling factor is chosen carefully to
eliminate the constant term when computing the expected
cost. We define

𝑋 ′ ∼

{
𝑞(𝑥) = 𝑘 ′𝑒−𝛼𝑥/𝑏 ℓ ≤ 𝑥 ≤ 𝑢 with probability 1 − 𝜙

𝑢 with probability 𝜙

where

𝑘 ′ =
𝛼

𝑏

1

𝑒−
𝛼ℓ
𝑏 − 𝑒−

𝛼𝑢
𝑏

. (14)

E
[
𝑋 ′] = 𝑘 ′𝑏 (1 − 𝜙)

𝛼2

[
(𝛼ℓ + 𝑏) 𝑒−

𝛼ℓ
𝑏 − (𝛼𝑢 + 𝑏) 𝑒−

𝛼𝑢
𝑏

]
+ 𝜙𝑢 (15)

Plugging 𝑞(𝑥) in the second term of Equation [6], we get∫ 𝑦

ℓ

[𝛼 (𝑦 − 𝑥) + 𝑏] 𝑞(𝑥)𝑑𝑥 = 𝑘 ′𝑏 (1 − 𝜙) (𝑦 − ℓ)𝑒−
𝛼ℓ
𝑏 .

As in the last section, we want the constant term to go to zero
so that the expected competitive ratio is a linear function of
𝑦 (without a constant). Setting the constant term to zero, we
get

(1 − 𝜙)
[ (
𝛼ℓ + 𝑏 − 𝛼2ℓ

)
𝑒−

𝛼ℓ
𝑏 − (𝛼𝑢 + 𝑏) 𝑒−

𝛼𝑢
𝑏

]
+ 𝜙𝛼𝑢

(
𝑒−

𝛼ℓ
𝑏 − 𝑒−

𝛼𝑢
𝑏

)
= 0

Solving for 1 − 𝜙 , we get

1 − 𝜙 =

𝛼𝑢

(
𝑒−

𝛼ℓ
𝑏 − 𝑒−

𝛼𝑢
𝑏

)
𝑏𝑒−

𝛼𝑢
𝑏 −

(
𝛼ℓ + 𝑏 − 𝛼2ℓ − 𝛼𝑢

)
𝑒−

𝛼ℓ
𝑏

The expected competitive ratio is

𝜆𝑟 = (1 − 𝜙)𝑘 ′𝑏𝑒−
𝛼ℓ
𝑏

=
𝛼2𝑢𝑒−

𝛼ℓ
𝑏

𝑏𝑒−
𝛼𝑢
𝑏 −

(
𝛼ℓ + 𝑏 − 𝛼2ℓ − 𝛼𝑢

)
𝑒−

𝛼ℓ
𝑏

It is easy to show that when 𝑢 = 𝑤 , then the competitive
ratio reduces to the same expression as Equation [12]. We
have derived the expected competitive ratio of a randomized
competitive algorithm for any non-negative value of 𝛼 . In the
next section, we show that the competitive ratios obtained
are optimal.

6 COMPUTING LOWER BOUNDS ON THE
COMPETITIVE RATIO

We now prove that the competitive ratios obtained in the
paper are tight by showing lower bounds on the competitive
ratio that match the achieved competitive ratio. We outline
the proofs in the case of large 𝑢, and the analogous proof
for small 𝑢 is similar and omitted. We use Yao’s lemma [7] to
show the lower bounds. Yao’s lemma, which is a restatement
of the minmax theorm in game theory, shows that the best
expected competitive ratio that is achievable by a random-
ized algorithm is lower bounded by the competitive ratio
that is achieved by the best deterministic algorithm for a
randomized demand.
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THEOREM 6.1. Let𝑇𝐶 (𝑥,𝑦) be the cost when an initial al-
location 𝑥 is made when the demand is 𝑦 and𝑂𝑃𝑇 (𝑦) denote
the optimal cost when the demand is 𝑦. Let 𝑝 (𝑥) be a prob-
ability distribution over the initial allocation 𝑥 , and let 𝑞(𝑦)
be a probability distribution over the demand 𝑦. Let 𝑋 denote
a initial allocation chosen according to 𝑝 and let 𝑌 denote a
demand chosen according to 𝑞. Then,

max
𝑦
E

[
𝑇𝐶 (𝑋,𝑦)
𝑂𝑃𝑇 (𝑦)

]
≥ min

𝑥
E

[
𝑇𝐶 (𝑥,𝑌 )
𝑂𝑃𝑇 (𝑌 )

]
.

The left hand side is the worst case expected competitive
ratio and the randomization is over the initial allocation 𝑥 .
The right hand side is competitive ratio achieved by the op-
timal (deterministic) initial allocation when the demand 𝑌

is a random variable chosen according to some probability
distribution 𝑞(𝑦). The idea then is to carefully construct a
probability distribution 𝑞(𝑦) over the demand 𝑦 and show
that no deterministic algorithm can achieve a competitive
ratio that is better than the competitive ratio derived in the
paper.

6.1 Lower Bound on the Competitive Ratio for
𝛼 = 0

We first consider the problem where 𝛼 = 0. From Section
4.1, we know that In this case the competitive ratio that is

achieved by the randomized algorithm is 𝜆𝑟 = 1
2

[
1 +

√
1 + 2

(
𝑏
ℓ

)]
and we set 𝑤 = ℓ

√
1 + 2

(
𝑏
ℓ

)
. We now give a distribution 𝑞(𝑦)

over the demand𝑦 such that the best deterministic algorithm
achieves a competitive ratio of 𝜆𝑟 . This implies that no com-
petitive algorithm can achieve an expected competitive ratio
lower than 𝜆𝑟 . The strategy that we use is to find a demand dis-
tribution 𝑞(𝑦) such that the competitive ratio is independent
of the initial allocation 𝑥 . This turns out to be the distribution
that gives a lower bound of 𝜆𝑟 on the competitive ratio.

THEOREM 6.2. Consider a distribution 𝑞(𝑦) over the de-
mand 𝑦 comprising of a point mass at ℓ and a continuous

density between ℓ and𝑤 = ℓ

√
1 + 2

(
𝑏
ℓ

)
given by

𝑞(𝑦) =
{
ℓ (ℓ+𝑏−𝑤)
𝑤 (𝑤−ℓ) if 𝑦 = ℓ

1
𝑤 (𝑤−ℓ)𝑦 if ℓ < 𝑦 ≤ 𝑤.

The best competitive ratio that can be achieved by any deter-
ministic algorithm is 𝜆𝑟 .

PROOF. We first verify that the given probability density
function is valid by ensuring that it is non-negative and sums
to one. In order to show that the pdf is non-negative, we have
to verify that ℓ + 𝑏 ≥ 𝑤 so that the point mass is non-negative.
This condition is equivalent to verifying that 1 + 𝑏

ℓ ≥ 𝑤
ℓ . From

the definition of 𝑤 , note that 𝑤
ℓ =

√
1 + 2𝑏

ℓ . Therefore, we

want to verify that 1 + 𝑏
ℓ ≥

√
1 + 2𝑏

ℓ . Squaring both sides can

cancelling out the common terms, we get
(
𝑏
ℓ

)2
≥ 0 which is

true. It is also easy to show that

ℓ (ℓ + 𝑏 −𝑤)
𝑤 (𝑤 − ℓ) +

∫ 𝑤

ℓ

1
𝑤 (𝑤 − ℓ)𝑦𝑑𝑦 = 1

using the fact that ℓ2 = 𝑤2 − 2𝑏ℓ . We now compute the com-
petitive ratio of any deterministic algorithm that makes an
initial allocation of 𝑥 . Note that the optimal solution when
the demand is 𝑦 is 𝑦. Therefore, the expected competitive
ratio for a fixed value of 𝑥 is

𝑇𝐶 (𝑥,𝑌 )
𝑂𝑃𝑇 (𝑌 ) =

𝑇𝐶 (𝑥,𝑌 )
𝑌

=

{
𝑥
ℓ with prob ℓ (ℓ+𝑏−𝑤)

𝑤 (𝑤−ℓ)
𝑥
𝑦 with prob 𝑦

𝑤 (𝑤−ℓ) if ℓ < 𝑦 ≤ 𝑤

The expected competitive ratio E𝑦
[
𝑇𝐶 (𝑥,𝑌 )

𝑌

]
E𝑦

[
𝑇𝐶 (𝑥,𝑌 )

𝑌

]
=

ℓ (ℓ + 𝑏 − 𝑤)
𝑤 (𝑤 − ℓ)

𝑥

ℓ
+ 𝑥

∫ 𝑥

ℓ

1
𝑤 (𝑤 − ℓ) 𝑑𝑦 + (𝑥 + 𝑏)

∫ 𝑤

𝑎

1
𝑤 (𝑤 − ℓ) 𝑑𝑦

=
𝑏

𝑤 − ℓ
=

𝑏

ℓ

√
1 + 2

(
𝑏
ℓ

)
− ℓ

=
1
2

1 +
√
1 + 2

(
𝑏

ℓ

)
Note that the last expression is independent of 𝑥 which is the
same as Equation [5]. □

Therefore, we have shown that the lower bound on the
competitive ratio matches the achieved expected competi-
tive ratio and the expected competitive ratio is optimal. We

` w

`(`+b−w)
w(w−`)

q(y) = 1
w(w−`) y

y

q(y)

Figure 4: Probability Distribution of the Worst Case De-
mand for 𝛼 = 0. Note the point mass at𝑦 = ℓ.

now derive the lower bound on the competitive ratio for the
case of 𝛼 > 0.

6.2 Lower Bound for 𝛼 > 0
As in the case of 𝛼 = 0, we choose the distribution 𝑞(𝑦) such
that the expected competitive ratio is independent of the
initial allocation 𝑥 . The distribution has a point mass at ℓ and
a continuous density function between ℓ and𝑤 . Assume that
the point mass at ℓ is 𝜃 and the density function is

𝑞(𝑦) = 𝑘 (1 − 𝜃 )𝑦𝑒𝛼𝑦/𝑏 ℓ ≤ 𝑦 ≤ 𝑤
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where 𝑘 is a constant chosen to ensure that the probability
distribution is normalized. We visualize this distribution in
Figure 5. By direct integration, it is easy to show that

` w

θ

q(y) = k(1− θ) y eαy/b

y

q(y)

Figure 5: Probability Distribution of the Worst Case De-
mand for general 𝛼 .

𝑘−1 =
𝑏

𝛼2

[
(𝑏 − 𝛼ℓ)𝑒𝛼ℓ/𝑏 + (𝛼𝑤 − 𝑏)𝑒𝛼𝑤/𝑏

]
.

If the initial allocation is 𝑎 then the expected competitive
ratio is

E𝑦

[
𝑇𝐶 (𝑥,𝑌 )

𝑌

]
= 𝜃

𝑥

ℓ
+ 𝑥

∫ 𝑥

ℓ

𝑞(𝑦)
𝑦

𝑑𝑦

+
∫ 𝑤

𝑥

[𝑥 + 𝑏 + 𝛼 (𝑦 − 𝑥)] 𝑞(𝑦)
𝑦

𝑑𝑦

= 𝜃
𝑥

ℓ
+ 𝑥𝑏𝑘 (1 − 𝜃 )

(
𝑒𝛼𝑤/𝑏

𝛼
− 𝑒𝛼ℓ/𝑏

𝛼
− 𝑒𝛼𝑤/𝑏

)
+𝑏𝑘𝑤 (1 − 𝜃 )𝑒𝛼𝑤/𝑏

We choose 𝜃 to make the expression independent of the value
of the initial assignment 𝑥 by setting

𝜃

ℓ
= 𝑏𝑘 (1 − 𝜃 )

[(
1 − 1

𝛼

)
𝑒𝛼𝑤/𝑏 + 1

𝛼
𝑒𝛼ℓ/𝑏

]
.

Solving for 𝜃 , we get

𝜃 =
𝑏𝑘ℓ𝑀

1 + 𝑏𝑘ℓ𝑀
where

𝑀 =

[(
1 − 1

𝛼

)
𝑒𝛼𝑤/𝑏 + 1

𝛼
𝑒𝛼ℓ/𝑏

]
.

The expected competitive ratio is then

E𝑦

[
𝑇𝐶 (𝑥,𝑌 )

𝑌

]
= 𝑏𝑘𝑤 (1 − 𝜃 )𝑒𝛼𝑤/𝑏 .

Substituting the value of 𝜃 , we get

E𝑦

[
𝑇𝐶 (𝑥,𝑌 )

𝑌

]
=

𝑘𝑏𝑤𝑒𝛼𝑤/𝑏

1 + 𝑘𝑏ℓ𝑀

=
𝑏 + 𝛼𝑤

𝑤 − ℓ + 𝛼ℓ
= 𝜆𝑟

Note that the lower bound on the competitive ratio matches
the expected competitive ratio shown in Equation [12]. There-
fore, the competitive ratio of the randomized algorithms
derived in Section 4 are optimal. The techniques used in
this section, can be used to show that the randomized com-
petitive algorithms derived in Section 5 for the small upper
bound case are also optimal.

6.3 Conclusion
In this paper, we considered a resource allocation problem
to meet a demand about which we only have minimal infor-
mation. The motivation for studying this problem is resource
allocation for controlling pandemics and for reserving re-
sources in the cloud for new applications. We derived optimal
deterministic and randomized algorithms for this problem.
The problem that we addressed in this paper is a single stage
resource allocation problem where the allocation decision
is made once. We are working on extending the algorithm to
multi-stage resource allocation problems where the demand
is revealed over multiple stages.
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