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Abstract. It is important to accurately forecast a new infection such as COVID-19 in order to effectively4
implement control measures. For this purpose, we study whether the epidemiological parameters5
such as the rate of infection, incubation period, and rate of recovery for the COVID-19 disease6
can be identified from daily incidences and death data. The data are obtained from the Florida7
Department of Health, which reports the numbers of daily COVID-19 cases and disease-induced8
casualties. Two mathematical models that consist of a system of ordinary differential equations are9
used to simulate the spread of the coronavirus in the Florida population. Structural identifiability10
analysis is conducted on the models to determine whether the models are well-structured to forecast11
the outbreak. Analysis revealed that the SEIR model is structurally identifiable, while the social12
distancing model is not structurally identifiable. If the model is structurally unidentifiable, it may13
not accurately forecast the pandemic, and in turn, may lead to inaccurate control measures. Then,14
the practical identifiability of parameter estimates that provide the best fit was investigated using15
Monte Carlo simulations. The practical identifiability analysis revealed that all of the parameters16
in the SEIR model are practically identifiable, but the parameters δ, δE , and ρ were found to be17
unidentifiable in the social distancing model. By comparing two models in this project, we were able18
to determine the effectiveness of social distancing in preventing incidences and saving lives from the19
disease in Florida. Furthermore, we consider how people’s behavior changes over time, and how this20
may affect the rate of disease spread in the population. To represent this, we develop a recipe to21
determine the time-dependent transmission rate, β(t), from the data and introduce a methodology22
of how to accomplish this.23
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1. Introduction. The novel coronavirus (COVID-19), caused by the SARS-CoV-2 virus,27

has been groundbreaking in the realm of infectious diseases, bringing worldwide attention28

to the importance of reducing disease spread amidst a global pandemic. COVID-19 is a29

catastrophic infectious disease that is transmitted by close contact from person to person via30

respiratory droplets [15]. This newly risen coronavirus that has widely spread throughout31

the world very rapidly was declared as a worldwide pandemic by the World Health Organi-32

zation (WHO) in March 2020 [2]. Many national agencies, such as the Centers for Disease33

Control (CDC), have shared advisories to practice social distancing in an effort to limit the34

amount of person to person contact and slow the spread of the disease. By practicing social35

distancing and limiting close contacts with other individuals, we work towards reducing the36

transmission rate of the virus and minimize the amount of people who contract the disease [9].37

Epidemiology is the field of study concerned with the spread of such infectious diseases, and38

mathematics has an immanent connection with epidemiology in representing how quickly in-39

fectious diseases spread within a population. Research institutions and national agencies can40

use methods of mathematical modelling to map the impact of a virus on a population [12]. By41
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doing so, it is possible to predict the long-term behavior of the virus in order to take proper42

precautionary measures. Ideally, conducting mathematical modeling on infectious diseases43

allows for a quantitative method to evaluate the efficiency of implementing control measures44

and develop an accurate forecast of the outbreak [11]. There is a large existing literature on45

mathematical models specific to COVID-19, including a mathematical representation of the46

impact of non-pharmaceutical interventions (such as social distancing, quarantine, and use of47

face masks) in curtailing the disease spread [10]. In addition, mathematical assessments can be48

utilized to simulate the effectiveness of vaccination efforts to curtail the pandemic [3]. In this49

project, mathematical models are used to represent the transmission of the COVID-19 virus50

throughout a population, in this case the population of Florida. The mathematical model can51

then be matched with actual data of COVID-19 cases as reported by the Florida Department52

of Health to estimate the values of certain epidemiological parameters in the mathematical53

model, such as the transmission rate, incubation rate, and recovery rate of the disease [13].54

After determining the values of the epidemiological parameters in the model, it is impor-55

tant to study whether the parameter estimation is well posed to uniquely reveal the parameters56

from the observed data, which is what we investigate by conducting identifiability analysis.57

Primarily, it is crucial to study the identifiability of the model before estimating the parameter58

values to determine whether the model is structured to reveal its parameters, which is known59

as structural identifiability [7]. After collecting the estimated values of the parameters in the60

epidemiological model, the next step is to measure the practical identifiability of the model61

through Monte Carlo simulations. In Monte Carlo simulations, we introduce error into the62

dataset and then refit epidemiological model to the data with error 1,000 times to observe how63

the parameter values react to the introduced error [18]. Results from Monte Carlo simulations64

may suggest whether the model is practically identifiable or not, and whether the parameter65

estimations are reliable enough to influence decisions of implementing disease control mea-66

sures, such as social distancing. In the data from the Florida Department of Health, it is clear67

that people’s behaviors are changing over time, which may have an effect in the rate of disease68

spread. For example, during the holiday seasons people tend to congregate in large groups69

more often, and a subsequent rise in COVID-19 incidences is observed. To represent this in70

the model, a recipe is developed to make the transmission rate change over time, expressed71

as β(t). By computing the time-dependent transmission rate, the model is reflective of how72

individuals’ social behaviors change over time and influence the rate of disease spread [5].73

By combining several epidemiological characteristics of COVID-19 in the model, the model is74

optimized to best represent the spread of the disease throughout the Floridian population.75

2. Methods. The data for this project were collected from the website for the Florida76

Department of Health [13]. The Florida Department of Health reports weekly cases of in-77

dividuals infected with the COVID-19 virus and disease-induced deaths on their website –78

excluding personal information such as names and other factors of identification and is avail-79

able for use to the public. For this project, data was collected weekly every Monday starting80

from April 27th, 2020 until July 5th, 2020. After the preliminary mathematical model was81

constructed, a code was written in the computer software MATLAB to run the epidemio-82

logical model in comparison to the COVID-19 incidence data from the Florida Department83

of Health website. The code and data used for this project has been made available at84
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https://github.com/viveksreejithkumar/Identifiable-Analysis-COVID-19.85

The MATLAB code was instructed to perform curve fitting on the model according to the86

COVID-19 incidence and death data by manipulating the parameter values until the squared87

difference between the data points and the model predictions was minimized. After the fitting88

process was complete, the parameters that provided the best fit of the model to the data were89

recorded as results. After developing the most accurate mathematical model and estimating90

the parameter values that provided the best fit to the incidence data, the next step in the91

project was to measure the identifiability of the parameter estimations. In this research, we92

would like to analyze the evolution of identifiability analysis as the new infections spread in93

the population. We achieve this by performing Monte Carlo Simulations for each week data94

was collected starting from April 20.95

To conduct identifiability analysis, Monte Carlo simulations are run on the model by96

introducing error into both the COVID-19 incidence and death data. A second code on the97

MATLAB software is written that injects the noise level into the data, and then refits the98

epidemiological model 1,000 times according to the data points that contain the error. Then,99

a list of the average relative errors in the parameter estimations is produced, which allows for100

observation on how the parameter values reacted to the noise levels in the data. If the average101

relative errors are higher than the measurement errors, then it is concluded that the model is102

practically identifiable, meaning the parameter estimates are reliable.103

Variable Definition

N(t) Number of total individuals in the population
S(t) Number of susceptible individuals at time t
Sd(t) Number of susceptible individuals who practice social distancing at time t
E(t) Number of exposed individuals at time t
I(t) Number of infectious individuals at time t
R(t) Number of individuals removed from the population at time t

Table 1
Definition of variables in the outbreak models (3.1) and (3.2)

3. Formulation of Mathematical Models.104

3.1. SEIR Model. The Susceptible-Exposed-Infected-Recovered (SEIR) model consists105

of ordinary differential equations (ODEs) which describe the movement of individuals of the106

population between four different non-intersecting classes, S(t), E(t), I(t), and R(t). People107

in the susceptible (S(t)) class are the individuals in the population who do not yet have the108

disease and are prone to contracting it. Usually, the individuals within the exposed (E(t))109

class are not considered infectious and are not capable of transmitting the disease to other110

individuals until the incubation period is over, from when they might begin to infect others111

without realizing they have become infectious. However, the exposed class is considered112

differently with COVID-19. In this project, we consider the exposed (asymptomatic) class to113

be able to transmit the disease to other individuals before the incubation period is over. The114

infected (I(t))) class consists of individuals who are currently infected with the disease and115
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Parameter Definition

β Transmission rate of infected individuals
βE Transmission rate of exposed individuals
η Fraction of susceptible individuals who practice social distancing
δ Factor that reduces the infectious rate of infected individuals who practice social distancing.

(0 < δ < 1)
δE Factor that reduces the infectious rate of exposed individuals who practice social distancing.

(0 < δE < 1)
α Recovery Rate
ν Disease-induced death rate
ρ Rate of social distancing individuals discontinuing social distancing
k Rate at which the exposed class progress into the infectious class

Table 2
Definition of parameters in the outbreak models (3.1) and (3.2)

transmit the disease to others. The recovered (R(t))) class consists of individuals who had116

the disease in the past and have recovered from the COVID-19 disease.117

The derivative of the susceptible class (S(t)) is the individuals who become infectious per118

unit of time. Since this is an outbreak model, the rate of change in the susceptible class is119

negative. The susceptible class gets smaller as more people become infected. Incidences is120

defined as the number of individuals who become infectious per unit time. As the COVID-19121

disease is spread through airborne respiratory droplets when an individual sneezes or coughs,122

it only takes one contact between an infected person and a susceptible person to transmit the123

disease. Furthermore, if the virus inhabits an object or a surface and an individual comes into124

contact with that surface, the disease can be transmitted when the individual subsequently125

touches their eyes, nose, or mouth. For COVID-19, new incidences occur due to contacts126

that a susceptible individual has with an infected individual or an infected object or surface.127

In our model, we are only modelling contacts between individuals (without an environment128

component). We use β, to represent the rate of infection, which, by definition, is the product129

of the number of contacts on infected individual makes in the population and the probability130

that contact results in disease transmission. We use standard incidence to model the new131

infections per unit time. The exposed class, E(t), accounts for individuals who have been132

exposed to the virus but have not yet showed any symptoms of the infection (asymptomatic).133

Even though we don’t see individuals in the exposed class demonstrating symptoms of the134

disease, we consider them as infectious [4]. Thus the new incidences in the model takes the135

form βSI/N + βESE/N . Once an exposed individual completes the incubation period which136

is given as 1
k , becomes infectious showing clinical symptoms and moves into the infected class,137

I(t). An infected individual either recovers from the disease and moves to the recovered class138

at rate α, or dies from the disease at rate ν. With these assumptions, the model takes the139
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following form;140

(3.1)

S′ = −S
(
β
I

N
+ βE

E

N

)
,

E′ = S

(
β
I

N
+ βE

E

N

)
− kE,

I ′ = kE − (α+ ν)I,

R′ = αI.

141

A flowchart that exhibits the movement of individuals between the 4 classes of the SEIR142

model (3.1) is presented in Figure 1.143

Figure 1. SEIR Model – Flowchart: A compartmental flowchart illustrating the movement of individuals
between the 4 classes of the SEIR model. A susceptible individual can come into contact with the virus and moves
into the exposed class. After the incubation period ( 1

k
) moves into the infected class. An infected individual

either recovers from the disease at rate α and moves into the recovered class or dies from the disease at rate ν.

3.2. SEIR Model with Social Distancing. To combat the spread of the infectious disease,
one preventative measure introduced during the COVID-19 pandemic was social distancing.
Specifically, in Florida, a stay-at-home lockdown order was announced by the governor on
April 1st, 2020. This order mandated that individuals remain inside their homes during the
period of the pandemic, which limited contacts between individuals that could otherwise have
possibly increased disease transmission. Over time, as the lockdown period ended and Florida
began slowly reopening, a social distancing protocol was mandated to limit the number of
disease-spreading contacts. Per social distancing protocols, individuals who leave their homes
were required to wear masks and stay 6 feet apart from others to slow the spread of the
disease. To account for social distancing individuals, we modify the SEIR model (3.1) to
include a social-distancing class (Sd(t)) that indicates individuals who follow social-distancing
protocols. A susceptible individual either decide to follow social distancing protocols and
move to the social distancing class or decide not to practice social distancing and remain in
the susceptible class. The number of individuals who are social distancing per unit time is
given by the term ηS, and the number of social distancing individuals who decides to quit
social distancing per unit time is given by the term ρSd. Individuals in the susceptible or social
distancing class encounter the virus, but we assume that the transmission rate is reduced due
to social-distancing. We encounter this by multiplying the transmission rate with 0 < δ < 1
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when a social distancing individual gets into contact with an infected individual and with
0 < δE < 1 when a social distancing individual gets into contact with an exposed individual.
Taking into account social distancing individuals, new incidences term becomes;

S

(
β
I

N
+ βE

E

N

)
+ Sd

(
βδ

I

N
+ βEδE

E

N

)
.

The new incidences first move into the exposed class, and after the incubation period, pass into144

the infected class. Infected individuals recover from the disease and move into the recovered145

class or die from the disease. With these assumptions, the social distancing model takes the146

following form:147

(3.2)

S′ = −S
(
β
I

N
+ βE

E

N

)
− ηS + ρSd,

S′d = −Sd
(
βδ

I

N
+ βEδE

E

N

)
− ρSd + ηS,

E′ = S

(
β
I

N
+ βE

E

N

)
+ Sd

(
βδ

I

N
+ βEδE

E

N

)
− kE,

I ′ = kE − (α+ ν)I,

R′ = αI.

148

A flowchart that demonstrates the movement of individuals between the 5 classes of the149

social distancing model (3.2) is given in Figure 2. The flow of individuals is very similar150

to the flowchart of the SEIR Model (3.1), except we add one compartment for individuals151

who practice social distancing (Sd(t)). Although it appears that social distancing affects only152

the susceptible population in reducing their exposure, in reality, social distancing would also153

reduce the transmissibility of the exposed/infected class. However, for simplicity we only154

consider the effect of social distancing as a separate susceptible class. For the purpose of155

identifiability, we apply social distancing to the model as simply as possible.156

Figure 2. Social Distancing SEIR Model – Flowchart: A compartmental flowchart illustrating the movement
of individuals between the 5 classes of the social distancing model (3.2). Individuals who begin as susceptible
either decide to follow social distancing protocols and move to the social distancing class or they do not practice
social distancing and remain in the susceptible class. Individuals in the susceptible or social distancing class
encounter the virus and then move into the exposed class, then finish their incubation period and pass into the
infected class, and then finally recover from the disease and move into the recovered class.
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4. Parameter Estimation.157

4.1. Data. The data for this project was collected from the Florida Department of Health158

website [13]. On this website, there is publicly available data on new daily cases of COVID-19159

and on disease-induced deaths in Florida. The website tracks data from the past 30 days and160

the data are updated daily around 11A.M. EST. For this project, COVID-19 incidence and161

deaths data from the Florida Department of Health website was collected weekly, on every162

Monday afternoon. In this project, data collection was conducted weekly (every Monday)163

starting from April 27th until July 5th, totaling in 12 sets of data. After collecting the new164

weekly data, the new data was adding to the existing data and re-fitted using the MATLAB165

computer software each new week. In this way, we observe the evolution of the parameter166

values in the model each week as new data are available.167

4.2. Fitting Process. In compact form outbreak models (3.1) and (3.2) can be written as

x′(t) = f(x,p) x(0) = x0,

where x represents the state variables, and p represents the model parameters, and x0 repre-168

sents the initial conditions. For instance for model (3.1) x, f(x,p) and p take the following169

form;170

x(t) = (S(t), E(t), I(t), R(t)),

f(x,p) = (−S
(
β
I

N
+ βE

E

N

)
, S

(
β
I

N
+ βE

E

N

)
− kE, kE − (ν + α)I, αI),

p = (β, βE , k, ν, α).

171

Similarly, for model (3.2),172

x(t) = (S(t), Sd(t), E(t), I(t), R(t))

f(x,p) = (−S
(
β
I

N
+ βE

E

N

)
− ηS + ρSd − Sd

(
βδ

I

N
+ βEδE

E

N

)
− ρSd + ηS,

S

(
β
I

N
+ βE

E

N

)
+ Sd

(
βδ

I

N
+ βEδE

E

N

)
− kE, kE − (ν + α)I, αI)

p = (β, βE , k, ν, α, η, δ, δE , ρ).

173

The observations are the functions of the state variables. Let y(t) = (y1(t), y2(t)) represent
the observations, then

y1(t) = g1(x(t),p), y2(t) = g2(x(t),p),

Since we use number of new cases and deaths due to COVID-19, we set the observations as174

(4.1)
y1(t) = g1(x(t),p) = kE new incidences per day,

y2(t) = g2(x(t),p) = νI number of deaths due to COVID-19 per day
175

Next, we formulate the statistical model as176

(4.2) Y i
1 = g1(x(ti),p) + Ei i = 1, · · · , n Y j

2 = g2(x(tj),p) + Ej j = 1, · · · , n177
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where Ei and Ej are errors in measurement. Because of the measurement errors the data
(random variables) Y1 and Y2 do not fall on the smooth path of the observations g1(x(ti),p)
and g2(x(ti),p). We assume the measurement errors satisfy the following relationship;

Ei = g1(x(ti),p)εi Ej = g2(x(tj),p)εj

where εi and εj are independent and identically distributed with mean zero and constant
variance σ20. With this setting, the random variables Y1 and Y2 are assumed to have mean as
the observations, that is

E(Y1) = g1(x(ti),p) i = 1, · · · , n and E(Y2) = g2(x(tj),p) j = 1, · · · , n

and the variances of the random variables Y1 and Y2 would be

V ar(Y1) = g1(x(ti),p)2σ20 i = 1, · · · , n and V ar(Y2) = g2(x(tj),p)2σ20 j = 1, · · · , n

To estimate the model parameters, we minimize the sum of the squared differences between178

the model predictions and the measurements, where ω1 and ω2 represent the weights for the179

least squares.180

(4.3) p̂ = min
p

n∑
i=1

(ω1(Y
i
1 − g1(x(ti),p))2 + ω2(Y

i
2 − g2(x(ti),p))2) subject to p > 0181

The MATLAB function fminsearchbnd computes this above constraint optimization182

problem (4.3). The system of ODEs in the epidemiological model is solved using the MATLAB183

ode15s function.184

4.3. Identifiability Analysis. Before estimating the model parameters, we first determine185

whether it is possible to uniquely asses the parameters from the given data. This process186

is called identifiability analysis and it is an important step in estimating model parameters187

[8]. The identifiability analysis is usually performed in two steps: first step is the structural188

identifiability and the second step is the practical identifiability. Structural identifiability is189

the property of the epidemic model, and it assumes noise-free data. In structurally identi-190

fiaility analysis, the objective is to determine whether the model is structured to reveal the191

parameter estimates. Practical identifiability then is performed with actual data which is192

contaminated with noise. If an epidemic model is not structurally identifiable, then different193

sets of parameters would give the same output. In such a case, when the epidemic model is194

structurally unidentifiable, the estimated parameters would be unreliable and thus one should195

be cautious in using the model to forecast the future cases or the determine the intervention196

strategies.197

Structural Identifiability Analysis: To study the structual identifiability analysis198

of the model, we first eliminate the unobserved state variables and obtain a set of monic199

differential polynomial which only involves the observations. We eliminate the unobserved200

state variables using DAISY [1] and obtain the input-output equations as presented in the201

Appendix 6.202

This manuscript is for review purposes only.

475



THE EVOLUTION OF THE IDENTIFIABLE ANALYSIS OF THE NOVEL COVID-19 VIRUS

The input-output equations are monic differential polynomials whose coefficients consist
of model parameters. We see from the first equation in (.1) that

dy2
dt
− y1ν + y2(ν + α) = 0,

it is a monic polynomial since the coefficient of the highest term is 1. To obtain a monic203

polynomial from the second equation in (.1), we divide by the term β2ν2 all the other coeffi-204

cients. Let c(p) denote the complete set of coefficients in (.1). We say that an epidemic model205

is structurally identifiable, if the mapping from parameter space into c(p) is one-to-one. We206

define an epidemic model to be structurally identifiable as follows [16],207

Definition 4.1. Let c(p) denote the coefficients of the input-output equations (.1), with
p = (β, βE , k, ν, α) denoting the parameters of the epidemic model (3.1). Then we say that
the epidemid model (3.1) is structured to reveal its parameters from the observations (4.1) if
and only if

c(p) = c(p̂) =⇒ p = p̂

Based on this definition, we solve in Mathematica

c(p) = c(p̂)

where p̂ = (β̂, β̂E , k̂, ν̂, α̂) and obtain

β = β̂, βE = β̂E , k = k, ν = ν̂, α = α̂.

That is we showed that the epidemic model (3.1) is structured to reveal its parameters uniquely208

from the observations of daily incidences and deaths. The results from conducting structural209

identifiability analysis is shared in section 5.1.210

To perform the identifiability analysis for the second epidemic model (3.2), we first need211

to eliminate the unobserved state variables and obtain the input-output equations. We used212

DAISY to obtain the input-output equations, but DAISY was unable to compute input-output213

equations due to computational limitations. Therefore, for the second epidemic model (3.1)214

we only perform practical identifiability analysis as outlined in the following section.215

Practical Identifiability Analysis: Structural identifiability is a property of the epi-216

demic model itself and it is performed without the actual data. It is based on the observations,217

which include the data points at the discrete points, and observations are smooth continuous218

functions. That is Structural identifiability assumes that the data are noise free, and the219

output is known for every point in time. A model which is structurally identifiable might220

not be practically identifiable when actual data are used to estimate the parameters. Next221

we perform practical identifiability analysis using Monte Carlo simulations. We present noise222

into the observed data at increasing levels to produce 1000 synthetic data sets. Then, the true223

parameter set p̂, obtained through curve-fitting, is used to refit the epidemiological model to224

the new synthetic data, observing how the parameter values react in response to the noise. In225

this project, noise was presented to the data collected from the Florida Department of Health226

each week during the 12-week period and the model was refit 1,000 times at each error level227

(0%, 1%, 5%, 10%, and 20% error). Monte Carlo Simulations are performed in this project in228

the below steps [18].229

230
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1. Obtain solutions of the model using the fitted values as the true parameter vector p̂231

and acquire the observation vectors g1(x(ti),p) and g2(x(ti),p) at the specific time232

points of the data {ti}ni=1.233

2. Generate 1,000 artificial data sets from the statistical model (4.2) with an established
measurement error. The synthetic data set is generated from a normal distribution
with a mean that is the output vector obtained in step (1.) and a standard deviation
that is σ0% of the mean. Thus,

Yi = g(x(ti), p̂) + g(x(ti), p̂)εi i = 1, 2, · · · , n,

such that E(ε1) = 0 and Var(εi) = σ20. Therefore, the random variables yi have a mean234

of E(yi) = g(x(ti), p̂) and a variance of Var(yi) = g(x(ti), p̂)2σ20.235

3. Fit the model x′(t) = f(x,p) x(0) = x0 to the synthetic data sets generated in Step236

2 to approximate the parameters pj for j = 1, 2, . . . 1, 000. The model is fit as follows237

pj = min
p

n∑
i=1

(ω1(Y
i
1 − g1(x(ti),p))2 + ω2(Y

i
2 − g2(x(ti),p))2)

4. Determine the average relative errors (AREs) in estimating the parameter values in238

the set p by the following239

(4.4) ARE(p(k)) = 100%
1

M

M∑
j=1

|p̂(k) − pj
(k)|

p̂(k)
240

where p(k) is the kth parameter of the set p, pkj is the kth parameter of set pj and p̂(k)241

is the kth parameter of set p̂ of genuine parameters.242

5. Repeats steps (1) - (5) for each level of noise σ0 = (0%, 1%, 5%, 10%, and 20%).243

244

By computing the average relative errors (ARE) in parameter estimation in step (4.),245

we can observe how the parameter values react to the introduced noise. When no noise is246

introduced into the data σ0 = (0%), the ARE of the epidemiological parameters in a model247

that is structurally identifiable should be equal to or almost 0. As the noise in the dataset248

increases, the ARE of the parameters should respectively increase, and the rate of increased249

error will determine the practical identifiability of the model. If a parameter in the model250

is sensitive to measurement error, the parameter will have a significant ARE for a moderate251

level of noise in the data, and we then consider that parameter as practically unidentifiable.252

To have practically identifable parameters, we analyze the Monte Carlo Simulations for ARE253

values that are reasonable for the errors in measurement.254

In this project, the steps to perform Monte Carlo simulations are repeated with each255

increasing level of error in data, and the epidemiological model is re-fit 1,000 times at each256

error level. The average relative errors (AREs) for each parameter estimation are recorded as257

results. By analyzing the ARE in parameter estimation in comparison to the level of noise in258

the data, the practical identifiability of the model and the reliability of each parameter value259

estimation can be measured. Parameters that demonstrate high levels of average relative error260

at increasing noise levels are likely to be unreliable estimations and having many unreliable261

parameter estimations makes a model maintain weak identifiability.262
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5. Results.263

5.1. Structural Identifiability Results. As described in Section 4.3, DAISY is used to264

study the structural identifiability of the model. We summarize the result from analyzing the265

structural identifiability of (3.1) in the following Proposition 5.1.266

Proposition 5.1. The epidemic model (3.1) is structurally identifiable from daily incidences267

and deaths.268

5.2. SEIR Model Fitting Results. In the weeks after May 25th, the lockdown period269

in Florida ended and individuals began to leave their homes and the social distancing rate270

was significantly lowered compared to the first 6 weeks of data collection. Thus, the social271

distancing model is no longer appropriate to model the behavior of the disease starting from272

the week of June 1st. From June 1st to September 13th, data was still collected from the273

Florida Department of Health but was combined to fit all of the data starting from the week of274

June 1st with the regular SEIR model (3.1) (non-social distancing). The curve-fitting process275

was similar to the process with the first 6 weeks, just with the SEIR model. The parameter276

values that best curve-fit to the non-social distancing model are the values that minimize277

the sum of the squared differences between the model predictions and the data as shown by278

(4.3). For this fit, the data included the number of daily COVID-19 infections and disease-279

induced deaths reported by the Florida Department of Health beginning from May 2nd until280

September 13th. Since the Florida Department of Health reports the number of COVID-19281

infections and deaths for the past 30 days since the day of data collection, the first set of data282

that was collected on June 1st begins from May 2nd. The results of this project include the283

set of the 5 epidemiological parameter values that provided the best fit for the data collected284

between June 1st and September 13th. Table 3 below lists the parameter values that best285

established an accurate fitting of the non-social distancing model to the data starting from286

June 1st according to the MATLAB computer software.287

SEIR Model Parameter Estimations

Date β α ν βE k

05/2/20 - 09/13/20 0.0301 0.2000 0.0020 0.5277 0.5000

Table 3
The parameters that best fit the epidemiological model for incidences and death data reported by Florida

Department of Health. The fit is from May 2nd to September 13th.
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Figure 3. Plot of the epidemiological model (3.1) (blue line) fitted to the observed incidence data (red dots)
from the Florida Department of Health from May 2nd to September 13th, after the lockdown period in Florida.

Figure 4. Plot of the epidemiological model (3.1) (blue line) fitted to the observed death data (red dots)
from the Florida Department of Health from May 2nd to September 13th, after the lockdown period in Florida.

5.3. SEIR Model Monte Carlo Simulation Results. Similar to the social distancing mod-288

els, Monte Carlo simulations are conducted on the non-social distancing SEIR model starting289

from May 2nd to determine the identifiability of the epidemiological model and the reliability290

of the parameter estimations. The true parameter values are provided in Table 3. The average291

relative error for each parameter is presented with an increasing level of error in the data (r).292

If the average relative error value from the Monte Carlo Simulations is high, the parameter is293

considered not identifiable. For example, looking at Table 4 we notice that as the error in data294

increases, the average relative error in all 5 parameters increases very slowly: 20% error in the295

data results in only 13.39% average relative error in β - the parameter with the highest average296

relative error. This suggests that the parameter estimations from the non-social distancing297

model are practically identifiable because the average relative errors in all 5 parameters are298

controlled- many of the average relative errors in parameter estimation are close to 0% even299

when there is 20% error in data.300
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Parameter Estimations

r (error in data) β α ν βE k

0% 0 0 0 0 0
1% 0.86 0.08 0.12 0.10 0.05
5% 4.03 0.36 0.49 0.45 0.19
10% 7.85 0.78 0.91 0.87 0.31
20% 13.39 1.38 1.42 1.52 0.46

Table 4
Average Relative Errors (AREs) in parameter estimation for errors of 0%, 1%, 5%, 10%, 20% for data

from June 1st to September 21st are shown in the table above. The AREs are calculated by formula 4.4

.

5.4. Social Distancing Model Parameter Estimation results. By curve-fitting the epi-301

demiological model to the weekly COVID-19 data from the Florida Department of Health,302

the parameter values that establish the best fit between the model and the data can be deter-303

mined. The parameter values that best curve-fit to the model are the values that minimize304

the sum of the squared differences between the model predictions and the data as expressed305

by 4.3. The results of this project include the set of the 9 epidemiological parameter values306

that provided the best fit for each week, to observe the evolution of certain parameters in the307

epidemiological model as more data are collected each week. Table 5 below lists the parameter308

values that best established an accurate fitting to the data for each week according to the309

MATLAB computer software.310

Date β η δ α ν ρ βE δE k

Before the Peak
(3/23/20 – 4/5/20) 0.0040 0.4014 0.1495 0.1960 0.0088 0.0530 1.6001 0.1635 0.3957

At the Peak
(3/23/20 - 4/20/20) 0.0040 0.3977 0.1386 0.2000 0.0077 0.0531 1.5982 0.1615 0.3935

After the Peak
(3/23/20 - 5/25/20) 0.1922 0.2654 0.4564 0.0952 0.0054 0.0059 1.4122 0.0083 0.1976

Table 5
The parameters that best fit the epidemiological model (3.2) for incidences and death data reported by

Florida Department of Health. Each fit starts from March 23rd and ends on the date specified in the table.

5.5. Figures. The figures shown below show the evolution of the epidemiological model311

(blue) in comparison to the observed data (red dots).312
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Figure 5. Plot of the epidemiological model (3.2) (blue line) fitted to the observed incidence data from the
Florida Department of Health (red dots).

Figure 6. Plot of the epidemiological model (3.2) (blue line) fitted to the observed death data from the
Florida Department of Health (red dots).
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Figure 7. Plot of the epidemiological model (3.1) (blue line) simulating what COVID-19 incidence rates
would have looked like without social distancing compared to the observed death data from the Florida Depart-
ment of Health (red dots).

Figure 8. Plot of the epidemiological model (3.1) (blue line) simulating what COVID-19 death rates would
have looked like without social distancing compared to the observed death data from the Florida Department of
Health (red dots).

5.6. Social Distancing Model Monte Carlo Simulation Results. By conducting Monte313

Carlo simulations, the identifiability of the epidemiological model can be measured, and the314

reliability of the parameter estimations can be determined [17]. The true parameter values315

are provided in Table 5. The average relative error for each parameter is presented with an316

increasing level of error in the data (r). If the average relative error value from the Monte317

Carlo Simulations is high, the parameter is considered not identifiable. For example, looking318

at Table 7, we observe that as the error in data increases, the average relative error in δ319

increases very rapidly; 20% error in the data results in 111% average relative error in δ. This320

suggests that δ is not practically identifiable. Compared to β, what is observed is that even as321

the error in data increases to 20%, the average relative error in β remains controlled and is at322

just 2% error, in Table 7. For the week of April 20th, β is considered practically identifiable;323

the same cannot be concluded for δ.324
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Monte Carlo Simulation Before the Peak: 3/23/20 – 4/5/20
r (error in data) β η δ α ν ρ βE δE k

0% 0.01 0 6.50 0.32 0.19 0.03 0 0 0
1% 0.34 0.64 27.17 0.92 0.58 0.49 0.15 1.62 0.50
5% 4.46 5.25 68.94 3.69 2.92 7.04 2.16 11.02 3.97
10% 16.94 11.83 103.21 7.37 6.05 17.83 5.19 21.28 7.73
20% 36.06 23.95 134.87 13.84 11.61 34.00 10.82 29.75 13.06

Table 6
Average relative errors in parameter estimation for errors of 0%, 1%, 5%, 10%, 20% before the peak

(during first 14 days) are shown in the table above. The average relative errors are calculated by formula 4.4.

Monte Carlo Simulation at the Peak: 3/23/20 – 4/20/20
r (error in data) β η δ α ν ρ βE δE k

0% 0.01 0.07 0.26 0.25 0.14 0.03 0.02 0.16 0.08
1% 0.03 0.26 4.26 0.48 0.46 0.23 0.07 0.51 0.16
5% 0.44 2.79 47.89 1.89 2.34 3.63 1.00 5.90 1.66
10% 1.81 6.18 86.21 4.63 5.28 9.34 2.77 14.01 3.60
20% 2.45 12.68 111.22 10.17 11.02 20.49 6.58 26.36 6.39

Table 7
Average relative errors in parameter estimation for errors of 0%, 1%, 5%, 10%, 20% at the peak (during

the week of April 20th) are shown in the table above. The average relative errors are calculated by formula 4.4.

Monte Carlo Simulation After the Peak: 3/23/20 – 5/25/20
r (error in data) β η δ α ν ρ βE δE k

0% 0 0 0 0 0 0 0 0 0
1% 0.80 1.33 2.16 0.63 0.56 5.82 0.80 24.45 2.15
5% 2.83 4.72 7.19 3.03 2.71 18.92 3.06 69.55 7.56
10% 5.29 8.64 11.32 6.26 5.62 30.65 5.78 101.72 13.23
20% 9.75 13.46 18.64 12.61 11.27 47.64 8.91 177.70 21.04

Table 8
Average relative errors in parameter estimation for errors of 0%, 1%, 5%, 10%, 20% after the peak (during

the week of May 25th) are shown in the table above. The average relative errors are calculated by formula 4.4.

In Table 9, the Monte Carlo Simulation results from Tables 6-8 are summarized in terms325

of the practical identifiability of the parameters in the model each week. Checkmarks are326

used to indicate the parameters that were found to be identifiable for each week. From the327

table, one can conclude that δ and δE were definitely not identifiable in this study because328

the average relative errors were extremely high for the individual Monte Carlo simulations329

(Tables 6-8). Furthermore, ρ was found to be unidentifiable in this study. The parameters β330

and η were not identifable before the peak in the data, and k was not identifiable after the331

peak in the data. The rest of the parameters in the model were considered identifiable.332

This manuscript is for review purposes only.

483



THE EVOLUTION OF THE IDENTIFIABLE ANALYSIS OF THE NOVEL COVID-19 VIRUS

Summary of Practical Identifiability Analysis
Date β η δ α ν ρ βE δE k

Before the Peak (3/23/20 – 4/5/20) X X X X
At the Peak (3/23/20 - 4/20/20) X X X X X X

After the Peak (3/23/20 - 5/25/20) X X X X X

Table 9
A summary of tables 6-8 is displayed in the table above. Checkmarks indicate the sections of data for

which the parameter was found to be practically identifiable, which can be concluded by observing how rapidly
the average relative error increases with respect to the error in data each week (Tables 6-8).

5.7. Effectiveness of Social Distancing Results. The results of project serve to demon-333

strate the efficiency of social distancing in preventing the spread of the COVID-19 disease. By334

taking the total of the weekly incidences and deaths from the Florida Department of Health,335

a comparison can be conducted between the actual data and the predicted numbers from336

the non-social distancing model (3.1), which represent the spread of the COVID-19 disease if337

there was no social distancing enforced, which leads to a greater number of contacts between338

individuals. By quantifying the number of infected individuals and disease-induced deaths339

that would have occurred if social distancing did not take place, the number of lives saved and340

the number of prevented incidences can be measured. As outlined in Table 10 below, in the341

first 6 weeks of data collection, an average of 184,586 COVID-19 incidences were prevented342

and 8,588 lives were saved from the efficiency of social distancing guidelines. These results343

suggest that social distancing plays a crucial role in preventing incidences and disease-induced344

deaths.345

Date 4/20/20 4/27/20 5/4/20 5/11/20 5/18/20 5/25/20

Total of Weekly Incidences (FDOH Data) 25,316 31,141 25,832 22,426 21,088 20,449
Total of Weekly Deaths (FDOH Data) 852 1,212 1,107 1,164 1,112 953

Total of Predicted Weekly Incidences (Model 1) 206,124 209,990 208,447 209,755 209,456 209,976
Total of Predicted Weekly Deaths (Model 1) 7,753 9,107 9,408 10,320 10,076 11,262

Total Incidences prevented by Social Distancing 180,808 178,849 182,615 187,349 188,368 189,527
Total Deaths prevented by Social Distancing 6,901 7,895 8,301 9,156 8,964 10,309

Table 10
Total weekly incidences/deaths in comparison to the non-social distancing model predictions

5.8. Time dependent β. From the results in Table 4, it can be concluded that the SEIR346

model is structurally identifiable. However, from Figure 3 and 4 it is observed that the model347

does not match the peak of the incidence data, and the model predicted deaths are much348

lower than the data at the beginning. The reason why the model does not provide an exact349

fit may be attributed to the fact that people’s behaviors change over time, which influences350

disease spread, and it is not possible to reflect those behavioral changes with a constant351

transmission rate. An improved model may consider that the prevalence of social distancing352

fluctuates as people’s behaviors change in time. For example, it is common to see large social353

gatherings during holiday seasons, which increases the likelihood for disease transmission in354
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the population. The best way to incorporate this in the epidemiological model is to have β,355

the transmission rate, change in time. The approach to have β change in time was inspired356

by the approach presented in [19]. This time dependent transmission rate is represented by357

β(t), where β(t) is the transmission rate at time t.358

In this project, the value of β(t) is derived from the COVID-19 data collected from the359

Florida Department of Health. In the model, daily COVID-19 incidences are given by360

y1(t) = kE

Taking the derivative gives361

(5.1)

y′1(t) = k

(
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362

In order to determine y′1, the derivative of the data, the data are smoothed and then363

interpolated with B-splines. The data are interpolated with B-splines because the data con-364

sists of discrete time points (the Florida Department of health reports new daily COVID-19365

infections and disease-induced deaths). Without smoothing the data, the derivative is difficult366

to determine because of the amount of noise in the epidemiological data. A plot of B-spline367

interpolation of the data without smoothing is given in Figure 9.368

Figure 9. The data from the Florida Department of Health is interpolated without being smoothed. In this
case, it is difficult to determine the derivative y′1 because of the amount of noise in the data.

As seen in Figure 9, it is not ideal to determine the derivative y′1 from the original interpo-369

lated data. To make it easier to compute the derivative, the data are smoothed to account for370
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the noise in the epidemiological data. The data are smoothed using the smoothdata function371

in MATLAB. A plot of the B-spline interpolated data after smoothing is given in Figure 10.372

Figure 10. Interpolation of data from the Florida Department of Health after being smoothed. By smoothing
the data, the amount of noise in the data are reduced, making it easier to determine the derivative y′1.

In this project, y′1 and kE come from the data collected from the Florida Department of373

Health. To get the derivative y′1 the epidemiological data must be first smoothed and then374

interpolated with B-splines to take the derivative. After determining the derivative y′1, we375

can express β(t) as the transmission rate of the disease at time t. This is demonstrated in the376

rewritten SEIR model with a time dependent transmission rate as below.377

(5.2)

S′ = −β(t)S

(
I

N
+ q

E

N

)
,

E′ = β(t)S

(
I

N
+ q

E

N

)
− kE,

I ′ = kE − (α+ ν)I,

R′ = αI.

378

Using model (5.2), one can predict COVID-19 cases in Florida from March 23rd over a379

prolonged period of time while accounting for behavioral changes in the population that may380

influence the rate of disease transmission. The model predicts very well, as shown in figure 11381

below. In this plot, the gray bars represent epidemiological data from the Florida Department382

of Health, and the blue curve is the model prediction from model (5.2). In this model, the383

value of β(t) is determined from the data, which a recipe is provided for (5.1), and the values384

of the other parameters, including k, α, and ν, are determined from the curve-fitting process.385

Since typical SEIR models have a constant value for β, those models can only predict 1 wave386

of the disease. However, because model (5.2) uses a time dependent β value, the second wave387

of the disease in Florida can also be predicted, which is shown in figure 11.388
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Figure 11. Plot of the epidemiological model with a time dependent transmission rate (5.2) (blue line) fitted
to the data from the Florida Department of Health representing the number of daily COVID-19 incidences from
March 23rd to January 3rd.

6. Discussion. The novel coronavirus (COVID-19) has made a broad impact as a global389

pandemic, spreading to over 210 countries and leading to over 131 million confirmed cases and390

2.85 million deaths (as of April 2021) [14]. In order to effectively implement control measures391

to prevent the spread of the disease, it is crucial to forecast the behavior of the disease spread392

and determine the epidemiological characteristics of the disease. We utilize an SEIR model393

to determine epidemiological characteristics such as the rate of infection, incubation period,394

and rate of recovery for the COVID-19 disease in the state of Florida according to incidence395

and disease-induced death data from the Florida Department of Health.396

During the COVID-19 pandemic, one major public health guideline advertised by the CDC397

was ”social distancing”, which consists of non-pharmaceutical control measures to prevent the398

spread of the disease by maintaining a physical distance (at least 6 feet) between individuals399

and limiting the number of person-to-person contacts. By developing a social distancing model400

to represent the disease spread, we can quantify the efficiency of social distancing in mitigating401

transmission of the disease and simulate the effect on the disease spread if there was no social402

distancing in the population. However, because the Monte Carlo Simulations of the social403

distancing model established high average relative errors in parameter estimation, the social404

distancing model was found to be not practically identifiable, suggesting that the model is not405

good at forecasting the outbreak and should not be used to determine control measures to406

slow the spread of the disease. To quantify the effectiveness of social distancing, we calculate407

the difference between the predicted weekly incidences and deaths and the weekly sum of the408

Florida Department of Health data to determine how many incidences were prevented and409

how many lives were saved by social distancing. We found that an average of about 185,000410

weekly COVID-19 incidences were prevented and an average of about 8,500 lives were saved411

because of the effectiveness of social distancing, between the weeks of April 20th and May412

25th. This suggests the benefit of implementing non-pharmaceutical control measures such as413

social distancing in an effort to mitigate disease transmission.414

Because the lockdown period ended in Florida in the weeks starting from June 1st, we415

introduce a different model to simulate the disease spread without social distancing, the416
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typical SEIR model. With low average relative errors in the Monte Carlo Simulation, the417

SEIR model was found to be both structurally and practically identifiable, increasing the418

confidence in model predictions and the confidence in using the SEIR model to determine419

possible control measures in an effort to slow the disease spread. Since the SEIR model was420

structurally identifiable, we provided a recipe on how to determine β(t), the transmission rate421

dependent on time, using incidence data from the Florida Department of Health. However,422

we have not investigated the identifiability of the time-dependent β(t).423

Mathematical modeling of infectious diseases is crucial in understanding the epidemiolog-424

ical characteristics of diseases, advising the implementation of disease control measures, and425

forecasting the spread of the disease. To incorporate the time-dependent transmission rate,426

which is derived from the data, in disease forecasting, the disease can only be forecasted for427

a short period of time without data in the future. The value that is found as β(t) for the end428

of the data collection period can be assumed to be constant for the next following week. It is429

not advised to predict ahead of that because people’s behaviors might change later in time.430

However, shortly in the future (such as within the next week), people’s behaviors may linger.431

Another application of the model is to analyze vaccination efforts, in a manner as presented432

by Glenn Webb [6]. The effectiveness of vaccination efforts can be measured by modifying the433

SEIR model to include a vaccinated class, and then a time-dependent vaccination rate can434

be determined following a similar methodology as presented here to find the time-dependent435

transmission rate. This can be used to measure the effectiveness of vaccination efforts in a436

population for a short period of time. Future directions include using the model with the437

time-dependent transmission rate to analyze the vaccination efforts in Florida.438
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Appendix.439

Input output equation of SEIR model (3.1)440
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