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Abstract

We expand on a prior result about the cardinalities of harmonic tight frames generated from the
discrete Fourier transform. Harmonic finite unit-norm tight frames (FUNTFs) constructed from the first
two rows of the M ×M discrete Fourier transform have previously been described and characterized as
prime or divisible, where M ≥ 2 is an integer. We generalize the result to any choice of two rows b and
c for which c− b has up to two distinct prime factors. These new results allow for much more flexibility
in constructing harmonic FUNTFs from M -th roots of unity.

1 Introduction

The discrete Fourier transform matrix (DFT) provides a simple construction for a class of frames
known as harmonic finite unit-norm tight frames, or FUNTFs. In particular, by sampling and renor-
malizing any N rows of the M ×M DFT matrix, a harmonic FUNTF for CN with M frame vectors is
obtained. In this paper, we explore the concept of divisibility of such frames.

In [2], the concepts of prime and divisible tight frames are introduced. A tight frame for CN with M
frame vectors is (M,n)-divisible if some subset with n frame vectors is a tight frame itself. If no such
divisor frame exists, then the original frame is said to be prime. In addition to defining and characterizing
prime tight frames, the authors analyze the divisibility of the harmonic tight frame (HTF) obtained by
sampling the first N rows of the M ×M DFT. Define:

DM,N = {d ∈ {N, . . . ,M −N} : d is a divisor of M}
PM,N = DM,N \ {d ∈ DM,N : ∃c ∈ DM,N such that c is a proper divisor of d} , and

SM,N =

{
s ∈ {N, . . . ,M −N} : s =

K∑
k=1

akqk and M − s =

K∑
k=1

bkqk, where ak, bk ∈ N0, qk ∈ PM,N

}
.

(Here, N0 refers to the set of non-negative integers. N will be used to denote the set of positive integers.)
It is shown in the same paper that PM,N is exactly the set of cardinalities of prime factors of the HTF,
and SM,N is exactly the set of cardinalities of all divisors regardless of primality.

We wish to extend this result to the choice of any N rows, not just rows 0 through N − 1 (here, we
will refer to the topmost row—the row of all ones—as row 0, and label the remaining rows sequentially
up to M −1). That is, consider a frame Φ obtained by sampling any N rows of the DFT. For this frame,
which is itself a HTF, we seek to find an explicit construction of the set TΦ of cardinalities of all its
divisors. Note that TΦ = SM,N when Φ is sampled from the first N rows of the DFT.

Two distinct questions motivated this search:
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• For a given choice of Φ constructed from some N rows of the DFT, which elements of SM,N are in
TΦ? It is simple to verify that, for example, not every TΦ contains all elements of SM,2.

• For a given M,N , does there exist some choice of Φ for which TΦ contains elements not in SM,N?

In the case where the first two rows are chosen, finding TΦ is equivalent to finding vanishing sums of
distinct M -th roots of unity, i.e. a set of distinct M -th root of unity that sums to 0. This problem has
been solved in [3]. And if rows 0 and j are chosen, where j is relatively prime to M , the solution set
TΦ is exactly the same as for rows 0 and 1, since row j of the DFT is simply a permutation of row 1.
However, if j is not relatively prime to M , the problem becomes significantly harder because row j is no
longer a permutation of row 1 and contains repeated roots of unity.

A näıve approach to this more general problem would be to use [1, Theorem 5.2], which gives all
possible n for which n M -th roots of unity can sum to 0, allowing for repetition. However, in the case of
finding TΦ, there is a hard restriction on the number of times a root can be repeated. As an example,
consider M = 6 and j = 2. The j-th row of the M ×M DFT has all of the cube roots of unity, repeated
twice.

A second approach would be to split any vanishing sum of roots of unity, possibly including repetition,
into one or more vanishing sums without repetition. Thus, it would be helpful if any minimal vanishing
sum—that is, one which cannot be split into two or more vanishing sums—contains no repetitions.
However, this turns out to not be true in general, as shown by [4, Theorem 1.1].

The result in [1] mentioned above provides a necessary but insufficient condition for an element to be
in TΦ. For the cases where m = M

j
has one or two distinct prime factors, we establish a necessary and

sufficient condition in order to fully characterize TΦ.

2 Main Results

For the purposes of our analysis, let M ≥ 2 be an integer and let m 6= 1 be a divisor of M . Clearly,
the values of

(
m, M

m

)
take on every pair of divisors of M other than (1,M).

One way to determine if a frame for C2 is a tight frame is to take the inner product between its two
rows when written as a matrix. Specifically, if we have a frame{[

x1

y1

]
,

[
x2

y2

]
, · · · ,

[
xk
yk

]}
,

then the frame is tight exactly when 〈(x1, x2, · · · , xk), (y1, y2, · · · , yk)〉 = 0. This is what we mean by
taking the inner product between the rows of a frame. It follows that when sampling from the M ×M
DFT matrix, we only have to consider the HTFs obtained by sampling rows 0 and a since, for our
purposes, this is equivalent to sampling rows b and a+ b.

Note that row M
m

is of the form
[
1, ωM/m, ω2M/m, . . . , ω(M−1)M/m

]
, where ω = e2πi/M . The order of

ωM/m in the multiplicative group of M -th roots of unity is m. This also means that ωM/m is a primitive
m-th root of unity. So, row M

m
contains all of the m-th roots of unity, each repeated exactly M

m
times.

Denote by Φj the HTF obtained by sampling rows 0 and j from the DFT matrix. Let q be any
positive integer relatively prime to m such that q < m. Over all possible m and q, the value of qM

m
takes

on every positive integer less than M , so every possible HTF for C2 sampled from the DFT is accounted
for by ΦqM/m. Since q is relatively prime to m, ωqM/m is also a primitive m-th root of unity, from which
it follows that row qM

m
of the DFT is simply a permutation of row M

m
. Thus, we only need to look at the

HTFs ΦM/m, where m is a divisor of M other than 1.

Let Φ̃M/m be a subset of ΦM/m with n vectors, 1 ≤ n < M . Then TΦ is the set of all n for which

some Φ̃M/m is a tight frame. In order for Φ̃M/m to be a tight frame, the inner product between the rows

of this frame when written as a matrix must be 0. Since the first row of Φ̃M/m is all ones, this condition
for TΦ reduces to finding all n for which there exists a vanishing sum of n m-th roots of unity, given the
condition that no term may be repeated more than M

m
times.

However, we can also impose a second condition. Because the m-th roots of unity sum to 0, there
exists a vanishing sum of n m-th roots of unity with multiplicity no greater than M

m
if and only if there

exists such a sum with M −n roots. Stated in terms of the HTF, ΦM/m is (M,n)-divisible if and only if
it is (M,M − n)-divisible. With the observation that PM,2 is the set of prime factors of M , [1, Theorem
5.2] allows us to conclude that TΦM/m

⊆ SM,2 for any choice of m.
We will approach the problem of finding TΦ based on the number of distinct prime factors of m. This

is tied closely to the prime factors of M , since a prime p divides m only if it divides M as well. We
analyze the cases where m has one or two distinct prime factors.
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2.1 One prime factor

Assume m has exactly one distinct prime factor p. Then m = pα for some α ≥ 1. From [1, Theorem
3.3], the only possible minimal vanishing sum of m-th roots of unity (up to rotation) is the sum of all
p-th roots of unity. Therefore, any vanishing sum of m-th roots of unity must contain cp roots of unity
for some c ∈ N.

Is this condition sufficient for our problem? That is, can a divisor frame Φ̃M/m with n = cp vectors
be found for any choice of c? The answer is yes, as long as n < M .

Theorem 1. Let m and M be positive integers for which m | M . If m has exactly one distinct prime
factor p, and Φ is the HTF obtained by sampling rows 0 and M

m
from the M ×M DFT matrix, then

TΦ = {n = cp : c ∈ N, n < M} . (1)

Proof. Consider the structure of row M
m

of the DFT. It contains M
m

cycles of the m-th roots of unity. It
is possible to fit anywhere from 0 to r = m

p
minimal vanishing sums in each cycle, simply by rotation.

This result follows from [3, Theorem 2], but here we present a more specific proof that illuminates the
structure of the vanishing sum and thus of the divisor frame.

Let ζ = e2πi/m. Then one cycle in row M
m

contains the elements
{

1, ζ, ζ2, . . . , ζm−1
}

, which can be
decomposed into the disjoint subsets

r−1⋃
k=0

{
ζk, ζk+r, ζk+2r, . . . , ζk+(p−1)r

}
.

Each of these subsets is a minimal vanishing sum of m-th roots of unity, so each cycle contains r = m
p

disjoint vanishing sums. It follows that, for any positive multiple of p less than or equal to M , there
exists a subset of row M

m
with that many elements that forms a vanishing sum. Then a divisor frame

with n vectors can be found if n is a multiple of p less than M .
Therefore,

TΦ = {n = cp : c ∈ N, n < M} .

From this, we immediately have the following result as well.

Corollary. If M has exactly one distinct prime factor p and Φ is the HTF obtained by sampling any
two rows of the M ×M DFT matrix, then

TΦ = {n = cp : c ∈ N, n < M} . (2)

Proof. As noted earlier, we reduced this problem to only searching ΦM/m where m is a divisor of M
other than 1. Since M has only one distinct prime factor p, we see that m only has p as a prime factor
as well. Then we may apply the previous theorem.

2.2 Two prime factors

Assume m has exactly two distinct prime factors p1 and p2. Then m = pα1
1 pα2

2 for some α1, α2 ≥ 1.
From [1, Theorem 3.3], the only possible minimal vanishing sums of m-th roots of unity (up to rotation)
are the sum of all p1-th roots of unity and the sum of all p2-th roots of unity. Therefore, any vanishing
sum of m-th roots of unity must contain c1p1 + c2p2 roots of unity for some c1, c2 ∈ N0.

As in the case of one prime factor, we ask: is this condition sufficient? That is, can a divisor frame
Φ̃M/m with n = c1p1 + c2p2 vectors be found for any choice of c1 and c2? In general, the answer is no.
However, we will now identify a more specific criterion that tells us for exactly which values of n a divisor
frame exists.

Theorem 2. Let m and M be positive integers for which m | M . If m has exactly two distinct prime
factors p1 and p2, and Φ is the HTF obtained by sampling rows 0 and M

m
from the M ×M DFT matrix,

then
TΦ = {n : 0 < n < M and n,M − n ∈ N0p1 + N0p2} . (3)

Proof. Let ζ = e2πi/m and r = m
p1p2

. As in the case of one prime factor, one cycle in row M
m

contains the

elements
{

1, ζ, ζ2, . . . , ζm−1
}

, which can be decomposed into the disjoint subsets

r−1⋃
k=0

{
ζk, ζk+r, ζk+2r, . . . , ζk+(p1p2−1)r

}
.
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Each of these subsets is a vanishing sum of m-th roots of unity, so each cycle contains r = m
p1p2

disjoint

vanishing sums. Therefore, the entirety of row M
m

can be split into rM/m = M
p1p2

disjoint subsets, each

of which is equivalent to
{

1, ζr, ζ2r, . . . , ζ(p1p2−1)r
}

up to rotation. We observe that each of these subsets

are the p1p2-th roots of unity (up to rotation), and we refer to these subsets as the minimal subsets of
row M

m
.

Additionally, note that each minimal subset also contains minimal vanishing sums with p1 terms and
p2 terms. In fact, following a similar procedure as in Section 2.1, we can show that each minimal subset
contains p2 minimal vanishing sums with p1 terms and p1 minimal vanishing sums with p2 terms.

Starting with n = c1p1 + c2p2 (which must be true in order for a divisor frame to exist), Euclidean
division performed twice allows us to write n as a1p1 + a2p2 + a3p1p2 for non-negative integers a1, a2, a3

with a1 < p2 and a2 < p1. Let b = a1p1 + a2p2. We claim that there exists a subset of row M
m

with n
elements that forms a vanishing sum if and only if at least one of the following conditions is true:

• a3 <
M
p1p2

− 1

• p1p2 − b ∈ N0p1 + N0p2.

First, we show that if a3 <
M
p1p2

− 1 or p1p2 − b ∈ N0p1 + N0p2, then there exists a subset of row
M
m

with n elements that forms a vanishing sum. If a3 <
M
p1p2

− 1, we can construct a subset as follows.
Combine all of the elements from any a3 of the minimal subsets, which leaves at least two remaining
minimal subsets. Add to this set the elements from a1 of the minimal sums with p1 terms in one of the
remaining minimal subsets, as well as the elements from a2 of the minimal sums with p2 terms in one of
the other remaining minimal subsets. This combined set is a subset of row M

m
and has n elements that

sum to 0, as desired.
Now, assume a3 = M

p1p2
− 1 and p1p2 − b ∈ N0p1 + N0p2 (note that a3 cannot be any greater, or else

n would be at least as large as M). We begin the construction as in the previous case, combining all of
the elements from a3 of the minimal subsets, which leaves one remaining minimal subset. By definition,
b ∈ N0p1 + N0p2, and we assumed that p1p2 − b ∈ N0p1 + N0p2. So by [3, Theorem 2], a vanishing sum
with b distinct p1p2-th roots of unity exists. These roots (or some rotation) must be contained in the
remaining minimal subset because, as observed earlier, each minimal subset comprises the p1p2-th roots
of unity up to rotation. Thus, we may add these elements to our set and end up with a subset of row M

m

with n elements that sum to 0, as desired.
Next, we prove the inverse statement, namely that if a3 = M

p1p2
− 1 and p1p2 − b 6∈ N0p1 + N0p2

then there does not exist a subset of row M
m

with n elements that forms a vanishing sum. We have that
M − n = M − b− a3p1p2 = p1p2 − b, but since this is not in N0p1 + N0p2, [1, Theorem 5.2] tells us that
no vanishing sum of M − n roots of unity exists. Therefore, no subset of row M

m
with M − n elements

can form a vanishing sum, so no subset of row M
m

with n elements forms a vanishing sum.
Having checked both directions of the bi-conditional, we have proven the claim. However, it is

actually possible to combine the two conditions into one. Note that if a3 <
M
p1p2

− 1, then M − n =
M − a1p1 − a2p2 − a3p1p2 = M − (p2 − a1) p1 − (p1 − a2) p2 − (a3 + 2) p1p2, so M − n ∈ N0p1 + N0p2.
But if a3 = M

p1p2
− 1, then M − n = M − b− a3p1p2 = p1p2 − b, so M − n ∈ N0p1 + N0p2 if and only if

p1p2 − b ∈ N0p1 + N0p2. Therefore, M − n ∈ N0p1 + N0p2 if and only if at least one of the conditions is
true, so

TΦ = {n : 0 < n < M and n,M − n ∈ N0p1 + N0p2} .

3 Conclusions and Future Research

For the HTF Φ sampled from rows 0 and M
m

of the M ×M DFT matrix, we have established the
following results through our two main theorems. In the case where m has only one distinct prime factor
p, we prove in Section 2.1 that

TΦ = {n = cp : c ∈ N, n < M} .
Similarly, when m has only two distinct prime factors p1 and p2, we prove in Section 2.2 that

TΦ = {n : 0 < n < M and n,M − n ∈ N0p1 + N0p2} .

The immediate next question is how to generalize these results to any number of distinct prime factors
of m. It is worth noting that, in both the one prime and two prime cases, the set TΦ is exactly the same
as the set of positive integers n for which there exists a vanishing sum of n distinct m-th roots of unity,
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which is given in [3]. One may conjecture that this will be the case regardless of the number of prime
factors of m, although this seems unlikely in light of the asymmetrical minimal vanishing sums that arise
with three or more distinct prime factors (see [1, Section 6]). The ultimate goal would be to characterize
the set TΦ for all M and choice of N rows.
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