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Abstract

Over time, tumor treatment resistance inadvertently develops when androgen de-
privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat 
tumor resistance, while reducing the harsh side effects o f hormone t herapy, the clini-
cian may opt to cyclically alternates the patient’s treatment on and off. This method, 
known as intermittent ADT, is an alternative to continuous ADT that improves the 
patient’s quality of life while testosterone levels recover between cycles. In this paper, 
we explore the response of intermittent ADT to metastasized prostate cancer by em-
ploying a previously clinical data validated mathematical model to new clinical data 
from patients undergoing Abiraterone therapy. This cell quota model, a system of 
ordinary differential equations constructed using Droop’s nutrient l imiting theory, as-
sumes the tumor comprises of castration-sensitive (CS) and castration-resistant (CR) 
cancer sub-populations. The two sub-populations rely on varying levels of intracellular 
androgen for growth, death and transformation. Due to the complexity of the model, 
we carry out sensitivity analyses to study the effect o f c ertain p arameters o n their 
outputs, and to increase the identifiability of each patient’s unique parameter s et. The 
model’s forecasting results show consistent accuracy for patients with sufficient data, 
which means the model could give useful information in practice, especially to decide 
whether an additional round of treatment would be effective.
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1 Introduction1

1.1 Background2

Prostate cancer is one of the greatest global health concerns and is the second leading cause3

of men’s deaths by cancer in the United States [22]. The growth of advanced prostate tumors4

is notably linked with its high dependence on androgen, a male hormone developed in the5

testis and adrenal gland. Unfortunately, androgen levels are not always directly measurable,6

nor is androgen data always available. However, prostate cells convert androgen to a potent7

form called dihydrotestosterone (DHT) and bind to the androgen receptors, thus elevating8

prostate-specific antigen (PSA) levels and leading to growth and survival of the cancer cells.9

Then the PSA proteins that are produced by the tissue in the prostate could be used as10

biomarkers for cancerous activity. [10].11

Huggins and Hodges Nobel-prize winning studies on castration and metastasized PCa12

shows androgen deprivation rapidly regresses tumor size [12]. However, many patients with13

a metastatic form of cancer eventually suffer a relapse. Treatment that effectively kills most14

of the tumor’s cancerous cells may quickly become ineffective when the cells that remain15

are those resistant to treatment - or can quickly mutate to sustain growth in an androgen-16

deprived environment. In 2006, Bruchovsky et al. used the CS Shionogi model to conclude17

that androgen deprivation causes a change in cellular phenotype, from CS to CR [5]. It makes18

sense that lessening selective pressure would be effective in delaying treatment resistance.19

Taking the patient off treatment for a period of time would potentially allow the overall20

tumor population to remain sensitive to ADT.21

Patients who respond well to Abiraterone show drastically reduced levels of PSA which22

demonstrates the efficacy of the treatment. This is shown in [9], where clinical trials show23

that Abiraterone rapidly decreases serum testosterone to castrate levels in non-castrate pa-24

tients diagnosed with PCa.25

In order to combat treatment resistance, intermittent ADT is introduced. Taking the26

patient off treatment for a period of time potentially allows the overall tumor population27

to stay sensitive to ADT. Another treatment method, continuous ADT, causes many side28

effects that diminish the quality of life of the patient. With intermittent ADT, treatment is29

administered until PSA levels reach a desired threshold before they are taken off treatment.30

This allows serum testosterone levels to return to normal, which would not occur under31

continuous ADT. With intermittent ADT, treatment begins again once PSA levels rise to a32

predetermined level. [8]33

1.2 Modeling34

The development of previous models for hormonal treatment of prostate cancer has paved35

the way for further research. Jackson [14] introduced a model that described prostate cancer36

growth using continuous ADT, which inspired further research by Ideta et al. [13] that37

separates cancer cells into two sub-populations, CR and CS. Portz et al. [20] extends the38

work of previous models that take intracellular androgen into account, while incorporating39
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the use of clinical data to their model. Hirata et al.[11] introduces a piecewise linear model40

that potentially permits a more accurate fit of the on and off alternations of intermittent41

ADT. Baez and Kuang [2] formulate a simplification of the Portz et al. model, incorporating42

the assumption that the level of intracellular androgen is the same as that of body serum43

androgen. Moreover, the model is further simplified to incorporate a compartment for serum44

androgen, referred to as model T in Wu et al. [24] and further modified in Phan et al. [19].45

For this paper, we focus on Phan et al.’s modification which we will call “Model T,” which46

incorporates androgen production and its diffusion to intracellular androgen. By modeling47

the factors that come into play with metastasized PCa, such as the cycling involved with48

intermittent ADT to potentially avoid or reduce resistance, we are able to predict three to49

four months of treatment progress. Because the treatment is administered in cycles, we50

explore whether another round of treatment could be effective for the patient.51

Although there has been an emergence of mathematical modeling of cancer within the52

past few decades, the ability to predict and treat cancer is limited. Being able to reliably53

forecast each patient’s next cycle allows clinicians to choose the best treatment options for54

each patient’s given tumor behavior three to four months prior. The difficulty of reliability55

in forecasting cancer behavior stems from the fact that cancer is the result of a complex in-56

terplay between numerous factors, or cellular parameters. Mathematical modeling attempts57

to analyze the enormous amount of data being produced and extract useful answers by at-58

tempting to mimic the behavior of a tumor on a biological level. However, the accuracy of59

the predictions varies as the forecast increases.60

We use the model to fit the data that is described in section 2.2. For this paper, we61

fit all but the last full cycle of data to the model, and use the rest of the data to test the62

predictability of the model. In section 2.4, we introduce the weighted error that we employ63

to prioritizes recent data. The sensitivity analysis, detailed in section 2.5, is used to reduce64

uncertainty and increase robustness of individual patient fits. By doing this, we can explore65

unique parameter dynamics for each patient. This allows us to set up future attempts to66

draw biological conclusions for parameters assigned to each individual patient. The precision67

that the model shows for each patient shows promise for optimal treatment options.68

Where this paper differs from similar models and model analyses, is the particular use69

of Aberiterone to treat the patients. Both Wu et al. and Phan et al. use similar models,70

but both data sets are from prostate cancer patients treated with Cyproterone acetate or71

Leuprolide acetate. Moreover, the weighted exponential error is emphasized in our compu-72

tations - which we compare in section 3.1.2. Phan et al. found relative success with the73

weighted error metric implemented with their clinical data, so we chose to use the the same74

metric to patients treated with Abiraterone to explore its practicality and validity.75
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2 Model and method76

2.1 Model T77

Because the authors did not contribute to the formulation of the model used, we simply78

describe the model and its dynamics. Model T is a series of differential equations constructed79

to describe the dynamics of the cancer cells, and is a cell quota model that originates from80

the mathematical formulations credited to Portz, Kuang and Nagy (PKN) [20]. The PKN81

model incorporates Droop’s limiting nutrient theory [6], which describes a positive saturating82

relationship between metabolic performance and availability of an element. Specifically, the83

PKN model regards intracellular androgen as the threshold for cancer sub-population growth.84

However, model T differs from the PKN model by the incorporation of a compartment for85

serum androgen, as well as the addition of an irreversibly treatment-resistant subpopulation86

[2][19]. This cell quota model contains five variables (x1 for CS cells, x2 for CR cells, Q87

for intracellular androgen, A for serum androgen, P for PSA ), each describing a dynamic88

that represents a critical role in how androgen, PSA, and the cancerous cell sub-populations89

interact. The model takes the form:90

dx1

dt
= µ1(1−

q1
Q
)x1︸ ︷︷ ︸

growth

− (D1(Q) + δ1x1)x1︸ ︷︷ ︸
death

− λ(Q)x1︸ ︷︷ ︸
transformation

(1)

dx2

dt
= µ2(1−

q2
Q
)x2︸ ︷︷ ︸

growth

− (D2(Q) + δ2x2)x2︸ ︷︷ ︸
death

+ λ(Q)x1︸ ︷︷ ︸
transformation

(2)

dQ

dt
= m(A−Q)︸ ︷︷ ︸

androgen diffusion A→ Q

− µ1(Q− q1)x1 + µ2(Q− q2)x2

x1 + x2︸ ︷︷ ︸
androgen uptake

(3)

dA

dt
= γ2 + γ1(A0 − A)︸ ︷︷ ︸

production

− A0γ1u(t)︸ ︷︷ ︸
suppression of production

(4)

dP

dt
= bQ︸︷︷︸

baseline PSA production

+ σ(Qx1 +Qx2)︸ ︷︷ ︸
tumor PSA production

− ϵP︸︷︷︸
degradation

(5)

u(t) =

{
1 on treatment
0 off treatment (6)
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The growth of both the CS cells (1) and CR cells (2) is dependent upon the internal91

androgen concentration of the sub-population. At any time the intracellular androgen falls92

below the ”cell quota,” the subpopulation will decline, causing cellular apoptosis. Transfor-93

mation to resistant cancerous cells are assumed to be irreversible, hence the transformation94

will only facilitate CS cells to CR cells. This means that, unlike the PKN model, x2 can’t95

transform into x1.96

Transformation is not a mutation, but rather refers to phenotypical adaptation due to97

selective pressure of the treatment - hence it is androgen dependent. The transformation98

rates between different cells are assumed to be the same, and is described in the form of a99

hill function which describes switching rates between cell phenotypes:100

λ(Q) = cK
Q+K

101

Death is characterized by density dependent competition, a result of assuming inter-102

species effect is negligible in population growth because cells of the same phenotype tend to103

cluster. The death term is as follows, and describes how sensitive apoptosis is to variation104

of the cell quota threshold:105

Dj(Q) =
djRj

Q+Rj
j = 1, 2106

A comprehensive derivation of death and transformation in this model can be found via107

Phan et al., Baez et al. and Morken et al. [2][16][18].108

Androgen uptake is based on ecological stoichiometry and Droop’s law. The formulation109

comes from the conservation of androgen as it moves in and out of the tumor. Details110

regarding uptake in this model can be found in Baez et al. [2].111

Intracellular androgen is described by the diffusion of serum androgen into the cell. The112

unit step function, u(t), characterizes the on and off cycles of treatment when a patient is on113

intermittent androgen deprivation therapy, and describes the suppression of serum androgen114

production. Mathematically, a value of 1 (when the patient is on treatment) will effectively115

reduce production of A. A value of 0 (when the patient is off treatment) will eliminate116

deprivation of A production.117

As listed on Table 1, Model T has 19 biological parameters and 5 initial conditions with118

biological ranges obtained from previous literature [20][24]. The units for this model, along119

with specific definitions of each variables for the differential equations are established in120

Phan et al. [19]. Phan et al.’s assumption that serum androgen and intracellular androgen121

are approximately the same prior to treatment would have been used when selecting initial122

Q(0) and A(0) for this model [19]. This assumption was made with available androgen data.123

However, the data provided to us by Phoenix’s Mayo Clinic did not include androgen lev-124

els, but PSA levels instead. The previous assumption inspired a similar approach by setting125

Q(0) to 40-50 percent of initial PSA, and A(0) to roughly 60-70 percent of initial PSA. We126

recommend further exploration when modeling without androgen data.127
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Param Description Range Ref.
µ1 max proliferation rate (CS cells) [0.001,0.09] [day−1] [3]
µ2 max proliferation rate (CR cells) [0.001,0.09] [day−1] [19]
q1 min CS cell quota [0.41, 1.73] [nmol/L] [17]
q2 min CR cell quota [0.01, 0.41] [nmol/L] estimated
b baseline PSA production rate [0.0001,0.1] [µg][nmol]−1 [day]1 [20][2]
σ tumor PSA production rate [0.001,1] [µg][nmol]−1[L]−1] [day]−1 ad hoc
ϵ PSA clearance rate [0.0001,0.1] [day]−1 [20][2]
d1 max CS cell death rate [0.001,0.09] [day]−1 [3]
d2 max CR cell death rate [0.01,0.09] [day]−1 [19]
δ1 density death rate (CS cells) [1, 90] [L]−1[day]−1 [2]
δ2 density death rate (CR cells) [1, 90] [L]−1[day]−1 [19]
R1 CS death rate half-saturation [0,3] [nmol/L] [2]
R2 CR death rate half-saturation [1,6] [nmol/L] [7]
c maximum mutation rate [10−5, 10−4] [day]−1 [20][7]
K mutation rate half-saturation level [0.8, 1.7] [nmol][L]−1 [20]
γ1 primary androgen production rate [0.008,0.8] [day]−1 [13]
γ2 secondary androgen production rate [0.001, 0.1] [day]−1 estimated
m diffusion rate from A to Q [0.01,0.9] [19]
A0 maximum serum androgen level [27, 35] [nmol][L]−1 [2][13][5]

x1(0) initial population of CS cells [0.009,0.02] [5]
x2(0) initial population of CR cells [10−5, 10−4] [5]
Q(0) initial intracellular androgen P (0) ∗ [0.4, 0.5]1 estimated
A(0) initial serum androgen P (0) ∗ [0.6, 0.7]1 estimated
P(0) initial PSA level initial given

Table 1: Estimated biologically realistic ranges of the parameters for Model T. Q(0) and
A(0) were calculated as ratios of the clinical data we were given.

2.2 Data Description128

The data is from 41 patients at Phoenix, Arizona’s Mayo Clinic. Table 2 provides an129

excerpt of the data, particularly patient 2. Included in this data were the measured PSA130

amounts, the date the measurement was taken and the patient number. No direct androgen131

data was provided and the date measurements were converted to time elapsed (in days)132

between data points. This allowed us to create data points from a beginning treatment date133

of 0. No information was provided to ascertain whether the patient was on or off treatment,134

so the authors were required to manually input this in the data so that the model could kick135

on or off the suppression of production as described by equations (4) and (6) in section 2.1.136

The treatment was determined to be on when PSA levels were decreasing, and off when PSA137

63



levels were increasing. A new cycle was counted when the PSA reached a new relative max138

before decreasing. Careful consideration of cycle count allowed us to cut the model off with139

one full cycle remaining. The remaining data was left to be compared to the forecast.140

While coding the model in MATLAB, we used the patient data as a reference to create141

unique fittings for each patient.142

Table 2: Patient 2’s reference data

Patient Time Elapsed PSA Level Cycle On/Off
2 0 13.8 1 1
2 90 0.19 1 0
2 226 0.61 1 0
2 358 6.98 1 0
2 482 2.4 1 0
2 611 13.8 1 0
2 744 4.9 1 0
2 1000 5 1 0
2 1084 7.4 1 0
2 1109 7.8 2 1
2 1150 6.6 2 1
2 1178 5.4 2 1
2 1246 0.1 2 1
2 1331 0.23 2 0
2 1416 0.1 2 0
2 1529 0.13 2 0

2.3 Parameter Estimation143

To fit the patient’s data, MATLAB’s ODE45 function was used to solve our system of144

differential equations. To obtain parameter estimates, we optimized the parameters us-145

ing MATLAB’s fmincon function. This tool implements an interior point algorithm that146

minimizes the objective function within the boundaries defined by parameters from Table 1.147

Because local optimization algorithms are highly dependent on initial guess, we use the same148

initial conditions across all patients for simplicity. This is mostly due to the time constraints149

of the REU.150

Prior to Phan et al.’s adaptation of this model, the error function was calculated as the151

sum of squared means, e.g., the MSE method to fit the data. For this model, we attempted152

to fit the data using the MSE method. However, many unsatisfying data fits of our patients153

with high PSA error motivated the use of an error correction (section 2.4). Specifically,154

fmincon’s mean-squared-error forecasts for patients would measure much higher than the155

actual data points due to high PSA peaks when off of treatment. Phan et al. [19] considers156

the treatment administered over time and the effect time has on the fit. Comparing the157
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mean-squared-error with a weighted error showed that the latter provided a superior fit in158

many situations where clinical data was used.159

2.4 Weighted Error160

Intermittent ADT is characteristically cyclic with sharp peaks. This presents a problem161

when forecasting data. In particular, a uniform mean error tool would cause the forecast to162

be underestimated because of the quantity of small PSA data points. Phan et al. implements163

a weighted error metric that puts an emphasis on recent data while controlling the weight164

contributions pre and post PSA level peaks [19]. The weighted least square method in165

exponential form is as follows:166

errori=1,2 =

∑
(PSA−Data)2e−αi(tf−t0)

Ni

, (7)

where α is the weight as a ratio between zero and one, Ni is the number of PSA data167

points for data set i, tf is the final time of the forecast treatment period, t0 is the time of the168

observed PSA data point, PSA is the PSA level according to the model at time t, and Data169

is the actual data point at time t. The higher that α is, the lower the weight is that is applied170

to the earliest data points. The exponential form of the least square error rapidly decreases171

the weight to combat losing earliest data points by sectioning the data into multiple sets. In172

Phan et al. [19], the sets were divided pre and post peak levels of PSA. However, because of173

the lack of cycles for some patients, as well as inconsistent data, we decided to employ the174

weight division one half cycle prior to the beginning of the forecast - this provided consistent175

and accurate fits despite the somewhat inconsistent data. Similar to Phan et al, we divided176

the minimized error function into two parts:177

Error = c1 error1 + c2 error2 (8)

where c1 and c2 are the weighted contributions of error from both prior and post PSA peak178

level, such that c1 + c2 = 1 for consistent results. In general, c1 = 0.5 = c2 and a1 = 0.01 =179

a2. Because each model is precisely unique to different patients, the value of c1, c2 and α will180

always be different. The objective function that fmincon minimizes is the sum of squared181

PSA and androgen residuals:182

ObjectiveMSE = ErrorMSE,PSA + ErrorMSE,androgen (9)

2.5 Sensitivity analysis183

In general, sensitivity analysis is implemented to improve the quality of a model. In184

the interest of identifying precise fits for each patient, sensitivity analysis is used to reduce185

uncertainty in each of the patient’s unique fit. To understand the effect that changing186
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a parameter has on the patient’s dynamics, we varied the value by a small amount and187

measured change in the effect at a particular time. For this paper, we use the one factor at188

a time (OAT) approach [21]:189

∂x

∂p
· p
x

(10)

where the partial derivative is the sensitivity coefficient, p is the parameter, and x is the190

variable being analyzed. We use this method to investigate the behavior of x by a fixed191

fraction of the parameter’s mean value for that patient. By using this method, we identified192

the most insensitive parameters and converted them to constants, reducing uncertainty in193

remaining parameters and improving the fit and forecast of individual patients. Since there is194

a large amount of variability between patient data, it seems reasonable to assume there is no195

uniform parameter sensitivity. Due to time constraints of the REU in which this analysis was196

performed, we were unable to investigate biological implications from parameter sensitivity.197

Instead, we made observations of parameter sensitivity coefficients from a patient with a198

particularly good forecast (patient 13) and a particularly undesirable forecast (patient 17).199

3 Results200

Our results utilize a qualitative approach by visually comparing parameter sets to interpret201

the dynamics of individual fits of each patient, and the differences in patient forecasts. The202

differences we look for are the sensitivity of the parameters used in the model, and patterns203

in the fitting that could imply model error or give insight to cancerous activity.204

3.1 Fitting and forecasting of androgen and cell population205

Figure 1 shows a comparison of four patients, where we can eyeball the fit of the model206

to the PSA data. Our intention was to explore whether we can use the model to reliably207

predict a practical time frame of intermittent ADT progress in advance, i.e. three to four208

months. Ideally, we would like to predict whether another round of treatment would be209

meaningful. In other words, would an additional round of hormone treatment effectively210

reduce PSA levels? There are some spikes or deviations from the data points, likely caused211

by outliers in the data or the distribution of error weight. Even with the deviations and212

spikes, the forecast remains consistent with PSA trends, with some forecasts projecting well213

beyond the three to four months that we were looking to project.214
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Figure 1: Model T (black line) fits to the patient’s PSA levels (the red dots) to train the
model to forecast (blue line) the last half cycle. Data1 (dashed line) is where the forecast
begins.

On patient 5, we notice the model spikes around day 500 up to roughly 40 PSA. We215

could possibly infer the model’s attempt to compensate for the higher weight closer to the216

forecast, which shows a spike around day 1200. This is also apparent in the forecast of217

patient 5 which shows the same trend as the PSA data, but spikes much higher. Patient218

38’s initial PSA levels vary in a way that could imply that treatment may have not started219

until around day 100. A logical reason could be the patient switching between alternative220

medications, however this likely could have been addressed if more data had been available221

from the beginning up to the forecast. With patient 34, the prediction does not seem to fit222

very well. It seems that patient 34 was not provided with sufficient training data for the223

forecast to be accurate. In other words, patient 34’s PSA data prior to the forecast should224

have been comprised of more cycles (ideally 2.5, as explained in section 3.1.1) to cause a225

better fit forecast.226
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3.1.1 Comparison of full-cycle forecasts227

Some patient datasets had enough data to forecast a full cycle, while other patient datasets228

were either inconsistent, or did not have enough data to constitute 2.5 cycles prior to forecast.229

We observed that a full-cycle forecast could not be consistently predicted when less than 2.5230

cycles of PSA data were available. When comparing patient figures, the forecast of patient231

17 seemingly deviates from the data. To accurately predict a full cycle of intermittent ADT232

trends in advanced prostate cancer, it seems that model T needs at least 2.5 cycles before233

a more accurate prediction can be forecasted. The goal was to forecast reliably for three to234

four months, which it does not quite do with patient 17 as accurately as a clinician may like.235

In contrast, patient 13 has 2.5 intermittent ADT cycles of PSA data and shows a promising236

full-cycled prediction.237

Figure 2: PSA data and model fits and predictions for patients 13 and 17. Model T seems
to have sufficient data to reasonably forecast a full cycle for patient 13. The lack of data and
lack of intermittent ADT cycles seems to cause the model’s forecast to deviate from patient
17’s actual data.

3.1.2 Comparison of Mean Squared Error and Weighted Exponential Error238

Mean squared error method is commonly used to minimize error in models across many239

scientific disciplines. The problem with using this method in our case, is that clinical data240

may not be very consistent, thus causing the data points to be a bit erratic. For example,241

Figure 3 shows a large gap in data between the first two points. By comparing the mean242

squared method to the weighted error that we employed, we can argue that a weighted error243

method may be superior, at least when using clinical data. Phan et al. uses weighted error244

in a similar clinical application using intermittent ADT [19]. By using weighted error in this245

application, we can verify prediction accuracy with the use of the drug Abiraterone.246
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Figure 3: PSA data and model fits and predictions for patients 13. The weighted error
method (left) has a significantly more accurate fit than the mean squared error method
(right).

A reason the mean squared fit may fluctuate in such a manner may be because it takes247

the average of all the data points into account when finding an expected value. In contrast,248

the weighted error puts far less weight on earlier data points. Notice that there are two data249

points (at roughly day 0 and day 1300) that deviate far from the other data points. Also,250

notice the relatively large gap between day 0 and the next data point. This large gap likely251

plays the greatest factor in the large fluctuations in the MSE method use on patient 13’s252

data.253

3.2 Sensitivity Results254

Analyzing the sensitivity of parameters can be beneficial for making connections to the255

biological causes of certain phenomena. Here, the vertical axis of figures 4 through 8 are the256

normalized sensitivity coefficients. We observed many differing sensitivity coefficients be-257

tween the parameters of patients 13 and 17. This is expected, because each of the patient’s258

data will have a unique fit. However, we observed similar sensitivity coefficients between259

patients 13 and 17. For example, both patients showcased that x2 had a positive sensitivity260

coefficient with respect to µ2. This is expected because a small positive change in CR cell261

populations would imply the expectation of CR cells to take over a hormonally failing patient262

[19].263

Parameters c, K, q2, and R2 were kept constant for both patients. Some noticeable264

agreed correlations between patient sensitivity coefficients are between Q and γ1, x2 and µ2,265

and x2 and δ2. Also, γ1 has a negative coefficient with respect to all of the variables in both266

figures.267
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From the sensitivity results, we show that patient 13’s x1 has a high positive relationship268

with µ1, and similarly x2 has a high positive relationship with µ2. A reason for this could be269

the effect that the proliferation rate of the castration-sensitive and castration-resistant sub-270

populations have on their respective cancer cells’ sub-population. This relationship makes271

biological sense, because the growth of these variables is contingent upon the rate of the272

cells’ reproduction.273

The following are comparisons between patient 13 (left) and patient 17 (right). Due to274

time constraints of the REU, these were the only two sensitivity analyses conducted.275

Figure 4: The castration-sensitive sub-populations (top) show consistent sensitivity across
two different patients. The castration-resistant sub-population (bottom) shows d2 to be more
sensitive in patient 13, than with patient 17. Patient 17’s sensitivity analysis shows m, γ1,
γ2 and α0 have very little sensitivity with respect to the castration-resistant sub-population,
x2.
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Figure 5: Intracellular androgen (top) displays consistent sensitivity of the parameters across
both patients 13 and 17. Serum androgen (middle) also displays consistent sensitivity of the
parameters across both patients 13 and 17. There are differing sensitivity of parameters
between patient 13 and patient 17’s PSA parameters (bottom).
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4 Discussion276

The focus of the implemented work was to extend the efforts of Phan et al. by applying277

the modified version of Baez and Kuang’s model, Model T, to a different set of clinical data278

and a different hormone, Aberiterone. We used the sensitivity analysis to find parameters279

unique to each patient to minimize error between PSA data and model T. Due to the sporadic280

nature of data reporting and/or data collecting, we had erratic data to work with. Not every281

patient’s data worked with the model because of the lack of cycles, lack of data points, large282

gaps between data points, or inconsistent data points. In fact, of the forty-one patients we283

obtained data for, only ten provided sufficient data to be used with the model. Specifically,284

the fit of the other patient’s datasets never captured the cyclic trend of intermittent ADT in285

metastasized PCa. However, the clinical data from the ten patients should permit valuable286

insight for potential clinical usage and future work. As for the concern of validating a reliable287

three to four month forecast, the fittings and forecasts of model T in Section 3.1 show that it288

is possible when enough data cycles are available to appropriately train the model to predict289

the cyclic nature of intermittent ADT. The patient figures of all ten forecasts have been290

added to appendix A291

We used an exponential weighted error which Phan et al. [19] found to be superior to292

mean square error in the application of intermittent ADT. We found this particular method293

for reducing error useful for modeling clinical data associated with intermittent ADT and294

Aberiterone. The weighted error approach controls the weight pre and post peak PSA295

levels and gives more recent data a higher weight. We show that weighing the later data296

points contribute to a better fit to the clinical data, and that the earlier data points do not297

necessarily contribute as much to the forecast, which is useful when updating the model298

with newly received data. This is not to say that the earlier data is not significant. Figure299

3 shows a direct comparison of mean squared versus weighted exponential, and provides300

valuable insight on the possibility of continuing the weighted error method for the fitting of301

clinical data in future work involving intermittent ADT.302

Intermittent ADT is cyclic, which means the model must incorporate the cyclic nature of303

intermittent ADT when making predictions. As mentioned before, we observed that at least304

2.5 cycles of patient data may be necessary before an accurate full-cycle prediction could305

be made. However, it is recommended that this be explored in future work. If this is the306

case, then a certain amount of therapy must have already been applied before this model307

could make a reasonably accurate full-cycle prediction for each specific patient, preventing308

full-cycle forecasts from being predicted prior to initial treatment. However, it should be309

noted that this model has been used previously with completely different hormones [19]. In310

other words, this application could contribute to future work in generality of intermittent311

ADT predictions for patients with advanced PCa.312

The outputs of varied patient parameters and error weights likely are a result of the313

uniqueness of each patient’s cancer dynamics. Our sensitivity analysis allowed us to reduce314

the dimension of the parameter space and increase identifiability, which resulted in unique315

fits for each patient. This is a significant factor in the context of precision medicine, a316
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key concept in patient-specific modeling and forecasting. In Figure 4, we noticed that γ1317

(primary androgen production rate) had a negative association with both x1 and x2. There318

is an underlying assumption that androgen is depleted as fast as it is produced. Androgen319

level goes down at rate γ1 when the patient is on treatment, and will go up at rate γ1 while320

the patient is off treatment. This is convenient to represent the depletion of androgen fol-321

lowing treatment. However, in fact, the correlation of γ1 depends on the time that we select322

to evaluate the sensitivity coefficient. If we pick a time during the off-treatment interval, the323

coefficient would be positive. The sensitivity results discussed in Section 3.2 provided some324

qualitative observations that may be a useful for future work.325
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