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Abstract

The analytical solution for the large deformation of a cantilever beam under a
point load, typically applied to the tip of the cantilever and perpendicularly to
its axis, has been widely studied and published. However, the more complex case
of two angled point loads applied to the cantilever has not been published. The
current research delved into the following scenario: an upright cantilever, e.g. a
pole, has point loads applied at two locations on the cantilever, where each point
load is angled, i.e. the point load has both a horizontal component (which may
result from wind loading) and downward vertical component of force (such as
from weights). The aim of the research is to develop a methodology for finding,
at the two locations where the point loads are applied, the angle of deflection,
the horizontal deflection, and the vertically deflected height. Ultimately, the
research yielded a methodology based on the Complete and Incomplete Elliptic
Integrals of the First Kind and Second Kind. The analytical solution developed
in this research - specifically the method for calculating the angles of deflections -
was compared against Finite Element Analysis and was found to produce nearly
identical results. We conclude that the methodology shown can be extended to
any number of point loads and will be a contribution to the field of non-linear
mechanics.
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Jennifer Lew

1. Introduction

The analytical solution to the large deformation of a cantilever beam under a tip load, i.e.
a point load or force applied to the tip of the cantilever, has been studied thoroughly, as
shown in [1] - [7]. Another popular topic of study is the large deformation of a cantilever
under a tip load and a distributed load, as shown in [8] - [12]. Indeed, even a master’s thesis
has been written on the subject of a cantilever beam under a single tip load, as in [13].
The current research examines a novel and more complex topic: the large deformation of a
cantilever due to two angled point loads. Specifically, the research proposes this problem: an
upright cantilever, e.g. a pole, has two angled point loads, meaning each point load has both
a horizontal and vertical component of force. See Figure 3, right image. The motivation for
the study is that solving the problem of two angled point loads (where the angles do not
have to be the same) provides a roadmap for solving the problem of any number of angled
point loads along the cantilever. The result of this work is that the analytical solution for
the proposed problem has been found: the work provides methodology that can be used to
calculate the cantilever horizontal deflection, vertical deflection, and tip angle at each angled
point load. This work is of interest to persons involved in the design and construction of
utility poles, transmission towers, cell towers, antennas, and any other pole-like structure
that has multiple horizontal loads (such as wind blowing on exposed surfaces) and vertical
loads (such as the weight of the structure or its attachments).

Here, we will briefly discuss two important developmental steps in non-linear mechanics
to see how the current work is novel. Before we do so, we will observe the following two
definitions: (1) non-angled: this means that, prior to cantilever deflection, the force is exactly
perpendicular to the length of the cantilever; (2) angled: this means that, prior to cantilever
deflection, the force is at some arbitrary angle to the length of the cantilever. One of the
earliest works exploring the deformation of a cantilever is [14] from Bisshopp and Drucker.
In this paper, the authors describe a solution for the deflection of a cantilever under one
non-angled point load at the tip of the cantilever. Another well-known work is [15] from
Frisch-Fay. The author describes a solution for the deflection of a cantilever under two or
more angled point loads as long as all of the loads are parallel to each other. By using
parallel loads, the author was able to provide a simplified approach utilizing the principle of
elastic similarity. In the current work, we provide essentially the general solution for solving
the deflection of a cantilever under an arbitrary loading condition. This general solution is
not provided in [14] or [15]. The solution in the current work can be extended to any number
of loads, with each load able to have an arbitrary and different angle.

2. Large Deformation using One Prismatic Element

We first consider a pole with a tip load, where the tip load is comprised of both a horizontal
force PT and a vertical force PV . The pole is treated as a single prismatic element of length
L. This scenario is shown in Figure 1 below. We will determine, at the pole tip, the angle
of deflection φo, the horizontal deflection δx, and the vertically deflected height L− δy.
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2.1 Angle of Deflection at the Element Tip Jennifer Lew

Figure 1: (a) Prismatic pole with a horizontal (or transverse) load and a vertical load, prior to deflection.

(b) The pole after deflection. (c) The arc length s and the angle of deflection φ. Note that the angle of

deflection at the pole tip is denoted as φo. (d) Here, we show a small, approximately straight-line segment.

2.1. Angle of Deflection at the Element Tip

As a first step toward determining a pole’s vertical and horizontal deflection, let us calculate
φo. We define E as the pole’s elasticity and I as the pole’s moment of inertia (or second
moment of area). Bernoulli-Euler beam theory gives the following relationship between a
beam’s curvature, dφ/ds, and its bending moment, M .

M = EI · dφ
ds

(1)

To work with differentials, let us differentiate both sides of (1) with respect to s, as follows:

dM

ds
= EI · d

2φ

ds2
(2)

The bending moment at any location (x,y) along the pole is:

M(s) = PT · (L− δy − y) + PV · (δx − x) (3)

Differentiating both sides of (3) gives:

dM

ds
= PT ·

(
d

ds
L− d

ds
δy −

dy

ds

)
+ PV ·

(
d

ds
δx −

dx

ds

)
(4)

By examining Figure 1(d) we can obtain the following two relationships:

dx

ds
= sinφ (5)

dy

ds
= cosφ (6)

Substituting (5) and (6) into (4), we obtain:

dM

ds
= −PT · cosφ− PV · sinφ (7)
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2.1 Angle of Deflection at the Element Tip Jennifer Lew

Substituting (7) into (2), we obtain:

EI · d
2φ

ds2
+ PT · cosφ+ PV · sinφ = 0 (8)

Multiply both sides of (8) by dφ/ds to obtain:

EI · d
2φ

ds2
· dφ
ds

+ PT · cosφ · dφ
ds

+ PV · sinφ ·
dφ

ds
= 0 (9)

We can rewrite this as follows:

d

ds

[
1

2
· EI ·

(
dφ

ds

)2

+ PT · sinφ− PV · cosφ

]
= 0 (10)

From which we obtain:

1

2
· EI ·

(
dφ

ds

)2

+ PT · sinφ− PV · cosφ = C (11)

In order to determine the constant C, we use the condition that when (φ,s) = (φo,L), it
follows that dφ/ds = 0. This indicates that at the tip of the beam, the curvature is 0, i.e.
the radius of curvature is infinity because if we were to extend the tip of the beam, that
extension would continue in a straight line. Applying our condition, we can find our constant
as:

C = PT · sinφo − PV · cosφo (12)

We substitute (12) into (11) and solve for ds:

ds =

√
EI

2
· dφ√

PT · sinφo − PT · sinφ− PV · cosφo + PV · cosφ
(13)

By performing a summation of sinusoids in the denominator of the second factor, (13) can
be simplified as follows:

ds =

√
EI

2
· dφ√

PR · sin(φo + β)− PR · sin(φ+ β)
(14)

where

PR =
√
PT

2 + PV
2 (15)

β = arcsin

(
−PV√

PT
2 + PV

2

)
(16)

We can integrate both sides of (14) along the entire length of the pole, starting from the
base where φ = 0 to the pole tip, where φ = φo.

L =

√
EI

2
·
∫ φo

0

dφ√
PR · sin(φo + β)− PR · sin(φ+ β)

(17)
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2.1 Angle of Deflection at the Element Tip Jennifer Lew

If we further define a value α as:

α =
PR · L2

EI
(18)

then (17) can be rewritten as:

√
α =

∫ φo

0

1√
2
· dφ√

sin(φo + β)− sin(φ+ β)
(19)

As it stands, (19) is not integrable and has no known function approximation. However, it
can be simplified into an elliptic integral which does have a function approximation. The
following equations will show, step by step, how to perform the needed manipulations. First,
in (19), we multiply the numerator and denominator of the integrand by a cosine value:

√
α =

∫ φo

0

1√
2
· cos (φ+ β) · dφ√

1− sin2(φ+ β) ·
√

sin(φo + β)− sin(φ+ β)
(20)

The first term in the denominator of (20) can be factorized, and then the integrand rear-
ranged, as follows:

√
α =

∫ φo

0

1√
2
· 1√

1 + sin(φ+ β) ·
√

sin(φo + β)− sin(φ+ β)

· cos(φ+ β) · dφ√
1− sin(φ+ β)

(21)

In (21), we multiply both the numerator and denominator of the integrand by the same sine
value:

√
α =

∫ φo

0

1√
2
· 1 + sin(φo + β)√

1 + sin(φ+ β) ·
√

sin(φo + β)− sin(φ+ β)

· cos(φ+ β) · dφ
[1 + sin(φo + β)] ·

√
1− sin(φ+ β)

(22)

Now here is where we do a substitution. Let the following be true:

sinψ =

√
1 + sin(φ+ β)

1 + sin(φo + β)
(23)

By using a sine identity, (23) also yields:

cosψ =

√
sin(φo + β)− sin(φ+ β)

1 + sin(φo + β)
(24)

Using both (23) and (24), we can also write:

sin 2ψ = 2 ·
√

1 + sin(φ+ β) ·
√

sin(φo + β)− sin(φ+ β)

1 + sin(φo + β)
(25)
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2.1 Angle of Deflection at the Element Tip Jennifer Lew

Squaring both sides of (23) gives:

sin2 ψ =
1 + sin(φ+ β)

1 + sin(φo + β)
(26)

Taking the derivative of both sides of (26) gives:

sin 2ψdψ =
cos(φ+ β)

1 + sin(φo + β)
· dφ (27)

Substituting (25) and (27) into (22) and simplifying, we get:

√
α =

∫ φo

0

√
2 · dψ√

1− sin(φ+ β)

=

∫ φo

0

dψ√
1− 1+sin(φ+β)

2

(28)

Note that we have not yet changed the limits of integration. We will wait until we make a
second substitution. At this point, we invent a value k such that the following be true:

k2 · sin2 ψ =
1 + sin(φ+ β)

2
(29)

Substitute (29) into (28) to obtain:

√
α =

∫ φ=φo

φ=0

dψ√
1− k2 · sin2

(30)

Now we can change the limits of integration. Substituting φ = φo into (26) and solving for
ψ, the upper limit of integration becomes:

ψ(φ = φo) = arcsin

√
1 + sin(φo + β)

1 + sin(φo + β)

=
π

2
(31)

Substituting φ = 0 into (29) and solving for ψ, the lower limit of integration becomes:

ψ(φ = 0) = ψo = arcsin

(
1√
2 · k

·
√

1 + sin β

)
(32)

We can rewrite (30) as:
√
α =

∫ π
2

ψo

dψ√
1− k2 · sin2

(33)

Here let us make a quick note about k - it is some constant whose value is unknown (we will
explain how to deal with this later). However, we are able to determine a range of possible
values for k. By substituting (26) into (29) and solving for k, we find:

k =
1√
2
·
√

1 + sin(φo + β) (34)
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2.2 Horizontal Deflection at the Pole Tip Jennifer Lew

Since we have 0 ≤ sin(φo + β) ≤ 1 we deduce that
√

2/2 ≤ k ≤ 1. Now, we observe that
(33) can be rewritten as follows:

√
α =

∫ π
2

0

dψ√
1− k2 · sin2

−
∫ ψo

0

dψ√
1− k2 · sin2

(35)

We note that in (35) the first term is the Complete Elliptic Integral of the First Kind, and
the second term is the Incomplete Elliptic Integral of the First Kind. With this in mind, we
can rewrite (35) as:

√
α = Fn

(π
2
, k, 0

)
− Fn (ψo, k, 0) (36)

where:

Fn

(π
2
, k, 0

)
=

π

2(2n+ 1)
·

1 + 2 ·
n∑

m=1

(
1−

[
k · sin

(
mπ

2n+ 1

)]2)−1/2
 (37)

Fn (ψo, k, 0) =
1

2n+ 1
·

ψo + 2 ·
n∑

m=1

(
1−

[
k · sin

(
mπ

2n+ 1

)]2)−1/2

· arctan

{
tanψo ·

(
1−

[
k · sin

(
mπ

2n+ 1

)]2)1/2} (38)

The variable n is the number of terms that you want to expand each elliptic integral. Typi-
cally, n = 10 or even less will yield sufficient accuracy. Recall that our goal was to find φo.
The process is as follows: 1) Guess k until (36) is true, 2) Solve (34) for φo.

2.2. Horizontal Deflection at the Pole Tip

After finding φo we can determine the horizontal deflection δx at the pole tip. To find δx,
we substitute (14) into (5), solve for dx, and then integrate both sides from φ = to φ = φo
to obtain:

δx =

√
EI

2
·
∫ φo

0

sinφ · dφ√
PR · sin(φo + β)− PR · sin(φ+ β)

(39)

As it stands, (39) is not integrable and only numerical methods can be used. However,
elliptic integrals will once again provide us with a simplified alternative. We define a value
αx as:

αx =
PR · δx2

EI
(40)

Substituting (40) into (39) will yield:

√
αx =

∫ φo

0

1√
2
· sinφ · dφ√

sin(φo + β)− sin(φ+ β)
(41)
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2.2 Horizontal Deflection at the Pole Tip Jennifer Lew

By using the same substitutions as in (23) and (29), we can arrive at an equation that is
analogous to (33):

√
αx =

∫ π
2

ψo

sinφ · dψ√
1− k2 · sin2

(42)

It is obvious that we must find a way to represent the sinφ term in the numerator as some
function of ψ. To this end, we can take (29) and solve for φ:

φ = arcsin(2k2 · sin2 ψ − 1)− β (43)

If we take the sine of both sides of (43) and expand, we get:

sinφ = (2k2 · sin2 ψ − 1) · cos β − sin β · 2k · sinψ ·
√

1− k2 · sin2 (44)

Substitute (44) into (42):

√
αx = cos β ·

∫ π
2

ψo

2k2 sin2 ψ − 1√
1− k2 sin2

· dψ − 2k sin β ·
∫ π

2

ψo

sinψdψ

= cos β ·
∫ π

2

ψo

−2(1− k2 sin2 ψ) + 1√
1− k2 sin2

· dψ + 2k sin β · cosψ
∣∣∣π/2
ψo

= −2 cos β ·
∫ π

2

ψo

√
1− k2 sin2 ψ · dψ + cos β ·

∫ π
2

ψo

1√
1− k2 sin2

· dψ

+ 2k sin β · (0− cosψo) (45)

As we did with (35), we can rewrite the first term of (45) as the difference of the Complete
and Incomplete Elliptic Integrals of the Second Kind, and the second term as the difference
of the Complete and Incomplete Elliptic Integral of the First Kind:

√
αx = −2 cos β ·

[
En

(π
2
, k
)
− En (ψo, k)

]
+ cos β ·

[
Fn

(π
2
, k, 0

)
− Fn (ψo, k, 0)

]
− 2k sin β cosψo (46)

where:

En

(π
2
, k
)

=
π

2
·

[
(2n+ 1)− 2 · (2n+ 1)−1 ·

n∑
m=1

tan2 θm
ρm

]
(47)

En (ψo, k) = (2n+ 1) · ψo − 2 · (2n+ 1)−1 ·
n∑

m=1

tan2 θm · arctan (ρm · tanψo)

ρm
(48)

θm =
mπ

2n+ 1
(49)

ρm =
√

1− k2 · cos2 θm (50)

From our prior efforts in solving for φo we would have already found β, k, and ψo, as well
as the difference of the Complete and Incomplete Elliptic Integrals of the First Kind. After
solving (46) for αx, we can substitute this value into (40) to find δx.
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2.3 Vertically Deflected Height at the Pole Tip Jennifer Lew

2.3. Vertically Deflected Height at the Pole Tip

Similarly, to find L − δy (and δy), substitute (14) into (6), solve for dy, and then integrate
both sides from φ = to φ = φo to obtain:

L− δy =

√
EI

2
·
∫ φo

0

cosφ · dφ√
PR · sin(φo + β)− PR · sin(φ+ β)

(51)

As it stands, (51) is not integrable. However, elliptic integrals can be used to obtain a
simplified alternative. We define a value αy as:

αy =
PR · (L− δy)2

EI
(52)

Substituting (52) into (51) will yield:

√
αy =

∫ φo

0

1√
2
· cosφ · dφ√

sin(φo + β)− sin(φ+ β)
(53)

By using the same substitutions as in (23) and (29), we can arrive at an equation that is
analogous to (33):

√
αy =

∫ π
2

ψo

cosφ · dψ√
1− k2 · sin2

(54)

It is obvious that we must find a way to represent the cosφ term in the numerator as some
function of ψ. To this end, we can take the cosine of both sides of (43), expand, and obtain:

cosφ = (2k2 · sin2 ψ − 1) · sin β + 2k · sinψ ·
√

1− k2 sin2 ψ · cos β (55)

Substitute (55) into (54):

√
αy = sin β ·

∫ π
2

ψo

2k2 sin2 ψ − 1√
1− k2 sin2

· dψ + 2k cos β ·
∫ π

2

ψo

sinψdψ

= sin β ·
∫ π

2

ψo

−2(1− k2 sin2 ψ) + 1√
1− k2 sin2

· dψ − 2k cos β · cosψ
∣∣∣π/2
ψo

= −2 sin β ·
∫ π

2

ψo

√
1− k2 sin2 ψ · dψ + sin β ·

∫ π
2

ψo

1√
1− k2 sin2

· dψ

− 2k cos β · (0− cosψo) (56)

As we did with (35), we can rewrite the first term of (56) as the difference of the Complete
and Incomplete Elliptic Integrals of the Second Kind, and the second term as the difference
of the Complete and Incomplete Elliptic Integral of the First Kind:

√
αy = −2 sin β ·

[
En

(π
2
, k
)
− En (ψo, k)

]
+ sin β ·

[
Fn

(π
2
, k, 0

)
− Fn (ψo, k, 0)

]
+ 2k cos β cosψo (57)

where every variable and term is already known from our previous efforts at finding ψo and
the horizontal deflection. After solving (57) for αy, we can substitute this value into (52) to
find L− δy, from which we can also obtain the vertical deflection δy.
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3. Large Deformation using Two Prismatic Elements

We now consider a pole with point loads at two locations, as shown on the right side of
Figure 3: at some Point 1, a horizontal force P1,T and a vertical force P1,V is applied; at
some Point 2, a horizontal force P2,T and a vertical force P2,V is applied. The pole is treated
as two prismatic elements: the length L1 between the base and Point 1 is considered the
first element (“Segment 1”); the length L2 between Point 1 and Point 2 is considered the
second element (“Segment 2”). At Point 1, we will determine the angle of deflection φ1, the
horizontal deflection δx1, and the vertically deflected height a; at Point 2, we will determine
the angle of deflection φ2, the horizontal deflection δx2 (which is with deflection with respect
to Point 1), and the vertically deflected height b (which results from the downward deflection
of the second element only and is independent of any bending in the first element).

3.1. Angles of Deflection at the Element Tips

We first focus on Segment 2, which appears as a pole with one load. Therefore, we can apply
(26) and (29) to Segment 2 as follows:

sin2 ψ =
1 + sin(φ+ β2)

1 + sin(φ2 + β2)
(58)

k22 · sin2 ψ =
1 + sin(φ+ β2)

2
(59)

where, like (16), we can express β2 as:

β2 = arcsin

 −P2,V√
P2,T

2 + P2,V
2

 (60)

By substituting (59) into (58) and solving, we get:

sin(φ2 + β2) = 2 · k22 − 1 (61)

Finally:

L2 =

√
EI2
P2,R

·
[
Fn

(π
2
, k2, 0

)
− Fn

(
ψ2|φ=φ1 , k2, 0

)]
(62)

where

P2,R =
√
P2,T

2 + P2,V
2 (63)

and

ψ2|φ=φ1 = arcsin

(
1

k2
·
√

1 + sin(φ1 + β2)

2

)
(64)

The moment anywhere along Segment 1 can be computed:

M(s) = P2,T · (a+ b− y) + P1,T · (a− y) + P2,V · (δx1 + δx2 − x) + P1,V · (δx1 − x) (65)
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3.1 Angles of Deflection at the Element Tips Jennifer Lew

Differentiate both sides of (65) with respect to s to obtain:

dM

ds
= −(P2,T + P1,T ) · dy

ds
− (P2,V + P1,V ) · dx

ds
= −(P2,T + P1,T ) · cosφ− (P2,V + P1,V ) · sinφ (66)

Substitute (66) into (2) to get:

EI1 ·
d2φ

ds2
+ (P2,T + P1,T ) · cosφ+ (P2,V + P1,V ) · sinφ = 0 (67)

After multiplying both sides of (67) by dφ/ds, we can rewrite the equation as follows:

d

ds

[
1

2
· EI1 ·

(
dφ

ds

)2

+ (P2,T + P1,T ) · sinφ− (P2,V + P1,V ) · cosφ

]
= 0 (68)

From here, we can define the differentiation constant C as:

C =
1

2
· EI1 ·

(
dφ

ds

)2

+ (P2,T + P1,T ) · sinφ− (P2,V + P1,V ) · cosφ (69)

To solve for C, we consider (14), and derive a similar equation:

dφ

ds
=

√
2

EI2
·
√
P2,R · sin(φ2 + β2)− P2,R · sin(φ+ β2) for φ1 ≤ φ ≤ φ2 (70)

Substitute φ = φ1 and dφ/ds = dφ/ds|φ=φ1 into (69) and solving, we find that the constant
C is:

C = P2,R · sin(φ2 + β2) + P1,R · sin(φ1 + β1) (71)

where P1,R and β1 is given by:

P1,R =
√
P1,T

2 + P1,V
2 (72)

β1 = arcsin

 −P1,V√
P1,T

2 + P1,V
2

 (73)

Substitute the value for C back into the equation and solving, we obtain:

dφ

ds
=

√
2

EI1
·
√
P2,R · sin(φ2 + β2) + P1,R · sin(φ1 + β1)− P2,R · sin(φ+ β2)− P1,R · sin(φ+ β1)

(74)
Using trigonometric manipulation, the latter two terms can be rewritten as:

P2,R · sin(φ+ β2) + P1,R · sin(φ+ β1) = A · sin
(
φ− π

2
− θ
)

(75)
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3.1 Angles of Deflection at the Element Tips Jennifer Lew

where

A =
√
P2,R

2 + P1,R
2 + 2 · P2,R · P1,R · cos(β2 − β1) (76)

θ = arctan

(
P2,R · cos β2 + P1,R · cos β1
P2,R · sin β2 + P1,R · sin β1

)
(77)

We can now manipulate (74) to include A:

dφ

ds
=

√
2 · A
EI1

·
√
P2,R

A
· sin(φ2 + β2) +

P1,R

A
· sin(φ1 + β1)− sin

(
φ− π

2
− θ
)

(78)

Now we find L1 by solving (78) for ds and then integrating ds from 0 to φ1:

L1 =

∫ φ1

0

ds

=

√
EI1
2 · A

·
∫ φ1

0

dφ√
P2,R

A
· sin(φ2 + β2) +

P1,R

A
· sin(φ1 + β1)− sin

(
φ− π

2
− θ
) (79)

So we let:

sin2 ψ =
1 + sin

(
φ− π

2
− θ
)

1 +
P2,R

A
· sin(φ2 + β2) +

P1,R

A
· sin(φ1 + β1)

(80)

Solving (80), we get:

P2,R

A
· sin(φ2 + β2) +

P1,R

A
· sin(φ1 + β1) =

1 + sin
(
φ− π

2
− θ
)

sin2 − 1 (81)

Substituting into (81) into (79) and rearranging, we get:

L1 =

√
EI1
2 · A

·
∫ φ1

0

sinψ · dφ√[
1 + sin

(
φ− π

2
− θ
)]
·
(
1− sin2

) (82)

Let:

k1
2 · sin2 =

1 + sin
(
φ− π

2
− θ
)

2
(83)

Solving (83) gives us:

sin
(
φ− π

2
− θ
)

= 2 · k12 · sin2 ψ − 1 (84)

Substituting (84) into (81) gives:

P2,R

A
· sin(φ2 + β2) +

P1,R

A
· sin(φ1 + β1) = 2 · k12 − 1 (85)
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3.1 Angles of Deflection at the Element Tips Jennifer Lew

Substituting (61) into (85) gives a governing equation:

P2,R

A
· (2k22 − 1) +

P1,R

A
· sin(φ1 + β1) = 2 · k12 − 1 (86)

Additionally, by applying the Pythagorean Theorem to (84), we get:

cos
(
φ− π

2
− θ
)

= 2 · k1 · sinψ ·
√

1− k12 · sin2 (87)

Differentiating both sides of (87) gives:

cos
(
φ− π

2
− θ
)
· dφ = 2 · k12 · 2 · sinψ · cosψ · dψ

dφ =
2 · k1 · cosψ · dψ√

1− k12 · sin2
(88)

Substituting into the equation for L1, we get:

L1 =

√
EI1
A
·
∫ φ1

0

dψ√
1− k12 · sin2

(89)

Now we need to change the limits of integration. Substituting φ = φ1 into (84) and solving
for ψ, the upper limit of integration becomes:

ψ1|φ=φ1 = arcsin

[
1√

2 · k1
·
√

1 + sin
(
φ1 −

π

2
− θ
)]

(90)

Substituting φ = 0 into (84) and solving for ψ, the lower limit of integration becomes:

ψ1|φ=0 = arcsin

[
1√

2 · k1
·
√

1 + sin
(
−π

2
− θ
)]

(91)

So, we can rewrite (89) as:

L1 =

√
EI1
A
·

[∫ ψ1(φ=φ1)

0

dψ√
1− k12 · sin2

−
∫ ψ1(φ=0)

0

dψ√
1− k12 · sin2

]

=

√
EI1
A
· [Fn (ψ1(φ = φ1), k1, 0)− Fn (ψ1(φ = 0), k1, 0)] (92)

To solve for the tip angles φ1 and φ2, we follow this process: 1) Guess a value for φ1, 2)
Adjust k1 until (92) is true, 3) Adjust k2 until (62) is true, 4) Verify to see if (86) holds true.
If (86) does not hold true, then a new guess for φ1 will be required.
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3.2 Solving for δx1, the Horizontal Deflection of Segment 1 Jennifer Lew

3.2. Solving for δx1, the Horizontal Deflection of Segment 1

We know dx/ds = sinφ and (79). Solve for ds, substitute into dx/ds, and solve for dx:

dx = ds · sinφ

=
sinφ · dφ√

2A

EI1
·
√
P2,R

A
· sin(φ2 + β2) +

P1,R

A
· sin(φ1 + β1)− sin

(
φ− π

2
− θ
) (93)

Now integrating from φ = 0 to φ = φ1 to get:

δx1 =

√
EI1
2A
·
∫ φ1

0

sinφ · dφ√
P2,R

A
· sin(φ2 + β2) +

P1,R

A
· sin(φ1 + β1)− sin

(
φ− π

2
− θ
) (94)

Perform the same substitutions as before to get into the elliptic integral format:

δx1 =

√
EI1
A
·
∫ ψ1(φ=φ1)

ψ1(φ=0)

sinφ · dψ√
1− k12 · sin2

(95)

To express sinφ in terms of ψ, we take (84) and solve for φ:

sin
(
φ− π

2
− θ
)

= 2 · k12 · sin2 − 1

φ− π

2
− θ = arcsin

(
2 · k12 · sin2 − 1

)
φ = arcsin

(
2 · k12 · sin2 − 1

)
+
π

2
+ θ (96)

Taking the sine of both sides will yield:

sinφ = sin
[
arcsin

(
2 · k12 · sin2 − 1

)
+
(π

2
+ θ
)]

=
(
2 · k12 · sin2 − 1

)
· cos

(π
2

+ θ
)

+ cos
[
arcsin

(
2 · k12 · sin2 − 1

)]
· sin

(π
2

+ θ
)

=
(
2 · k12 · sin2 − 1

)
· cos

(π
2

+ θ
)

+ 2 · k1 · sinψ ·
√

1− k12 · sin2 ψ · sin
(π

2
+ θ
)
(97)
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Now, substituting back into our equation for δx1 we get:

δx1 =

√
EI1
A
·
∫ ψ1(φ=φ1)

ψ1(φ=0)

(
2 · k12 · sin2 − 1

)
· cos

(π
2

+ θ
)
· dψ√

1− k12 · sin2

+

√
EI1
A
·
∫ ψ1(φ=φ1)

ψ1(φ=0)

2 · k1 · sinψ · sin
(π

2
+ θ
)
· dψ

=

√
EI1
A
· cos

(π
2

+ θ
)
·
∫ ψ1(φ=φ1)

ψ1(φ=0)

−2 ·
(
1− k12 · sin2

)
+ 1√

1− k12 · sin2
· dψ

−
√
EI1
A
· sin

(π
2

+ θ
)
· 2 · k1 · cosψ

∣∣∣ψ1(φ=φ1)

ψ1(φ=0)

= −2 ·
√
EI1
A
· cos

(π
2

+ θ
)
·
∫ ψ1(φ=φ1)

ψ1(φ=0)

√
1− k12 · sin2 ψ · dψ

+

√
EI1
A
· cos

(π
2

+ θ
)
·
∫ ψ1(φ=φ1)

ψ1(φ=0)

dψ√
1− k12 · sin2

−
√
EI1
A
· sin

(π
2

+ θ
)
· 2 · k1 ·

[
cos
(
ψ1(φ = φ1)

)
− cos

(
ψ1(φ = 0)

)]
= −2 ·

√
EI1
A
· cos

(π
2

+ θ
)
·
[
En
(
ψ1(φ = φ1), k1

)
− En

(
ψ1(φ = 0), k1

)]
+

√
EI1
A
· cos

(π
2

+ θ
)
·
[
Fn
(
ψ1(φ = φ1), k1, 0

)
− Fn

(
ψ1(φ = 0), k1, 0

)]
−
√
EI1
A
· sin

(π
2

+ θ
)
· 2 · k1 ·

[
cos
(
ψ1(φ = φ1)

)
− cos

(
ψ1(φ = 0)

)]
(98)

3.3. Solving for a, the Vertically Deflected Height of Segment 1

We know dy/ds = cosφ and (79). Solving for dy, integrating from φ = 0 to φ = φ1, and
performing substitutions, we get:

a =

√
EI1
A
·
∫ ψ1(φ=φ1)

ψ1(φ=0)

cosφ · dψ√
1− k12 · sin2

(99)

Now we express cosφ in terms of ψ:

cosφ = cos
[
arcsin(2 · k12 · sin2 ψ − 1) +

(π
2

+ θ
)]

= cos
[
arcsin(2 · k12 · sin2 ψ − 1)

]
· cos

(π
2

+ θ
)
− (2 · k12 · sin2 − 1) · sin

(π
2

+ θ
)

= 2 · k1 · sinψ ·
√

1− k12 · sin2 ψ · cos
(π

2
+ θ
)
− (2 · k12 · sin2 − 1) · sin

(π
2

+ θ
)

(100)
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Substituting back into the equation for a, we get:

a =

√
EI1
A
·
∫ ψ1(φ=φ1)

ψ1(φ=0)

2 · k1 · sinψ · dψ · cos
(π

2
+ θ
)

−
√
EI1
A
·
∫ ψ1(φ=φ1)

ψ1(φ=0)

−2 · (1− k12 · sin2 ψ) + 1√
1− k12 · sin2

· dψ · sin
(π

2
+ θ
)

=

√
EI1
A
· cos

(π
2

+ θ
)
· 2k1 · (− cosψ)

∣∣∣ψ1(φ=φ1)

ψ1(φ=0)

−
√
EI1
A
· sin

(π
2

+ θ
)
· (−2) ·

∫ ψ1(φ=φ1)

ψ1(φ=0)

√
1− k12 · sin2 ψ · dψ

−
√
EI1
A
· sin

(π
2

+ θ
)
·
∫ ψ1(φ=φ1)

ψ1(φ=0)

1√
1− k12 · sin2

· dψ

= −
√
EI1
A
· cos

(π
2

+ θ
)
· 2k1 ·

[
cos
(
ψ1(φ = φ1)

)
− cos

(
ψ1(φ = 0)

)]
+ 2 ·

√
EI1
A
· sin

(π
2

+ θ
)
·
[
En
(
ψ1(φ = φ1), k1

)
− En

(
ψ1(φ = 0), k1

)]
−
√
EI1
A
· sin

(π
2

+ θ
)
·
[
Fn
(
ψ1(φ = φ1), k1, 0

)
− Fn

(
ψ1(φ = 0), k1, 0

)]
(101)

3.4. Solving for δx2, the Horizontal Deflection of Segment 2

Based on the results of the single load case, we can write:

δx2 = −

√
EI

P2,R

· 2 cos β2 ·
[
En

(π
2
, k2

)
− En

(
ψ2(φ = φ1), k2

)]
+

√
EI

P2,R

· cos β2 ·
[
Fn

(π
2
, k2, 0

)
− Fn

(
ψ2(φ = φ1), k2, 0

)]
−

√
EI

P2,R

· 2k2 · sin β2 · cos
(
ψ2(φ = φ1)

)
(102)
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3.5. Solving for b, the Vertically Deflected Height of Segment 2

Based on the results of the single load case, we can write:

b = −

√
EI

P2,R

· 2 sin β2 ·
[
En

(π
2
, k2

)
− En

(
ψ2(φ = φ1), k2

)]
+

√
EI

P2,R

· sin β2 ·
[
Fn

(π
2
, k2, 0

)
− Fn

(
ψ2(φ = φ1), k2, 0

)]
+

√
EI

P2,R

· 2k2 · cos β2 · cos
(
ψ2(φ = φ1)

)
(103)

4. Validation: Comparing the Analytical Solution to FEA

As a validation step, we will compare the deflection angles calculated from the Analytical
Solution to those calculated from Finite Element Analysis (FEA). We first approach the 1-
element case shown in Figure 2, the results of which are given in Table 1. We then approach
the 2-element case shown in Figure 3, the results of which are given in Table 2. In all cases,
the tip angles calculated from the Analytical Solution are nearly identical to the same values
calculated using FEA.

Figure 2: Loading conditions in validation cases set 1.
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Table 1: 1-element Polea with a Tip Loadb: Analytical Solution versus FEA

Validation Cases Set 1 FEA Analytical

Point Load 1 φ1 φ1 k

PT1 = 3.92, PV 1 = 0 36.34◦ 36.10◦ 0.89139

PT1 = 3.92, PV 1 = 0.2 37.15◦ 36.91◦ 0.88291

PT1 = 3.92, PV 1 = 0.4 38.00◦ 37.76◦ 0.87433

PT1 = 3.92, PV 1 = 1 40.71◦ 40.49◦ 0.84887

PT1 = 3.92, PV 1 = 2 45.87◦ 45.71◦ 0.81249

PT1 = 3.92, PV 1 = 3 51.87◦ 51.80◦ 0.79002

PT1 = 3.92, PV 1 = 3.92 58.09◦ 58.12◦ 0.78329

PT1 = 3.92, PV 1 = 6 73.91◦ 74.07◦ 0.80504

PT1 = 3.92, PV 1 = 8 89.37◦ 89.43◦ 0.84589

PT1 = 3.92, PV 1 = 9 96.53◦ 96.49◦ 0.86612
aThe pole has length of L = 0.3 m and flexural rigidity EI = 0.24.
bAll point loads are in Newtons.

Figure 3: Loading conditions in validation cases set 2.
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Table 2: 2-element Polea with 2 Tip Loadsb: Analytical Solution versus FEA

Validation Cases Set 2 FEA Analytical

Point Load 2 Point Load 1 φ2 φ1 φ2 φ1 k2 k1

FT2 = 3.92, FV 2 = 0 FT1 = 3.92, FV 1 = 0 43.09◦ 35.19◦ 42.80◦ 34.89◦ 0.91628 0.90174

FT2 = 3, FV 2 = 0 FT1 = 3, FV 1 = 0 35.35◦ 28.66◦ 35.11◦ 28.42◦ 0.88742 0.87328

FT2 = 2, FV 2 = 0 FT1 = 2, FV 1 = 0 25.18◦ 20.28◦ 25.13◦ 20.22◦ 0.84394 0.83220

FT2 = 1, FV 2 = 0 FT1 = 1, FV 1 = 0 13.20◦ 10.58◦ 13.20◦ 10.58◦ 0.78370 0.77644

FT2 = 2, FV 2 = 0 FT1 = 1, FV 1 = 0 22.89◦ 17.90◦ 22.80◦ 17.82◦ 0.83294 0.82368

FT2 = 2, FV 2 = 2 FT1 = 2, FV 1 = 2 35.84◦ 28.38◦ 36.24◦ 28.76◦ 0.65106 0.62624

FT2 = 4, FV 2 = 2 FT1 = 2, FV 1 = 2 52.36◦ 41.33◦ 52.29◦ 41.31◦ 0.84676 0.78858

FT2 = 5, FV 2 = 1 FT1 = 2, FV 1 = 2 52.61◦ 41.95◦ 52.36◦ 41.77◦ 0.91016 0.84248

FT2 = 1, FV 2 = 5 FT1 = 2, FV 1 = 2 48.88◦ 37.34◦ 50.96◦ 39.08◦ 0.51706 0.56990
aSegments 1 and 2 have length of L1 = L2 = 0.15 m and flexural rigidity EI = 0.24.
bAll point loads are in Newtons.

5. Conclusion

The research has presented a methodology for analyzing the large deformation of a cantilever,
e.g. a pole, with point loads at two points along the cantilever (and where each point load is
allowed to have both a horizontal and a vertical component of force). The research is novel
because the analytical solution for more than one tip load along a cantilever has not been
published. It is hoped that the methodology contained herein will be of benefit to the field
of non-linear mechanics.
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