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Abstract. Quadratization is a transform of a system of ODEs with polynomial right-hand side into a
system of ODEs with at most quadratic right-hand side via the introduction of new variables. It has been
recently used as a preprocessing step for new model order reduction methods, so it is important to keep the
number of new variables small. Several algorithms have been designed to search for a quadratization with
the new variables being monomials in the original variables. To understand the limitations and potential
ways of improving such algorithms, we study the following question: can quadratizations with not necessarily
new monomial variables produce a model of substantially smaller dimension than quadratization with only
new monomial variables?

To do this, we restrict our attention to scalar polynomial ODEs. Our first result is that a scalar polynomial
ODE ẋ = p(x) = anxn + an−1xn−1 + . . .+ a0 with n > 5 and an 6= 0 can be quadratized using exactly one
new variable if and only if p(x− an−1

n·an
) = anxn + ax2 + bx for some a, b ∈ C. In fact, the new variable can

be taken as z := (x+
an−1

n·an
)n−1. Our second result is that two new non-monomial variables are enough to

quadratize all degree 6 scalar polynomial ODEs. Based on these results, we observe that a quadratization
with not necessarily new monomial variables can be much smaller than a monomial quadratization even for
scalar ODEs.

The main results of the paper have been discovered using computational methods of applied nonlinear
algebra (Gröbner bases), and we describe these computations.
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1. Introduction

Model order reduction of non-linear dynamical systems is an important tool in applied mathematics.
The goal of reducing dynamical systems is to make them easier to analyze. In this paper, we investigate
quadratization, a technique used as a preprocessing step to some recent model order reduction methods.

Quadratization is a transformation of a system of ordinary differential equations (ODEs) with polynomial
right-hand side into a system with at most quadratic right-hand side via the introduction of new variables.
While quadratization does indeed lift up the dimension of a system, there are more powerful model order
reduction methods for ODEs with at most quadratic right-hand side that produce better reductions than
general methods [4, 7]. In essence, quadratization lifts up the dimension of a system for it be pulled down
by dedicated model order reduction methods.

We illustrate quadratization using the following simple scalar polynomial ODE:

(1.1) ẋ = x10

The right-hand side has degree greater than two, but by introducing z := x9, we can write:

(1.2)

{
ẋ = zx

ż = 9x8ẋ = 9x18 = 9z2

In (1.2), the right-hand side of ẋ and ż are at most quadratic. Furthermore, every solution of (1.1) yields
a solution of (1.2). We say that the order of a quadratization is the number of new variables introduced.
Thus, this quadratization has order 1.

In (1.2), our new variable z is a monomial in x. Thus, we call this a monomial quadratization. On the other
hand, if one of our new variables has non-monomial right-hand side, we will refer to this as non-monomial
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quadratization. Several algorithms have been developed to find monomial quadratizations of ODEs and
ODE systems [1, 2, 6]. An additional motivation to study monomial quadratization comes from the desire to
create realistic chemical reaction networks (CRNs), which can be interpreted as polynomial ODEs [6]. For
other applications of quadratization, see [5].

However, we are not aware of any algorithms for finding an optimal quadratization with not necessarily
new monomial variables. In order to understand the potential benefits of such algorithms, we ask the
following question: can non-monomial quadratizations produce a system of substantially smaller dimension
than monomial quadratizations? Based on our results, the answer is yes.

In order to approach this question, we consider the case of scalar polynomial ODEs as it is "the simplest
nontrivial case." While model order reduction techniques are not useful for scalar polynomial ODEs as their
dimension is already minimized at 1, they allow us a point of entry to understand the question posed above.

In our research, we completely characterized the case when one new variable is enough to quadratize
a scalar polynomial ODE (see Theorem 3.1). We also found that any degree 6 scalar polynomial ODE
can be quadratized with two new non-monomial variables and we give the form of the new variables and
quadratization (see Theorem 3.2).

We also show that all degree 3 and 4 scalar polynomial ODEs can be quadratized with one new monomial
variable and all degree 5 scalar polynomial ODEs can be quadratized with two new monomial variables
(see Proposition 3.1). Each of the quadratizations presented in our main results are optimal, meaning they
introduce as few variables as possible.

In order to achieve these results, we employed computational techniques that made use of Gröbner basis
(see section 6). In Section 5, we provide mathematical proofs of Theorem 3.1 and Theorem 3.2.

2. Preliminaries

Definition 2.1. Consider the following scalar polynomial ODE:

(2.1) ẋ = p(x)

where p(x) ∈ C[x]. Then, a list of m new variables:

(2.2) z1 := z1(x), z2 := z2(x), . . . , zm := zm(x)

is said to quadratize ẋ if there exist polynomials h1, h2, . . . , hm+1 ∈ C[x, z1, z2, . . . , zm] of degree at most two
such that:

• ẋ = h1(x, z1, z2, . . . , zm);
• żi = z′i(x)ẋ = hi+1(x, z1, z2, . . . , zm) for 1 6 i 6 m

The number m is said to be the order of the quadratization. A quadratization of the smallest possible
order is called optimal. We refer to new variables whose right-hand sides are monomials as new monomial
variables and those whose right-hand sides are not monomials as new non-monomial variables.

Example 2.1. Consider the scalar polynomial ODE ẋ = xn with n > 2. Let z := xn−1. Note that z is a
new monomial variable. We will use z to quadratize ẋ. We can write:

(2.3)

{
ẋ = zx

ż = z′(x)ẋ = (n− 1)xn−2 · xn = (n− 1)x2n−2 = (n− 1)z2

Thus, we have quadratized ẋ with z := xn−1 as both ẋ and ż can be written as quadratic polynomials in z
and x. In particular, this quadratization has order 1 and is optimal.
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Example 2.2. Consider the scalar polynomial ODE ẋ = x5 + x4 + x3 + x2 + x+ 1. We let z1(x) := x4 and
z2(x) := x3. Note that z1 and z2 are new monomial variables. It follows that:

(2.4)


ẋ = z1x+ z1 + z2 + x2 + x+ 1

ż1 = z′1(x)ẋ = 4x3ẋ = 4(z21 + z1z2 + z22 + z1x+ z1 + z2)

ż2 = z′2(x)ẋ = 3x2ẋ = 3(z1z2 + z22 + z1x+ z1 + z2 + x2)

Thus, we have quadratized ẋ with z1 and z2 as ẋ, ż1, and ż2 are written as quadratic polynomials in z1, z2,
and x. In particular, this quadratization has order 2. It can be shown using Theorem 3.1 and Proposition
3.1 that this quadratization is optimal.

3. Main Results

Our main results are Theorem 3.1 and Theorem 3.2.

Theorem 3.1. Suppose

p(x) = anx
n + an−1x

n−1 + an−2x
n−2 + . . . a2x

2 + a1x+ a0

where n > 5, ai ∈ C for all i ∈ {0, 1, 2 . . . , n− 1, n}, and an 6= 0. A scalar polynomial ODE ẋ = p(x) can be
quadratized using exactly one new variable if and only if p(x− an−1

n·an
) = anx

n + ax2 + bx for some a, b ∈ C.
Moreover, this new variable can be taken to be z := (x+ an−1

n·an
)n−1.

In Theorem 3.1, the quadratization is optimal as it has order one, and the original ODE is not quadratic.

Theorem 3.2. Suppose
ẋ = p6x

6 + p5x
5 + p4x

4 + p3x
3 + p2x

2 + p1x+ p0

for pi ∈ C for i ∈ {0, 1, 2, 3, 4, 5, 6} and p6 6= 0. Then, ẋ can be quadratized with two new variables of the
form:

z1 := ( 6
√
p6 · x+ p5

6· 6
√

p5
6

)5 + (
25p3

5

216
√

p5
6

− 5p5p4

12
√

p3
6

+ 5p3

8
√
p6

)( 6
√
p6 · x+ p5

6· 6
√

p5
6

)2, z2 := ( 6
√
p6 · x+ p5

6· 6
√

p5
6

)3.

Notice that ẋ represents any degree 6 scalar polynomial ODE. For equations not satifying the requirements
of Theorem 3.1, this quadratization is optimal.

Additionally, we’ve shown that the general form degree 6 scalar polynomial ODE cannot be quadratized
with two new monomial variables, but can be quadratized with three new monomial variables (see Lemma
5.7 and Lemma 5.8).

Proposition 3.1.

(i) All degree 3 scalar polynomial ODEs can be quadratized by exactly one new variable, z := x2.
(ii) All degree 4 scalar polynomial ODEs can be quadratized by exactly one new variable, z := x3.
(iii) All degree 5 scalar polynomial ODEs can be quadratized by exactly two new variables, z1 := x4 and

z2 := x3.

Note that in parts (i) and (ii) of Proposition 3.1, the quadratizations are optimal for precisely the same
reason the quadratization in Theorem 3.1 is optimal.

4. Discussion

In our main results, we have given conditions for when one new variable is enough to quadratize a scalar
polynomial ODE. In fact, this new variable has non-monomial right-hand side. We have also shown that two
new non-monomial variables are enough to quadratize any degree 6 scalar polynomial ODE.

Theorem 3.1 is interesting because it demonstrates that even if we deal with high degree scalar polynomial
ODEs, there is a certain form of these ODEs that can be quadratized with only one new non-monomial
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variable. In particular, the most interesting part of Theorem 3.1 is its use of linear shift. We consider the
following scalar polynomial ODE to illustrate this important feature of Theorem 3.1:

(4.1) ẋ = (x+ 1)n = xn +

(
n

1

)
xn−1 +

(
n

2

)
xn−2 + · · ·+

(
n

n− 2

)
x2 +

(
n

n− 1

)
x+ 1

In (4.1), every coefficient behind xk for k ∈ {0, 1, 2, . . . , n} is non-zero. While it does not appear to be
quadratizable by just one new variable, Theorem 3.1 tells us it is. We can say that p(x) = (x + 1)n and
an−1 = n. Thus, it follows that:

(4.2) p(x− an−1
n

) = p(x− 1) = (x− 1 + 1)n = xn

By Theorem 3.1, since xn is of the form xn + ax2 + bx, it can be quadratized by one new variable.
To the best of our knowledge, no algorithms consider this shift in determining the order of quadratization

and thus, for arbitrarily large n, these algorithms would introduce more variables than necessary [1, 2, 6].
More precisely, we can provide a lower bound on the number of new monomial variables necessary to

quadratize the scalar ODE presented in (4.1). Suppose set S = {zi | 1 6 i 6 k} where 2 6 deg z1 < deg z2 <

· · · < deg zk denotes the set of new monomial variables used to quadratize the ODE in (4.1) (we do not
consider degree less than two due to Lemma 5.3). Let us also append x and 1 to the set S. Any quadratic
term in our quadratization can be formed by choosing any two, not necessarily distinct, elements of set S
and multiplying them together. It follows that we can form at most

(
k+3
2

)
quadratic monomial terms. Since

the right-hand side of (4.1) must be quadratized and contains n+ 1 monomials, we have:

(4.3)
(
k + 3

2

)
> n+ 1 =⇒ k >

−5 +
√

8n+ 9

2

Here, we have provided a lower bound for k or the number of new variables introduced. For larger n, we get
larger k. However, we show that simply one new variable is enough for any value of n if we consider new
non-monomial variables, which is a significant improvement on monomial quadratization.

Similarly, Theorem 3.2 shows that degree 6 scalar polynomial ODEs can be quadratized by two new non-
monomial variables. On the other hand, we also showed in Lemma 5.7 and Lemma 5.8 that a general degree
6 scalar polynomial ODE cannot be quadratized using two new monomial variables, but all degree 6 scalar
polynomial ODEs can be quadratized using three new monomial variables. By allowing our new variables
to have non-monomial right-hand side, we improve the order of the quadratization by ∼ 33%. Note that in
the Proof of Theorem 3.2, we use a similar linear shift as described above and described in Lemma 5.1.

Altogether, our results suggest that considering quadratizations with new non-monomial variables can give
us more optimal quadratizations than monomial quadratizations as we increase the degree and dimension of
our ODEs. Therefore, considering non-monomial quadratization of multivariable ODEs and ODE systems
may be a worthwhile pursuit. Moreover, since our results provide explicit formulas for new variables, they
can be used to improve current algorithms for monomial quadratization, for example, by applying some
variable shifts to the input system as suggested by Theorem 3.1.

5. Proofs and Other Results

The following three lemmas are used to prove Theorem 3.1.

Lemma 5.1. For every scalar polynomial ODE ẋ = anx
n + an−1x

n−1 + ... + a2x
2 + a1x + a0, there exists

a unique change of variable x→ x+ λ such that an−1 becomes zero.

Proof. Let x = y + λ. Substituting for x in ẋ, we get:

ẏ = an(y + λ)n + an−1(y + λ)n−1 + · · ·+ a2(y + λ)2 + a1(y + λ) + a0

Binomially expanding, we have:

ẏ = any
n + (annλ+ an−1)yn−1 + o(yn−1)
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Since the coefficient behind the yn−1 is annλ + an−1, it follows that the yn−1 term vanishes if and only if
λ = −an−1

n·an
. Since n > 0 and an 6= 0, this shift exists and is unique. �

Lemma 5.2. Assume that a scalar polynomial ODE ẋ = anx
n + q(x) with n > 5 and deg q(x) 6 n− 1 can

be quadratized by a single new variable z := z(x). Then, deg z = n− 1.

Proof. The first term of ẋ, xn, must be quadratized by a quadratic term in x and z. For n > 5, only terms
z, xz, and z2 may involve xn, and this may happen only if deg z > 3. Thus, deg z < deg xz < deg z2. Hence
xn must be the leading monomial of one of them. Thus, deg z ∈ {n, n− 1, n/2}.

If deg z = n, then deg ż = 2n− 1. Since deg z2 > 2n− 1 and the degree of any other quadratic monomial
in x and z is less than 2n− 1, ż cannot be quadratized. Thus, deg z 6= n.

If n is odd, the only remaining option is deg z = n− 1, so we are done. Consider the case of even n and
deg z = n

2 . Let z = z(x) := αx
n
2 + r(x) and ẋ = xn + q(x) where deg r(x) < n/2, deg q(x) < n, and α 6= 0.

Since ż must be quadratized, we have that:

ż = z′(x)ẋ =
(
α
n

2
x

n−2
2 + o(x

n−2
2 )
)

(xn + o(xn)) = α
n

2
x

3n−2
2 + o(x

3n−2
2 ).

Since deg z > 3, the degree of any quadratic polynomial in x and z is at most 2 deg z 6 n, which is less than
3n−2

2 for n > 6. So, deg z 6= n
2 . Thus, deg z = n− 1. �

Lemma 5.3. Suppose z1, z2, . . . , zm quadratize some ẋ = p(x). Then, the same new variables with omitted
constant and linear (w.r.t. x) terms also quadratize this ODE.

Proof. For each i in {1, 2, . . . ,m}, let:

zi := aix
ki + · · ·+ bix+ ci

Since z1, z2, . . . , zm quadratize ẋ, it follows that ẋ, ż1, ż2, . . . , żm are written with at most quadratic right-
hand side in x, z1, z2, . . . , zm. For i ∈ {1, 2, . . . ,m}, any quadratic terms in zi-s can be written as quadratic
in zi − bix− ci-s and x. �

Proof of Theorem 3.1. We will first prove the backward direction: if p(x− an−1

n·an
) = anx

n +ax2 + bx for some
a, b ∈ C, then ẋ = p(x) can be quadratized using exactly one new variable.

Suppose ẋ = p(x) = anx
n + an−1x

n−1 + o(xn−1) and p(x− an−1

n·an
) = anx

n + ax2 + bx. So, we will shift ẋ
with the change of variables x = y − an−1

n·an
. Substituting for x in ẋ, we have that ẏ = any

n + ay2 + by for
some a, b ∈ C. Let z := yn−1. It follows that:{

ẏ = anzy + ay2 + by

ż = (n− 1)yn−2(ẏ) = (n− 1)(any
2n−2 + ayn + byn−1) = (n− 1)(anz

2 + azy + bz)

Now, we will prove the forward direction: if a scalar polynomial ODE ẋ = p(x) can be quadratized using
exactly one new variable, then p(x− an−1

n·an
) = anx

n + ax2 + bx for some a, b ∈ C.
Shifting x as described in Lemma 5.1, we will assume in what follows that our ODE is of the form

ẋ = anx
n + q(x)

where deg q(x) 6 n− 2 and an 6= 0. By Lemma 5.2, our new variable z must be of degree n− 1. Thus, let:

z := xn−1 + r(x)

By Lemma 5.3, we can take r(x) with no linear or constant term. Since ẋ must be quadratized by z, we can
write:

(5.1) ẋ = anx
n + q(x) = anxz + ez + ax2 + bx+ c = anx

n + (anx+ e)r(x) + ax2 + bx+ c

Notice that z2 is not involved in (5.1) because for n > 5, deg z2 > deg ẋ. From (5.1), it follows that:

(5.2) q(x) = (anx+ e)r(x) + ax2 + bx+ c
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From (5.2), since deg q(x) 6 n − 2, we observe that 2 6 d := deg r(x) 6 n − 3. This implies that e = 0
because the ez term in (5.1) is the only term that involves xn−1. However, we know that ẋ has no xn−1 

term.
Since deg r(x) 6 n− 3, we can write:{

r(x) = cdx
d + cd−1x

d−1 + ...+ c2x
2

r′(x) = dcdx
d−1 + (d− 1)cd−1x

d−2 + ...+ 2c2x

We assume that r(x) is nonzero and in fact, 2 6 d 6 n− 3. Using the next two equations below, we will use
proof by contradiction show that r(x) = r′(x) = 0.

We look to write ż in two different ways. The first way is by direct calculation:

(5.3)

ż = z′(x)ẋ = ((n− 1)xn−2 + r′(x))(anx
n + anxr(x) + ax2 + bx+ c)

= (n− 1)xn−2 · anxn + (n− 1)xn−2 · anxr(x) + r′(x) · anxn + o(xn−1+d)

= (n− 1)anx
2n−2 + (n− 1)cdanx

n−1+d + dcdanx
n−1+d + o(xn−1+d)

On the other hand, by definition of quadratization, the right-hand side of ż must be written as at most
quadratic in x and z. Thus, ż must have the form:

(5.4)

ż = (n− 1)anz
2 + b1zx+ b2z + b3x

2 + b4x+ b5

= (n− 1)anx
2n−2 + 2(n− 1)anx

n−1r(x) + o(xn−1+d)

= (n− 1)anx
2n−2 + 2(n− 1)cdanx

n−1+d + o(xn−1+d)

for constants b1, b2, b3, b4, b5.
Setting (5.3) and (5.4) equal to each other and simplifying, we obtain the following:

(5.5) dcdanx
n−1+d + o(xn−1+d) = (n− 1)cdanx

n−1+d + o(xn−1+d)

Analyzing the coefficients of the highest degree terms of each side of (5.5), we have:

(5.6) (n− 1)cdan = dcdan

Since cd 6= 0 and an 6= 0, we can divide both sides of (5.6) by them:

(5.7) n− 1 = d

However, since d 6 n− 3, we have reached a contradiction. So, r(x) = r′(x) = 0.
To complete the proof, we will show that the linear term c in ẋ must be zero. Using r(x) = 0, we have:

ẋ = anx
n + q(x), q(x) = ax2 + bx+ c, z := xn−1

ẋ = anzx+ ax2 + bx+ c

(5.8) ż = z′(x)ẋ = (n− 1)anx
2n−2 + (na− a)xn + (nb− b)xn−1 + (nc− c)xn−2

Since ż must be written as at most quadratic in x and z, it must be of the form:

(5.9) ż = (n− 1)anz
2 + b1zx+ b2z + b3x

2 + b4x+ b5

for some b1, b2, b3, b4, b5 ∈ C. In (5.8), we have the term (nc − c)xn−2. However, this term cannot be
quadratized for n > 5 because there is no term with degree n − 2 in (5.9). Thus, we find that nc − c = 0.
Since n ≥ 5, c = 0. All other terms in (5.8) can be written using some quadratic combination of z and x. �

The following two lemmas and corollary are used to prove Theorem 3.2.

Lemma 5.4. Suppose z1, z2, . . . , zk quadratize ẋ. Consider z1 and z2. Let a, b ∈ C. If z1, z2, . . . , zk
quadratize ẋ, then az1 + bz2, z2, . . . , zk also quadratize ẋ.
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Proof. Since z1, z2, . . . , zk quadratize ẋ, it follows that ẋ, ż1, ż2, . . . , żk are written with at most quadratic
right-hand side in x, z1, z2, . . . , zk. Any quadratic term in z1, z2, . . . , zk, and x can be written as quadratic
in az1 + bz2, z2, z3, . . . , zk, and x. Thus, it holds that if z1, z2, . . . , zk quadratize ẋ, then az1 + bz2, z2, . . . , zk
also quadratizes ẋ. �

Corollary 5.1. Suppose z1, z2, . . . zk quadratize ẋ where each term has leading coefficient ci. Then, each of
the new variables can have a distinct degree.

Proof. The proof follows directly from Lemma 5.4. �

Lemma 5.5. Let ẋ = p(x) be a scalar polynomial ODE with deg p := n > 5 that can be quadratized with
k > 2 new variables. Let z1, z2, z3, . . . , zk denote the k new variables used to quadratize ẋ. Suppose that for
any i ∈ {1, 2, 3, . . . , k}, deg zi 6 n− 1. For S = {deg z1,deg z2,deg z3, . . . ,deg zk}, it holds that n− 1 ∈ S.

Proof. Assume for contradiction that n−1 /∈ S. Thus, it follows that max(S) 6 n−2. Assume that max(S)

is r for some 2 6 r 6 n − 2. Let zr be the new variable with degree r. It follows that deg zr = n + r − 1.
Notice that the largest degree we can form with our new variables is 2r. Thus, it follows that 2r > n+ r− 1.
However, this implies that r > n− 1. Thus, n− 1 ∈ S. �

Lemma 5.6. Assume that ẋ = p(x) be a scalar polynomial ODE with deg p := n > 5 can be quadratized by
two new variables. Then, it can be quadratized using two new variables y and z, one of which has degree
n− 1.

Proof. Let y and z be some quadratizing variables. By Corollary 5.1, they can be assumed to have distinct
degrees. By Lemma 5.3, y and z can be taken with no linear or constant term. So, we will assume
deg y > deg z > 2. It holds that deg ẏ = n− 1 + deg y.

We will first consider the case where deg y 6 n− 1. The proof of this follows directly from Lemma 5.5.
Now, we will consider the case where deg y > n. If deg y > n, then y2 cannot appear in the right-hand

side of ẏ because deg y2 > deg ẏ. We will look to write the leading term of ẏ as the highest degree term
of some linear combination of the quadratic terms in x, y, and z. The leading term of ẏ cannot be written
as the highest degree term of any linear combination of 1, x, x2, y, z, yx, or zx because their degrees are too
small.

Thus, we are left with z2 and yz. Note that deg z2 < deg yz. Thus, one of them must have degree
n− 1 + deg y. If deg yz = n− 1 + deg y, then it holds that deg z = n− 1.

To finish the proof, we will show that z2 cannot have degree n− 1 + deg y. If deg z2 = n− 1 + deg y, then
deg z > n and deg y > n+ 1. Additionally, deg z2 = n− 1 + deg y implies that the right-hand side must be
even. So, deg y = n − 1 + 2k for some k ∈ N. It follows that deg z2 = 2n − 2 + 2k, deg z = n − 1 + k, and
deg ż = 2n − 2 + k. We must have that the leading term of ż can be written as the highest degree term of
some linear combination of the quadratic terms in x, y, and z. No linear combination of 1, x, x2, y, z, yx, and
zx have degree 2n − 2 + k because the degree of each of these terms is too small. Furthermore, no linear
combination of z2, y2, and yz – each of which have distinct degrees – has degree 2n − 2 + k because the
degree of each of these terms is too large. Thus, z2 cannot have degree n− 1 + deg y. �

Proof of Theorem 3.2. Suppose

ẋ = p6x
6 + p5x

5 + p4x
4 + p3x

3 + p2x
2 + p1x+ p0

Let x = y
6
√
p6
− p5

6·p6
. This change of variable aims to make p5 equal to zero as demonstrated by Lemma 5.1

and make the leading coefficient 1. Substituting for x, we have:

ẋ = y6 + ( p4

3
√

p2
6

− 5p2
5

12 3
√

p5
6

)y4 + (
5p3

5

27
√

p5
6

+ p3√
p6
− 2p5p4

3
√

p3
6

)y3 + (
p2
5p4

6 3
√

p7
6

+ p2
3
√
p6
− p5p3

2 3
√

p4
6

− 5p4
5

144 3
√

p10
6

)y2

+ (
p5
5

324 6
√

p25
6

+
p2
5p3

12 6
√

p13
6

− p3
5p4

54 6
√

p19
6

− p5p2

3 6
√

p7
6

+ p1
6
√
p6

)x+ (
p4
5p4

1296p4
6
− 5p6

5

46656p5
6
− p3

5p3

216p3
6
− p5p1

1296p4
6

+ p0)
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For simplicity of notation, we will write:

ẋ = q0 + q1y + q2y
2 + q3y

3 + q4y
4 + y6

Notice that 5q3
8 =

25p3
5

216
√

p5
6

+ 5p3

8
√
p6
− 5p5p4

12
√

p3
6

. By Lemma 5.6, one of the new variables has degree 5. Thus, let:

z1 := y5 +
5q3
8
y2, z2 := y3

It follows that for any constants c1, c2, c3 ∈ C, we have that:

(5.10)



ẋ = (1− c1)z1y + c1z
2
2 + ( 5c1q3+3q3

8 )z2 + q4z2y + q2y
2 + q1y + q0

ż1 = 5z21 + (5q1 − 15q3q4
8 )z1 + (5q2 − c2)z1y + ( 5c2q3−15q2q3

8 )z2 + (5q0 − 45q23
64 )z2y + c2z

2
2

+ 5q4z1z2 + (
75q23q4−120q1q3

64 )y2 + 5q0q3
4 y

ż2 = 3z1z2 + 9q3
8 z1 + (3q4 − c3)z1y + (3q1 + 5c3q3−15q3q4

8 )z2 + 3q2z2y + c3z
2
2 + (3q0 − 45q23

64 )y2

�

Notice that the presence of constants c1, c2, c3 in Theorem 3.2 suggests that there exists an infinite number
of possible quadratizations of a degree 6 scalar polynomial ODE with two new variables.

Lemma 5.7. There exists scalar polynomial ODEs of degree 6 which cannot be quadratized using two new
monomial variables.

Proof. Consider

ẋ = p6x
6 + p4x

4 + p3x
3 + p2x

2 + p1x+ p0

where p6, p4, p3, p2, p1, p0 ∈ C\{0}. We use this form for ẋ to reflect the possible use of shift on a general
form degree 6 scalar polynomial ODE as discussed in Lemma 5.1. By Lemma 5.6, one of the new variables
must have degree 5. Thus, for monomial quadratization, we have the following cases:

Case 1 : z1 := x5, z2 := x2

Case 2 : z1 := x5, z2 := x3

Case 3 : z1 := x5, z2 := x4

Case 4 : z1 := x5, z2 := x5+k for k ∈ N

Notice that in Cases 1, 2, and 3, max{deg ẋ,deg ż1,deg ż2} = 10. In Case 1, x8 in ż1 cannot be written as
quadratic in x, z1, z2. In Case 2 and Case 3, x7 in ż1 cannot be written as quadratic in x, z1, and z2. In Case
4, x3 and x4 in ẋ cannot be written as quadratic in x, z1, and z2. Thus, 2 new monomial variables are not
enough to quadratize all degree 6 scalar polynomial ODEs. �

Lemma 5.8. All degree 6 scalar polynomial ODEs can be quadratized by three new monomial variables,
z1 := x5, z2 := x4, z3 := x3.

Proof. Let

ẋ = p6x
6 + p5x

5 + p4x
4 + p3x

3 + p2x
2 + p1x+ p0
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with p6 6= 0. It follows that for the constants ci:

(5.11)



ẋ = p6z1x+ p5z1 + p4z2 + p3z3 + p2x
2 + p1x+ p0

ż1 = 5x4ẋ = 5p6z
2
1 + 5p5z1z2 + 5p4c1z

2
2 + 5p4(1− c1)z1z3 + 5p3z2z3 + 5p2c2z1x

+5p2(1− c2)z23 + 5p1c3z1 + 5p1(1− c3)z2x+ 5p0c4z2 + 5p0(1− c4)z3x

ż2 = 4x3ẋ = 4p6z1z2 + 4p5c5z
2
2 + 4p5(1− c5)z1z3 + 4p4z2z3 + 4p3c6z1x+ 4p3(1− c6)z22

+4p2c7z1 + 4p2(1− c7)z2x+ 4p1c8z2 + 4p1(1− c8)z3x+ 4p0z3

ż3 = 3x2ẋ = 3p6c9z
2
2 + 3p6(1− c9)z1z3 + 3p5z2z3 + 3p4c10z1x+ 3p4(1− c10)z23

+3p3c11z1 + 3p3(1− c11)z2x+ 3p2c12z2 + 3p2(1− c12)z3x+ 3p1z3 + 3p0x
2

�

Proof of Proposition 3.1. Part (i). All degree 3 scalar polynomial ODEs can be quadratized by exactly one
new variable, z := x2.

Let ẋ = p3x
3 + p2x

2 + p1x+ p0 where pi ∈ C for i = 0, 1, 2, 3 and z := x2. It follows that:

(5.12)

{
ẋ = p3zx+ p2x

2 + p1x+ p0

ż = 2xẋ = 2p3z
2 + 2p2zx+ 2p1x

2 + 2p0x

Part (ii). All degree 4 scalar polynomial ODEs can be quadratized by exactly one new variable, z := x3.
Let ẋ = q4x

4 + q3x
3 + q2x

2 + q1x+ q0 where each qi ∈ C. By Lemma 5.1, any degree 4 scalar polynomial
ODE can be uniquely shifted such that the coefficient behind x3 becomes zero. Applying the change of
variables x = y− q3

4·q4 , we get that ẏ = q4y
4 + p2y

2 + p1y+ p0 for some pj-s ∈ C. Let z := y3. It follows that:

(5.13)

{
ẏ = q4zy + p2y

2 + p1y + p0

ż = 3y2ẏ = 3q4z
2 + 3p2zy + 3p1z + 3p0y

2

Part (iii). All degree 5 scalar polynomial ODEs can be quadratized by exactly two new variables, z1 := x4

and z2 := x3.
Let ẋ = p5x

5 + p4x
4 + p3x

3 + p2x
2 + p1x + p0 where pi ∈ C for i = 0, 1, 2, 3, 4, 5 and p5 6= 0. Also, let

z1 := x4 and z2 := x3. It follows that:

(5.14)


ẋ = p5z1x+ p4z1 + p3z2 + p2x

2 + p1x+ p0

ż1 = (z′1)(ẋ) = 4x3(ẋ) = 4p5z
2
1 + 4p4z1z2 + 4p3z

2
2 + 4p2z1x+ 4p1z1 + 4p0z2

ż2 = (z′2)(ẋ) = 3x2(ẋ) = 3p5z1z2 + 3p4z
2
2 + 3p3z1x+ 3p2z1 + 3p1z2 + 3p0x

2

�

6. Computational Techniques

In this section, we describe the computational techniques used in order to gain the intuition for Theorem
3.1 and find the form of the quadratization presented in Theorem 3.2. The main tool used for our computation
was Gröbner bases.

A Gröbner basis is a set of multivariate polynomials that has desirable algorithmic properties. It holds that
every set of polynomials can be transformed into a Gröbner basis. Gröbner basis computation is an effective
way of reducing or solving systems of equations and generalizes Gaussian elimination and the Euclidean
algorithm for polynomials. For more, see [8, 9].
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6.1. Quadratization with One New Variable. In this subsection, we will outline the computational
experiments used to gain the intuition for Theorem 3.1. For simplicity, we will focus on degree 5 scalar
polynomial ODE since it is the smallest degree for which Theorem 3.1 can be applied.

Using Lemma 5.1, Lemma 5.2, and Lemma 5.3, we introduce the following set-up:{
ẋ = p5x

5 + p3x
3 + p2x

2 + p1x+ p0

z := x4 + q3x
3 + q2x

2

We define our polynomial ring R = C[p0, p1, p2, p3, p4, q3, q2].
We ask the following elimination question: for what values of pi does there exist values of qj such that

ẋ can be written as some linear combination of S1 = {1, x, x2, z, zx} and ż can be written as some linear
combination of S2 = {1, x, x2, z, zx, z2}? Notice that z2 is not in S1 because deg z2 = 8, but deg ẋ = 5.

In order to answer our question, we produce the following two matrices where each entry is defined by
the coefficient behind the term that corresponds to the row in the function that corresponds to the column:

ẋ matrix =

1 x x2 z xz ẋ

1

x

x2

x3

x4

x5



1 0 0 0 0 p0
0 1 0 0 0 p1
0 0 1 q2 0 p2
0 0 0 q3 q2 p3
0 0 0 1 q3 p4
0 0 0 0 1 1



ż matrix =

1 x x2 z xz z2 ż

1

x

x2

x3

x4

x5

x6

x7

x8



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 q2 0 0 0

0 0 0 q3 q2 0 2p2q2 + 3p1q3 + 4p0
0 0 0 1 q3 q22 2p3q2 + 3p2q3 + 4p1
0 0 0 0 1 2q2q3 2p4q2 + 3p3q3 + 4p2
0 0 0 0 0 q23 + 2q2 4p3 + 3p4q3 + 2q2
0 0 0 0 0 2q3 3q3 + 4p4
0 0 0 0 0 1 4


Notice that in the ẋ matrix, the first 5 column vectors are linearly independent. Thus, ẋ can be written
as some linear combination of S1 = {1, x, x2, z, zx} iff all 6 column vectors in the ẋ matrix are linearly
dependent. This happens precisely when the determinant of the ẋ matrix equals 0.

Similarly, notice that in the ż matrix, the first 6 column vectors are linearly independent. Thus, ż can
be written as some linear combination of S2 = {1, x, x2, z, zx, z2} iff all 7 column vectors in the ż matrix
are linearly dependent. Since the ż matrix in non-square, this happens precisely when the minors of the ż
matrix equal 0.

Thus, we define our set of polynomials as the determinant of the ẋ matrix and the minors of the ż matrix
in pi-s and qj-s. More precisely, the problem we look to solve is: for what values of pi-s do there exist qj-s
such that the determinant of the ẋ matrix and the minors of the ż matrix equal zero. The way we solve this
problem is by computing the Gröbner basis of this set of polynomials and then, selecting only the expressions
in pi-s. While this does not give the complete set of pi-s, it gives us the closure of this set [3, Theorems 2
and 3, §3.1]. This was enough to give us the intuition for the proof of Theorem 3.1.

The polynomials only in pi-s of the computed Gröbner basis are:{
p5p0 = 0

p3 = 0
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Since p5 6= 0, it follows that p0 = p3 = 0. Testing with higher degree scalar polynomial ODEs, the same
pattern holds, giving us the intuition for the proof of Theorem 3.1.

6.2. Quadratization with Two New Variables. In this subsection, we will focus on the methods we
used to find the quadratization presented in Theorem 3.2. Our goal was to find the full characterization of
the quadratization of a scalar polynomial ODE of degree 6 with exactly two new variables or determine that
it is not possible.

By Lemma 5.6, we know one of the new variables has degree 5. Using Corollary 5.1, we can say that our
second new variable does not have degree 5. To start, we assume that the other new variable has degree
less than 5. So, we try every possible combination of degrees of variables. In other words, we try two new
variables of degree 5 and degree 4, degree 5 and degree 3, and degree 5 and degree 2. By Lemma 5.3, we
do not consider degree 1 and degree 0 for our second new variable. Here, we will simply outline the correct
solution where our first new variable has degree 5 and our second new variable has degree 3. However, in
order to thoroughly experiment with degree 6 scalar polynomial ODEs, we conducted this computation with
other degrees for our second new variable. We introduce the following setup.

Using Lemma 5.1, let:

ẋ = x6 + p4x
4 + p3x

3 + p2x
2 + p1x+ p0

Using Lemma 5.3, we can take our new variables with no linear or constant term. Let:

z1 := x5 + q4x
4 + q2x

2, z2 := x3 + r2x
2

Note that we used Lemma 5.4 to take z1 with no x3 term.
We would like to know when ẋ, ż1, and ż2 can be written as at most quadratic combination of x, z1, z2. In

other words, we would like to know when ẋ, ż1, and ż2 can be written as a linear combination of the terms
in S = {1, x, x2, z1, z1x, z21 , z2, z2x, z22 , z1z2}. Thus, this happens when:

(6.1)


ẋ− c1 − c2x− c3x2 − c4z1 − c5z1x− c6z2 − c7z2x− c8z22 = 0

ż1 − c9x− c10x2 − c11z1 − c12z1x− c13z21 − c14z2 − c15z2x− c16z22 − c17z1z2 = 0

ż2 − c18x− c19x2 − c20z1 − c21z1x− c22z2 − c23z2x− c24z22 − c25z1z2 = 0

Note that ż1 and ż2 do not have constant terms by definition. Thus, we define our polynomial ring as
R = C[p4, p3, p2, p1, p0, q2, r2, c̄] where c̄ = [c1, c2, . . . , c25]. Our system of equations is the coefficients behind
each monomial term xi in each equation in (6.1) set to zero (this system of equations is referred to as polys
in our code). Precisely, we ask the following question: for what values of pi-s do there exist cj-s, qk-s, and
rl-s that satisfy (6.1).

In order to reduce the complexity of our computation, we computed the coefficients behind each xi term of
each equation of (6.1). These terms form the system of equations for which we would like to find a Gröbner
basis. Taking these coefficients equal to zero, we aimed to replace as many cj-s as possible in (6.1) with
terms in p4, p3, p2, p1, p0 in order to reduce the number of terms in our polynomial ring. For example, the
coefficient behind the linear term in the second equation is c9 − 2q2p0. This term is in our Gröbner basis.
Since the left-hand side of each equation in (6.1) must equal zero, we have that c9 − 2q2p0 = 0. This gives
us that c9 = 2q2p0. Thus, we replace c9 in our system of equations with 2q2p0 and remove c9 from our
polynomial ring. Extending this method to include any terms in our system of equations and its ideal, we
simplify our computation by reducing the number of variables we must work with. We provide all of the
exact variable replacements in the order we replaced them in the following table (the bold horizontal line
denotes the place where we reloaded the worksheet and analyzed the new outputs to make the rest of the
replacements):
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Variable Replacement List
Original Replacement
c1 p0

c2 p1

c5 1− c8
c9 2q2q0

c13 5

c25 3

q4 0

r2 0

q2
5
8p3

c3 p2

c4 0

c6
5
8c8p3

3
8p3

c7 p4

c10
−15
8 p1p3 + 75

64p
2
3p4

c11 5p1 − 15
8 p3p4

c12 5p2 − c16
c14

5
8c16p3 −

15
8 p2p3

c15 5p1 − 45
64p

2
3

c17 5p4

c19 3p0 − 45
64p

2
3

c20
9
8p3

c21 3p4 − c24
c22

5
8c24p3 + 3p1 − 15

8 p3p4

c23 3p2

After making these replacements, we filter through the Gröbner basis and select terms only in pi-s. We
obtain that the Gröbner basis of the intersection of our ideal and the polynomial ring of only pi-s is the
empty set. This suggests that for any pi-s, there exist cj-s, qk-s, and rl-s that satisfy (6.1). This confirms
that all degree 6 scalar polynomial ODEs can be quadratized with exactly two new variables. Observing the
replacements we made, we find the form of our quadratization.

7. Conclusion

We have shown in Theorem 3.1 that a scalar polynomial ODE ẋ = p(x) = anx
n+an−1x

n−1+o(xn−1) with
n > 5 can be quadratized using exactly one new variable if and only if p(x− an−1

n·an
) = anx

n+ax2+bx for some
a, b ∈ C. We have also shown in Theorem 3.2 that all degree 6 scalar polynomial ODEs can be quadratized
with two new non-monomial variables. Finally, we have shown that all degree 3 and 4 scalar polynomial
ODEs can be quadratized with one new monomial variable and all degree 5 scalar polynomial ODEs can be
quadratized with two new monomial variables. These results indicate that adding non-monomial variables
may lead to substantially more optimal quadratization than the monomial ones used in the current software.
They also give basic intuition about how to exploit non-monomiality (e.g., via shifts as in Theorem 3.1).

We employed computational techniques that made use of Gröbner Bases to help us gain intuition for
Theorem 3.1 and find the form of the new variables and quadratization in Theorem 3.2. Our code is
attached as a separate file.
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