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Abstract. The spread of the novel coronavirus SARS-CoV-19 throughout a population can be
modelled through the use of compartment models. Here we will use age-cohort separation to design
a system of ordinary differential equations, which will be solved with numerical methods in order to
model the spread of the virus in Ireland by age-cohort. From here we analyse policy decisions made
by the Irish Government throughout the COVID-19 pandemic in early 2020 in terms of their effect
on differently aged people within the population. Simulations are generated of alternative policies
that could be enacted in the future, with the aim of analysing the effectiveness of policies such as
lockdown and cocooning. The results of this analysis indicate that a reduction in social interaction is
a major driving force in the suppression of new infections and that reducing the contacts of vulnerable
members of the population leads to a slower rate of increase in infections for the population at large.
The testing for the model is done by varying the level of social interaction within the population over
a 160 day interval from February 29th, 2020 until August 7th, 2020, with all projections past this
date based on assumptions made relating to future levels of social interaction resulting from future
policies.
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1. Introduction. COVID-19 is an infectious disease caused by Severe Acute
Respiratory Syndrome Novel Coronavirus 2 (SARS-CoV-2), which is known to cause
respiratory infections similar to other diseases caused by coronaviruses such as Mid-
dle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome
(SARS)[16] and is known to commonly cause symptoms such as fever, dry cough and
tiredness, targeting the infected persons respiratory functions. Around 1 out of every
5 people who gets COVID-19 becomes seriously ill and develops difficulty breathing.
Older people and those with underlying medical problems like high blood pressure,
heart and lung problems, diabetes or cancer are at a higher risk of developing serious
illness. The first verified case occurred in December 2019 in Wuhan, China and has
resulted in the ongoing pandemic[19]. It is also very easily transmissable through close
contact as the disease spreads primarily from person to person through small droplets
from the nose or mouth, which are expelled when a person with COVID-19 coughs,
sneezes or speaks. These droplets are relatively heavy, do not travel far and quickly
sink to the ground. People can catch COVID-19 if they breathe in these droplets from
a person infected with the virus. In the first 6 months of the pandemic we have seen
a number of responses using various different policies such as full lockdown, partial
lockdown and herd-immunity strategies across many different countries with varying
levels of effectiveness.

While the COVID-19 pandemic is a global issue with far-reaching effects, this pa-
per will focus primarily on the progression of the pandemic throughout Ireland, along
with the policy that has been implemented to combat the spread of the virus, with
support from international data in order to produce an accurate model. In Ireland, a
national lockdown was implemented early on in order to reduce social contacts within
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the population and to delay the spread of the virus. Prior to the lockdown, schools 
and universities were closed - reducing social contacts for the younger members of 
the population. Similarly, a policy of “cocooning” was introduced within which el-
derly members of the population and those with underlying issues causing them to be 
considered more at-risk were asked to self-isolate for the duration of the pandemic in 
order to further reduce their social contacts and hence their risk of infection as they 
would be more adversely affected by the disease than others[13].

In light of Ireland’s age-targeted strategies, such as cocooning and school closures, 
we have chosen to model the spread of COVID-19 in Ireland with the use of an age-
cohort model, in order to more accurately see the effect of the disease on differently 
aged members of the population and evaluate policies implemented throughout the 
pandemic along with the impact of potential future strategies on the diseases spread 
throughout the Irish population. An age-cohort model is developed, as opposed to a 
traditional population-level model as used by the Irish government[9] for their policy 
decisions. An age-cohort model has certain advantages over population-level models 
as it allows for the population to be broken down and targeted strategies such as co-
cooning can be modelled more accurately in order to see the effect of policy changes 
on the targeted age-cohort as opposed to the population as a whole. Within the model 
it is necessary to account for many parameters that can influence its outcome, which 
can be thought of as either biological or non-biological, for the sake of categorisation. 
Biological parameters, such as the incubation and infectious periods of the disease, 
are assumed to vary from person to person due to differing physiologies among people 
and are thus implemented as random variables to give a range of potential outcomes 
within the results of the model. The mortality rate of the disease is treated as a 
probability of death following the end of the infectious period. This is done using 
data relating to case fatality rates (CFR)[8] in Ireland in order to infer a probabil-
ity by Cohort. Interaction within the population is thought of as a non-biological 
parameter relating to social contacts between infectious and susceptible members of 
the population effectively dictating new infections. This parameter can be assumed 
to change as different policies are implemented to alter the spread of the virus and 
is thus the main parameter used for policy analysis and projections for the future 
within this model. In terms of policy analysis, a variety of scenarios will be examined 
in order to determine the effectiveness of implemented policy and to see if there are 
any other viable alternatives that could have been implemented from the perspective 
of the model.

The remainder of this paper will be structured as follows. In Section 2 the data 
required to build the model is explored along with a discussion of the importance of 
the gathered data to the model. In Section 3 we will first introduce a population-level 
SEIRD model before progressing to the development of an age-cohort SEIRD model to 
be used for modelling COVID-19 throughout the remainder of this paper. In Section 4 
the methodology for policy analysis is developed further by first establishing initial 
conditions and deriving parameters from real-world data, leading into a discussion 
of how the model was implemented within Python along with the method used to 
analyse alternative policy decisions. In Section 5 the suggested results of the model 
are explored involving both policy analysis of past policy decisions and potential 
policy decisions that could have been implemented instead leading onto an analysis 
of projections for the future under different potential policies. Following this, in 
Section 6 a conclusion is reached as to the effectiveness of the policies implemented 
up until this point along with a discussion relating to the most effective future path 
to take in terms of future infections and deaths.
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2. Data. In this section we will discuss the data used within the model along
with the rationale behind the sourcing of this data. Throughout the model we
will use known estimates for biological parameters and estimate the effect of non-
pharmaceutical interventions by experimentally varying the level of interaction within
the population as described later in Section 4.1.1. This is done using daily infection
data for Ireland as will now be discussed.

In the course of building this model, reported infections and deaths are used as
a basis to generate parameters to best describe the progress of the disease and fit
relevant curves to reported cases and deaths. Data relating to new cases by age-
cohort was obtained from Ordnance Survey Ireland’s COVID Statistics Profile[15]
from which the daily new infections for the Irish population can be derived (see the
data plot shown in Figure 1). It should be noted however that there is a noticeable
outlier in this data in mid-April relating to a backlog of cases reported on this day,
so this outlier is a result of deficiencies in testing as opposed to a sudden increase in
actual cases.
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Fig. 1. Daily new infections of the Irish population over 160 days from February 29th sourced 
from Ordnance Survey Ireland[15] with period subdivisions as highlighted in Figure 5.

The Case Fatality Rate (CFR) of COVID-19 was obtained from the daily mor-
tality data of COVID-19 in Ireland compiled by the Health Protection Surveillance 
Centre (HPSC) for the National Public Health Emergency Team (NPHET)[8]. This 
data will be used to infer a probability of death by Cohort, which will be discussed 
in further detail later in Section 4.1.7.

The population of Ireland and the associated age-cohorts were obtained from 
data from the 2016 Irish Census available from the Central Statistics Office (CSO)[3], 
which gave the population breakdown as seen in Table 1. This data will allow us 
to have Cohorts as an accurate proportion of the population and to more effectively 
model the spread of the virus by Cohort.

Data on the Effective Reproductive Number (Rt) of the disease, which will be 
explained in further detail in Section 3.3, was acquired from estimates of Rt released
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Cohort Age Group Population Size Percentage
1 Persons aged 0-24 1583004 33.24%
2 Persons aged 25-64 2541294 53.37%
3 Persons aged 65+ 637567 13.39%

Table 1
Irish Population Breakdown (Census 2016)[3] with population divided into Cohorts by age.

by the Irish Epidemiology Modelling Advisory Group (IEMAG)[11] as seen in Table 2
up until the 21 May 2020, with period subdivisions from 1 - 5 representing what
IEMAG defines as “Lockdown Phases” including self isolating with symptoms, social
distancing, school closures, cancellation of public events, early intervention and lock-
down, respectively. The values shown in Table 2 were calculated by IEMAG using the
methodology of Imperial College COVID Response Team[11][6]. After this point the

IEMAG Lockdown Phases
1 2 3 4 5

C
I

B
ou

n
d

s 97.5% 5.13 4.93 4.60 1.53 0.72
75% 4.75 4.40 4.01 1.36 0.66
50% 4.31 4.15 3.68 1.29 0.63
25% 4.05 3.89 3.36 1.21 0.61
2.5% 3.62 3.47 2.72 1.06 0.56

Table 2
Estimates of Rt provided by IEMAG[11] over different “Lockdown Phases” with limits to rele-

vant confidence intervals (CI) until May 20th after which data from NPHET Press briefings[14] was
used to construct confidence intervals which are displayed in Figure 8 for comparison against the
model.

values were obtained from reports given in NPHET’s daily press briefings and from
their published meeting minutes[14]. The values and confidence intervals provided are
linearly interpolated over time, and will function as a check to ensure that the model
is parameterised correctly. This process can be seen more clearly in Figure 8.

3. Model. In this section we will discuss how the age-cohort model was de-
veloped by first examining an SEIRD population-level compartmental model, before
further developing a system of ordinary differential equations (ODEs) to describe an
age-cohort model, along with the reasoning behind this development.

3.1. Population Model. The SEIRD model is an extension of a basic SIR
mode as developed by Kermack and Mckendrick in 1927[12]. It is implemented by
subdividing a population of size N into Susceptible, Exposed, Infectious, Recovered
and Dead Compartments referred to as S = S(t), E = E(t), I = I(t), R = R(t)
and D = D(t) respectively, for t ≥ 0. We consider the actively mixing population
N(t) = S(t) + E(t) + I(t) +R(t) with dN

dt = −dDdt . This can be further developed by
considering the infectious members of the population contained in I letting this be
represented by compartments for presymptomatic, asymptomatic and symptomatic
infectious people denoted by Ip = Ip(t), Ia = Ia(t) and Is = Is(t), respectively,
such that I = Ip + Ia + Is. Movements between these compartments are highlighted
in Figure 3. This developed model incorporating various categories of symptoms in
infectious members of the population would thus have an actively mixing population
given by N(t) = S(t)+E(t)+Ip(t)+Ia(t)+Is(t)+R(t) with dN

dt = −dDdt as before. The
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rates of movement between each compartment are given by an interaction coefficient
β ≥ 0, a latent incubation rate σ ≥ 0, a presymptomatic incubation rate σp ≥ 0, a
probability of asymptomatic infection 0 ≤ α ≤ 1, a reduction factor for infection when
symptoms are not present 0 ≤ h ≤ 1, a recovery coefficient γ ≥ 0, and a mortality
probability 0 ≤ µ ≤ 1, the derivation of which will be discussed further in Section 4.1.
This version of the SEIRD model allows for a potentially lethal disease to be modelled
through the inclusion of the D compartment, while also allowing for different rates
of transmission depending on if symptoms are present by considering the Ip, Ia and
Is compartments as previously described. The movements between compartments is
then given by the following system of ODEs

S E

R

D

I

Fig. 2. A population-level SEIRD Model for a lethal disease with a non-infectious incubation
period

Fig. 3. Actively infectious members of the population incorporating presymptomatic, asympto-
matic and symptomatic cases.
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dS

dt
= − S

N
β(Is + h(Ia + Ip)),(3.1)

dE

dt
=
S

N
β(Is + h(Ia + Ip))− σE,(3.2)

dIp
dt

= σE − σpIp,(3.3)

dIa
dt

= ασpIp − γIa,(3.4)

dIs
dt

= (1− α)σpIp − γIs,(3.5)

dR

dt
= γ(1− µ)(Ia + Is),(3.6)

dD

dt
= γµ(Ia + Is),(3.7)

3.2. Age-Cohort Model. The population-level model discussed in Section 3.1
functions well to provide a broad overview of the progress of a disease within a pop-
ulation. However, within these models it is assumed that there is a homogeneously
dispersed population with equal levels of interaction between all Infectious and Sus-
ceptible people throughout the population. For example, an infectious 97 year old
is assumed to interact with a susceptible 7 year old at the same rate at which that
7 year old might interact with other infectious 7 year olds. For this reason, an age-
cohort variant of the above models can be developed to allow for a breaking down
of the population into k ∈ N age-cohorts with a separate interaction coefficient βij
between susceptible people from Cohort i and infectious people in Cohort j which can
be represented in a k × k matrix β,

(3.8) β(t) =

β11(t) · · · β1k(t)
...

. . .
...

βk1(t) · · · βkk(t)

 ,

The model is then extended to k classical SEIRD models in parallel, as∑k
seen in Fig-

ure 4. Each Cohort i = 1, . . . , k is assumed to be of size Ni such that i=1 Ni = N . 
Accounting for interactions between all susceptible and infectious people in Cohorts 
i and j, respectively, as highlighted in Figure 4 gives us the system
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dSi
dt

= − Si
Ni

 k∑
j=1

βij(t)[Isj + h(Ipj + Iaj)]

 ,(3.9)

dEi
dt

=
Si
Ni

 k∑
j=1

βij(t)[Isj + h(Ipj + Iaj)]

− σEi,(3.10)

dIpi
dt

= σEi − σpIpi(3.11)

dIai
dt

= ασpIpi − γIai(3.12)

dIsi
dt

= (1− α)σpIpi − γIsi(3.13)

dRi
dt

= γ(1− µi)(Iai + Isi),(3.14)

dDi

dt
= γµi(Iai + Isi), for i = 1, . . . , k.(3.15)

Fig. 4. An age-cohort model for k = 3 Cohorts functioning as 3 classical SEIRD models running
in parallel with interaction between Susceptible and Infectious people from each Cohort highlighted
by dashed feedback loops. The Ii compartments seen here behave as shown in Figure 3.

3.3. Reproductive Number. The basic reproductive number of an infectious
disease R0 can be thought of as the number of secondary infections generated from a
single initial infection. An R0 > 1 indicates that the number of infections over time
will increase exponentially, while an R0 < 1 indicates that the disease will die out
over time as its secondary infections will not sustain its growth over the long term.

Following the notation of Heffernan, Smith and Wahl[7], the effective reproductive
number (Rt) is given as the spectral radius of the “next generation operator” FV −1,
where on a population level, instead of the distinct compartment given to each of the
given k ∈ N Cohorts, the population can be viewed as consisting of 5 compartments
given by

(3.16) x1 =
k∑
i=1

Si, x2 =
k∑
i=1

Ei, x3 =
k∑
i=1

Ii, x4 =
k∑
i=1

Ri, x5 =
k∑
i=1

Di.
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It should be noted that in defining the compartment x3 in Equation (3.16) we let
Ii = Iai + Ipi + Isi denote all actively infectious members of cohort i, which we will
use below for brevity. It can be seen that out of the n = 5 compartments, m = 2
of these can be considered to be infected which in turn can be seen as the vector
of relevant dynamic variables x = (x2, x3). Denoting N =

∑5
i=1 xi we can define

Fi(N) as the rate of appearance of new infections in compartment i and letting Vi(N)
denote the net rate of transfer from compartment i by all other means. This thus
gives Fi(N)− Vi(N) to be the rate of change of compartment i. The next-generation
operator can thus be defined as the matrix of partial derivatives of Fi and Vi, i = 2, 3
and j = 2, 3, with x0 being a point where the m infected compartments are empty
with x2 = 0 and x3 = 0. The point x0 is known as the disease-free equilibrium[7] and
F and V can be defined as

(3.17) F =

[
∂Fi(x0)

∂xj

]
, V =

[
∂Vi(x0)

∂xj

]
, i, j = 2, 3.

In the case of the age-cohort SEIRD model described in Section 3.2 containing k = 3
age cohorts the matrices for F and V can be given as

(3.18) F =

(
0
∑3
i=1

∑3
j=1 βij

0 0

)
, V =

(
σ 0

−σ
∑3
i=1 γi

)
.

The matrix FV −1 can thus be calculated from the given matrices F and V , with the
dominant eigenvalue taken as the value for R0, which is given by

(3.19) R0 =

∑3
i=1

∑3
j=1 βij∑3

i=1 γi
,

the details of this can be seen in Appendix A. From this value for R0 we can now
account for varying levels of infection over time and partial immunity of the population
as people leave the Susceptible compartment by calculating the effective reproductive
number Rt[5]. This is done by letting βij = βij(t) evolve over time and scaling R0 to
the proportion of Susceptible people within the population, thus creating an effective
reproductive number Rt as a time-dependent function, such that

(3.20) Rt =
S(t)

N(t)
R0 =

S(t)

N(t)

∑3
i=1

∑3
j=1 βij∑3

i=1 γi
.

It is important to note that while the reproductive number does give a general overview 
of the projected growth of a disease in the early stages of an epidemic, it is not a 
summary value that encompasses the entire disease and should be used together with 
other indicators to give an accurate picture of the disease as it can be easily skewed 
by a small initial number of infected people and clusters.
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4. Methodology. In this section we will discuss the methodology used to de-
velop the model and to produce the results seen in Section 5 by discussing the gen-
eration of parameters and the methods used to carry out simulations in Python. In
order to implement this model and run simulations, the age-cohort model developed
in Section 3.2 is established for k = 3 Cohorts, these being those aged 0 - 24, 25 -
64 and 65+, or in other words the young, adult and elderly Cohorts, respectively.
The size of each of these Cohorts can be seen in Table 1 and initial conditions are
established such that t0 = 0 on the 29th February when the Republic of Ireland re-
ported its first verified case, the initial population is taken as N = 4937786 with the
breakdown of the population such that the populations of Cohorts 1, 2 and 3 where
N1 = 1641320, N2 = 2635296 and N3 = 661170, respectively, as seen in Table 1. The
population of each cohort is taken to be strictly decreasing with the death rate such
that dNi

dt = −dDi

dt . In the following analysis we will consider the grouping of actively
infectious people in cohort i, Ii = Ipi+ Iai+ Isi for clarity when comparing the model
with data in Section 5. The initial Irish infection is assumed to be a member of the
adult population of Cohort 2 presenting with symptoms with a subsequent member
of Cohort 2 being exposed such that Is2(0) = I2(0) = 1 and E2(0) = 1 with no infec-
tious or exposed people in the remaining compartments with I1(0) = I3(0) = 0 and
E1(0) = E3(0) = 0. Initially there are no recovered or dead members of the popula-
tion and thus R1(0) = R2(0) = R3(0) = 0 and D1(0) = D2(0) = D3(0) = 0. Following
this, the size of the Susceptible compartment is taken as the residual of all other com-
partments at any given point in time t such that Si(t) = Ni(t)−Ei(t)− Ii(t)−Ri(t),
i = 1, 2, 3.

The model is run over 160 days from the first verified Irish case which was notified
on 29/2/2020 deemed to be t0 = 0 as mentioned above, until 7/8/2020 the final time
point t8 = 160. Changes in policy such as the implementation of lockdown strategies,
or the phases of reopening from lockdown implemented by the Irish government,
are seen as the start of a new period, with a different level of social interaction
implemented for each period in order to reflect behaviour within that time period, as
shown in Figure 5 with n = 8 periods within the model separated by the following
dates in 2020;

Fig. 5. Irish timeline of policy changes with relevant dates when social interaction is deemed
to change marking the beginning of one of the n = 8 periods used within the model highlighted.
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Feb 29th (t0 = 0): The first verified Irish case.
Mar 14th (t1 = 15): The second Irish death from which a “cautious phase” is as-

sumed to begin, where social interaction is reduced. Schools are also closed
and a travel restriction of 5km for non-essential journeys is put in place.

Mar 27th (t2 = 28): The start of the Irish lockdown within which the elderly are
asked to cocoon, reducing their social contacts, along with the cessation of
all labour, aside from that deemed to be “essential” by the Irish government.

Apr 19th (t3 = 50): The extension of the Irish lockdown.

May 18th (t4 = 79): Start of phase 1 of the Irish reopening, where outdoor-based
retailers are allowed to reopen.

Jun 8th (t5 = 100): Start of phase 2 of Irish reopening, where visits between house-
holds are permitted along with the further reopening of businesses and the
lifting of travel restrictions.

Jun 26th (t6 = 121): Start of phase 3 of the Irish reopening, where most retailers are
permitted to return to work along with café’s, restaurants and pubs serving
food, sporting activities are also permitted to resume along with the reopening
of schools for the upcoming academic year.

Jul 20th (t7 = 142); Planned date for Phase 4 of reopening, which would have en-
tailed a full economic reopening with only the support of public health advice,
which was then delayed beyond the scope of the modelling period.

Aug 7th (t8 = 160): End of the modelling period.

4.1. Parameters. The model relies on a number of parameters, as seen in Equa-
tions (3.9) - (3.15), which reflect both the behaviour of people within a population
and the diseases effect on people. The biological parameters within the model that
cannot be varied with policy are derived from the data examined in Section 2, with
the fitting of parameters carried out using the Irish reported infection data shown
in Figure 1. This establishment of parameters is important in order to achieve an
accurate representation of the models path thus far and hence allow for reliable pol-
icy analysis later in Section 5. We will now establish the necessary parameters in
Sections 4.1.1 - 4.1.7 with a summary of these values available in Table 4

4.1.1. Interaction and Policy. Interaction between susceptible and infectious
people can be shown using the βij parameter as discussed in Section 3.2. This param-
eter can be thought of as the number of social contacts leading to an infection between
a Susceptible person in Cohort i and an Infectious person in Cohort j per day. As
social distancing and lockdown policies are implemented throughout the course of the
disease’s outbreak, as was the case in Ireland. The rate of interaction between these
groups can be assumed to change over time as new policies are implemented, therefore
we define βij(t) as a piecewise constant function over time taking on a constant value

b
(κ)
ij within a period κ = [tκ, tκ+1) in order to reflect interaction between susceptible

people in Cohort i and infectious people in Cohort j within a period κ given by the
time points described in Section 4,

(4.1) β(t) =

β11(t) β12(t) β13(t)
β21(t) β22(t) β23(t)
β31(t) β32(t) β33(t)

 , βij(t) =



b
(0)
ij , t0 ≤ t < t1,
...

...

b
(κ)
ij , tκ ≤ t < tκ+1,
...

...

b
(n−1)
ij , tn−1 ≤ t < tn.
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The estimated values for b
(κ)
ij can be seen in Table 5 for all periods 0 ≤ κ ≤ 7. These

values were chosen in order to capture the overall trajectory of the daily confirmed
infection data.

4.1.2. Incubation Rate. The incubation period L of the disease is the period
for which a person is infected but is not infectious, the inverse of this produces the
rate of incubation σ = 1

L , which is used in Equation (3.10). This is assumed to be
a random variable following a Lognormal distribution as suggested by the Parameter
Summary Document produced by the Irish IEMAG Modelling Subgroup[10] and thus,

(4.2) L ∼ Ln(µ = 1.63, σ = 0.5).

This produces a distribution as seen in Figure 6(a), allowing for the case that the
disease may have a very long incubation period in certain individuals, which can be
seen from the right skew given by the Lognormal distribution.

4.1.3. Presymptomatic Incubation Rate. The presymptomatic incubation
rate σp = 1

P is given by the inverse of the presymptomatic period for an infected
person, that is the period for which a person is infectious but does not yet show
symptoms. This is assumed to be a constant value of P = 2 days across all age cohorts
in line with a study relating to the transmission dynamics of COVID-19 carried out
by Cevic et al.[4].

(4.3) σp =
1

2
.

4.1.4. Probability of Asymptomatic Infection. The probability of asymp-
tomatic infection α is the probability that following the presymptomatic period of
infection the infected person will not develop symptoms. This is assumed to be con-
stant across all age-cohorts and is derived from a meta-analysis of Asymptomatic
SARS-CoV-2 infections[2] where from an analysis of 94 studies the overall estimate of
the proportion of people who become infected with SARS-CoV-2 and remain asymp-
tomatic throughout infection was 20% (95% CI 17-25).

(4.4) α = 0.2.

This dictates movement from Ip to Ia with (1 − α)Ip moving from Ip to Is presenting 
symptoms.

4.1.5. Infectivity Reduction Factor. The infectivity reduction factor h is a 
multiplicative factor that reduces the transmission rate between between Susceptible 
people contained in S and Infectious people that do not present symptoms contained
in Ip and Ia. This is taken as the arithmetic mean of the transmission rate between 
asymptomatic and susceptible individuals derived from a number of studies used in
an analysis of Symptomatic and Asymptomatic Infection by Arcede et al.[1]. From 
this we established h = 0.78. As both presymptomatic and asymptomatic cases do 
not present with symptoms this reduction factor is assumed to hold for transmission
from Ip and Ia within the model.

4.1.6. Recovery Rate. The infectious period D is also known to vary from 
person to person and is taken from a uniform distribution in the interval [3,9] within 
the model, with the rate of recovery taken as the inverse of this infectious period 
γ = 1 , which is used in Equations (3.12) - (3.15). We can hence see that it follows

D

the distribution D ∼ U(3, 9). This is taken from the inter-quartile range of hospital
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stay outside of China according to a study on length of hospital stay from the Lon-
don School of Hygiene and Tropical Medicine[17], as discussed in Section 2. This is
similarly taken as a random variable for simulations as this varies on a case by case
basis depending on physiology. A Gamma/Weibull distribution was suggested by the
London School of Hygiene and Tropical Medicine as it takes into account fringe cases
that spend a very long period of time in hospital due to the right skew from these
distributions. However a uniform distribution is used here as seen in Figure 6(b) as a
simplifying assumption.
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Fig. 6. Distribution of incubation[10] and infectious[17] periods given as a lognormal and
uniform distribution, respectively, according to the parameters as discussed in Section 4.1.2 and
4.1.6

4.1.7. Mortality Probability. Mortality is given as a probability of death at
the end of the infectious period. This is implemented as the mean of the reported
CFR by age-cohort within Ireland over 10 days from 21/7/2020 to 31/7/2020. This
was sourced from the daily Epidemiology of COVID-19 in Ireland reports from the
HPSC[15], with case statistics updated daily under the assumption that as time pro-
gresses and more testing is done, the available sample will increase such that the “true”
CFR will be approached by the reported data. The value of this “true” CFR is shown
in Table 3 and implemented within the model as the values for µi in Equation (3.15).

Cohort Age Group Death Rate (µi)
1 Persons aged 0-24 3.97× 10−4

2 Persons aged 25-64 6.40× 10−3

3 Persons aged 65+ 2.15× 10−1

Table 3
Values for probability of death by Cohort (µi for a Cohort i) inferred from reported CFR from

HPSC[8].
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Fig. 7. Case Fatality Rate (CFR) for Cohorts 1-3 inferred from HPSC Reports[8] by taking
the mean of the reported CFR for 10 days from 21st - 31st July.

Parameter Description Value
βij Cohort Interaction Coefficient See Table 5
σ Incubation Rate 1

1.63 (mean)
σp Presymptomatic Incubation Rate 0.5
α Probability of Asymptomatic Infection 0.2
h Infectivity Reduction Factor 0.78
γ Recovery Rate 2

9 (mean)
µi Cohort Mortality Probability See Table 3

Table 4
Summary of parameters described in Sections 4.1.1 - 4.1.7

4.2. Method for Policy Analysis. In order to carry out policy analysis the
model was implemented in Python[18]. A number of Python libraries were used to
assist in the development of the model such as:

• numpy was used in order to run multiple simulations using n-dimensional
numpy arrays as opposed to native Python tools in order to compute with
and manipulate the large amounts of data used within the model effectively.
• scipy.integrate was used in order to numerically solve the system of ODEs

within the model through the use of the solve ivp() function which used an
RK45 solver to solve the system.
• pandas was used in order to pass real-world data into the model for compar-

ison, parameter-fitting and to carry out analysis of results.
• matplotlib.pyplot was used in order to effectively visualise the data and

model output which can be seen in Section 5.
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In order to carry out simulations and hence policy analysis using these libraries
along with real-world data, the model was implemented in Python using the following
method:

• The system of ODEs discussed in Section 3.2 was defined as a function within
Python with the initial conditions and population sizes discussed earlier on
Section 4.

• The incubation and infectious periods discussed in Sections 4.1.2 and 4.1.6
relating to the σ and γ parameters, respectively, were generated as a list of
length 25000 using the numpy.random library according to their lognormal
and uniform distributions, respectively. The death rate for each Cohort was
implemented using the values seen in Table 3.

• The system of ODEs was then solved numerically 25000 times over the pro-
vided randomly generated values for σ and γ using the solve ivp() function
from the scipy.integrate library to produce a numpy array of resulting
values for each Cohort, compartment and set of values for σ and γ.
• This numpy array was then split to produce a range of values for each com-

partment over time with the 25th and 75th quantiles taken for the infection
range produced using the numpy.quantile() function.

• The constant values b
(κ)
ij , attributed to βij(t) at a given time t ∈ [tκ, tκ+1)

as shown in Equation (4.1), was altered for each Cohort by period such that
the curve produced by the data lay within the models output range, with the
50th quantile used as a guide for the reported data.
• The reported value for the effective reproductive number was also used to

check that the model output was in line with real-world data, as shown in
Figure 8.

Fig. 8. Model output for the reproductive number (Rt) calculated using the method described in 
Section 3.3 to calculate a population-level value for Rt compared with reported 95% quantile range 
given by IEMAG[11] and NPHET[14].
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In order to carry out policy analysis the originally assigned value of b
(κ)
ij could

be altered from the original fitted value in order to reflect a higher or lower level of
interaction between susceptible people from Cohort i and infectious people in Cohort
j during the period that the time t lies within. This will be discussed in more detail
in Section 5.1. Projections for the future were generated by extending the modelling
period by including a new time period for all t ≥ 160, where an assumption relating
to the level of social interaction following the end of the modelling period would be
made and a projection carried out under the assumption that there is no further policy
intervention aside from the assumed policy intervention at the end of the modelling
period.

5. Results. With the methodology established in Section 4 we can carry out
simulations relating to implemented policy and potential policies in terms of number
of infections and the growth rate of these infections experienced over time. We can
observe the current course of the virus by incorporating actual past policy decisions,
as seen in Figure 9, with a 50% quantile range produced about the 50th quantile
following the constant values assigned for βij(t) described in Table 5. The data points
for confirmed Irish daily infections can be seen to fall along the 50th quantile line in
Figure 9(a) representing the population at large. From examining this data it should
be noted that, specifically in Figures 9(d) and 9(e), there is a notable outlier around
day 50 of the model, this relates to a backlog in tested cases, as previously mentioned
in Section 2. Upon division into Cohorts and scaling to Cohort population size the
model produces curves consistent with Figures 9(b) - 9(d). The data for Cohort 1
can be seen to occur below the 50th quantile line which is likely due to reporting of
confirmed cases at a lower rate than the model would suggest that actual cases are
occurring, a possible explanation for this might be that younger people are less likely
to present with severe symptoms of COVID-19 than older Cohorts[13] and so it is
less frequently reported. Cohort 2 returns a better fit about the 50th quantile than
Cohort 1, as Cohort 2 contains those aged 25-64, encompassing the majority of the
Irish workforce, it can also be seen that the model returns a higher maximum range
than the other Cohorts in terms of Cohort size - meaning that a larger proportion
of the Cohort 2 population is infected when compared with other Cohorts. This
is most likely due to the higher levels of interaction associated with being in the
workforce along with the presence of “essential workers” who still presented for work
throughout the lockdown. Cohort 3’s confirmed cases appear in the higher end of
the model range. As the elderly were encouraged to cocoon during lockdown this
is reflected by the level of interaction involving Cohort 3 implemented in the model
during lockdown. Similarly, due to the more adverse effects associated with COVID-
19 for older members of the population[13] the confirmed cases for Cohort 3 are more
likely to be in line with actual cases than other Cohorts. Taking these factors into
account it can be seen that the range associated with Cohort 3 produced by the
model is lower than the data might suggest. We can also see the death curve for the
population in Figure 9(e), the data for which was seen to lie between the 90th and
99th quantiles, with the data peaking at approximately 1500 deaths at the end of the
modelling period.

With the current policies implemented as of the end of the modelling period, the
model suggests that if no further intervention is made, the virus may re-emerge within
the coming months, likely due to a higher level of social interaction in the later stages
of reopening. This will be discussed in greater detail in Section 5.2.

From this initial analysis of implemented policies the level of interaction within
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(a) Population (b) Cohort 1 scaled to Cohort population

(c) Cohort 2 scaled to Cohort population (d) Cohort 3 scaled to Cohort population

(e) Population Death Curve

Fig. 9. A 50% quantile range from the 25th to the 75th quantiles for infection curves with 
a quantile range from the 90th to the 99th quantiles for the death curve, fitted to data of actual 
lockdown policy used in Ireland.

the model can be altered to reflect different policies that could have and could be 
enacted in the future. Such simulations will now be discussed in Sections 5.1 and 5.2.

5.1. Policy Analysis. In this section we will carry out an analysis of alter-
native policies that could have been implemented throughout the modelling period 
as opposed to the policy timeline shown in Figure 5 leading to the results detailed 
in Figure 9. This will allow us to evaluate the effectiveness of implemented policies 
along with how other policy decisions might have impacted the behaviour of the virus 
throughout the modelling period. The policies that are retrospectively seen to have
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t0 t1 t2 t3 t4 t5 t6 t7
β11 0.15 0.03 0.03 0.01 0.01 0.025 0.045 0.055
β12 0.15 0.03 0.03 0.01 0.01 0.025 0.035 0.045
β13 0.1 0.03 0.03 0.01 0.01 0.015 0.025 0.035
β21 0.4 0.25 0.1 0.07 0.07 0.08 0.1 0.1
β22 0.7 0.25 0.15 0.07 0.07 0.08 0.1 0.1
β23 0.65 0.25 0.03 0.01 0.04 0.07 0.08 0.08
β31 0.5 0.125 0.03 0.02 0.02 0.04 0.06 0.06
β32 0.55 0.15 0.08 0.02 0.02 0.04 0.06 0.06
β33 0.6 0.15 0.03 0.02 0.02 0.05 0.07 0.07

Table 5
Evolution of βij between Cohorts over the modelling period, with βij(t) assigned a constant

value b
(κ)
ij for a time value t ∈ [tκ, tκ+1), such that the period given by the interval [tκ, tκ+1) is

known as period κ. Values were estimated to roughly fit confirmed infection data points around the
50th quantile from multiple simulations.

been quite effective can then be brought forward and examined in Section 5.2 in terms
of projections for the future as potential policy.

5.1.1. No Lockdown. The use of a no lockdown simulation serves to illustrate
the unhindered course of the virus if no action was taken and can indicate if policy
intervention was necessary. This scenario can be simulated by assigning the value of all
βij(t) to a constant value for the duration of the modelling period, namely, their value

at t = 0 from the initial analysis b
(0)
ij such that βij(t) = b

(0)
ij for all t ≥ 0. It can be

(a) Infection Curve (b) Death Curve

Fig. 10. Infection and death curves produced by the model to simulate if no lockdown was 
implemented with social interaction at the same level as t0 = 0 throughout the model.

clearly seen from Figure 10(a) that the rate of infection would be massively increased, 
as opposed to the population infection curve we have seen already in Figure 9(a) along 
with a much higher death curve shown in Figure 10(b) with predicted total deaths 
coming to roughly 17500 once again dwarfing the death curve seen in Figure 9(e). 
This indicates that some form of lockdown or policy intervention to reduce social 
contacts was warranted due to the potentially higher level of infections and deaths 
arising from no action being taken.

5.1.2. Earlier Lockdown. An earlier population-wide lockdown can be simu-
lated by reducing the level of interaction within the population from that in period 3
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to the levels within period 2 as seen in Table 5, such that b
(2)
ij = b

(3)
ij . The results of

this analysis are shown in Figure 11 from which it can be seen to reduce the level of
infection throughout the population with a significant reduction apparent in Cohort
3 as shown in Figure 11(d) due to the cocooning measures implemented during lock-
down, which significantly reduced the social contacts of Cohort 3 for a greater portion
of the model, effectively only giving members of Cohort 3 a period of 15 days from
t0 = 0 on February 29th to contract the disease with their pre-lockdown level of in-
teraction, thus reducing their likelihood of contraction. A population-wide reduction
is also evident with the 75th quantile of the models predicted range being reduced
significantly in all cases indicating that the results in this scenario would be reduced
infections. However a second spike scenario does appear to still be possible due to the
evident resurgence towards the end of the modelling period, specifically in Cohort 1
as seen in Figure 11(b). Although on a population level the resurgence does appear
to be less severe than that indicated in Section 9 due to the overall mass of infected
people being reduced from the earlier lockdown.

(a) Population (b) Cohort 1 scaled to Cohort population

(c) Cohort 2 scaled to Cohort population (d) Cohort 3 scaled to Cohort population

Fig. 11. A 50% quantile range of infections if a lockdown was started from t2 = 15 as opposed
to the original start of lockdown from t3 = 27.

5.1.3. Later School Closure. In the course of events leading up to the Irish
lockdown, schools and universities were closed from Thursday 12th March in period
2 of the model and remained closed throughout the modelling period. In order to
simulate a later school closure the reduction in Cohort 1’s level of interaction in
period 2 has been delayed until the start of the full lockdown from period 3 onwards,
as shown in Figure 5. In order to simulate this the level of interaction for period

2 including Cohort 1 as given by the constant values b
(2)
1j and b

(2)
i1 , seen in Table 5
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was set such that b
(2)
1j = b

(1)
1j and b

(2)
i1 = b

(1)
i1 . The results of this can be seen in

Figure 12, which along with the greatly increased level of infection in Cohort 1, as
seen in Figure 12(a), would also result in an increase in infection for the rest of the
population as seen in Figure 12(b) due to the higher level of aggregate social contact
within the population. Due to the higher death rates seen in Section 4.1.7 and more
adverse effects seen in the older members of the population[13] in Cohort 3, this would
result in a much less favourable outcome for the majority of the population in this
instance.

(a) Cohort 1 (b) Cohort 3

Fig. 12. Infection curve given under the assumption that school and university closure was
delayed to t3 = 27 as opposed to the original scenario when the closure occurred in period 2.

5.1.4. Partial Compliance. An important factor to consider when modelling
the effect of policy is the level of compliance within a population to said policy.
Throughout the past simulations we have assumed that the whole population complies
with policy as reflected by varying levels of interaction seen in Table 5. In order to
simulate a proportion of non-compliant members of the population we will assume
a level of non-compliance with policy given by 0 ≤ η ≤ 1 such that a proportion

of the population given by η are assumed to interact at a rate b
(0)
ij throughout the

modelling period. Thus βij(t) = ηb
(0)
ij + (1 − η)b

(κ)
ij for all t ≤ 160. Here we assume

a level of noncompliance η = 0.2, meaning 20% of the population are assumed to

interact at a constant rate b
(0)
ij while 80% are compliant with policy and so interact

according to the values established in Table 5. The results of this analysis can be seen 
in Figure 13 examining the population as a whole in terms of infections and deaths in 
Figures 13(a) and 13(b). Here we do not observe the suppression in infections caused 
by the second lockdown as seen in Figure 9 and instead see a much higher single 
curve representing the increased rate of infection and a higher level of total deaths of 
approximately 16000 under this framework. This highlights the overall importance of 
a large proportion of the population complying with policy to suppress the level of 
infection and deaths in the population.

5.2. Possible Future Scenarios. In this section we will generate projections 
relating to the time following the modelling period in order to evaluate an effective 
policy given the current position of the virus, directly following the modelling period 
based on the policies that have actually been implemented throughout this period. 
This will indicate if the country is ready for a further phase in its reopening plan or if 
this plan needs to be revised or possibly rolled back within the following projections.
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(a) Population Infections Curve (b) Population Death Curve

Fig. 13. Compliance analysis with η = 0.2 for βij(t) = ηb
(0)
ij + (1 − η)b

(κ)
ij for all periods

0 ≤ κ ≤ 7.

5.2.1. Current Course. As at the end of the modelling period the current
course of the virus can be extended further by allowing the values of βij(t

∗) = βij(t8)
for all t∗ ≥ 160. This projection gives an idea of how the virus will progress at its
current rate and if policy intervention will be required in the future. It can be seen
in Figure 14 that the population in general would be much more adversely effected
in terms of infections than was seen originally during the modelling period. It would
have a peak of approximately 40000 infections dwarfing the original population peak
of approximately 3500, as seen in Figure 9(a) which would lead to a much greater
strain on the healthcare system than originally seen. This would indicate that policy

Fig. 14. Population-level projection until t = 300 of infections with no change in the level of 
interaction from t = 160.

intervention is required in order to reduce the future level of infection within the
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population. In terms of Cohort infections there is no discernible difference in growth
between the relevant Cohorts over the examined time period. Some of the potential
policy interventions will now be discussed below.

5.2.2. Reintroduce a Full Lockdown. A full lockdown projection gives a sce-
nario such that a lockdown with the same level of social contact seen throughout the
lockdown is reintroduced in order to mitigate the effects of the second spike evidenced
in Section 5.2.1 in order to reduce the spread of the virus. This is achieved by setting
the value of βij(t

∗) = βij(t3) for all t∗ ≥ 160 such that the level of interaction is the
same as that observed throughout the lockdown in the modelling period. The popu-
lation level projection shown in Figure 15 indicates that the implemented lockdown
would cause a turning point in the infection curve leading to a reduction towards 0
following the end of the projection as at t = 300. From this point the lockdown policy
could be revised given the situation at t = 300 with consideration for economic and
social factors.

Fig. 15. Population level projection of infections under the assumption that a full lockdown is 
reimposed following the end of the modelling period until t = 300.

5.2.3. Reintroduce Cocooning. An alternative policy to explore would be to 
cocoon the elderly again in order to shield the more vulnerable population within 
Cohort 3 as opposed to the full lockdown explored in Section 5.2.2. This is achieved 
by setting the value of βi3(t∗) = βi3(t3) and β3j (t∗) = β3j (t3) for all t∗ ≥ 160 such that 
any interaction involving Cohort 3 is reduced to the level seen throughout lockdown. 
Observing the results of this policy on the population, as seen in Figure 16, as opposed 
to the projections explored in Figure 14, with no new policies implemented it can be 
seen that while a second spike does appear to occur with this policy, the second spike 
occurs at a much more gradual rate over the population than infections originally 
grew at in the modelling period, with similar levels of growth seen seen across all 
Cohorts. This would indicate that the reintroduction of cocooning could be a viable
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option coupled with other measures that could be established later in the growth of
infections due to the slow growth given by this policy allowing for a further reduction
in infections.

Fig. 16. Population-level projection of infections until t = 300 with cocooning re-implemented.

6. Conclusion. From the projections and policy analysis carried out throughout 
Section 5 it is clear that any policy that reduces social contact between susceptible 
and infectious people within a population will reduce the growth of infections within 
the population as would be expected following examination of Equations (3.9) - (3.15). 
Hence, indicating that from the point of view of reducing infections to 0 a full lock-
down policy such as that discussed in Sections 5.1.2 and 5.2.2 would be favourable 
as it appears to be the most effective approach in generating a disease-free equilib-
rium. However, if social freedom and economic factors are to be considered a more 
restrained policy such as reintroducing cocooning as discussed in Section 5.2.3 may 
be the most prudent strategy as it allows for a much slower growth and allows more 
time to implement further policies as the situation progresses while minimising the 
locked down population. It can also see from Section 5.1.4 that the impact of non-
compliance with policy can be great and thus it is important that a the vast majority 
of the population complies with policy interventions as levels of non-compliance in 
the population can have detrimental effects on viral suppression.

The model does highlight the need for policy intervention and hinges on the fact 
that the population will adhere to newly implemented policies, so population wide 
adherence to policy is an important factor to consider in these results. Another 
issue highlighted within this model is the random nature of the spread of the virus, 
since biological parameters are implemented as random variables to illustrate varying 
physiologies from person to person, a range is produced as seen in the figures within 
Section 5 sometimes with a very wide potential range. These ranges reflect the fact 
that the spread of the virus is not inherently deterministic and in terms of expansion 
of this model, many other factors can be implemented as random variables to reflect
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this random characteristic of the spread of infections.
The modelling carried out represents a snapshot in time from February to August

2020 assuming one viral strain. The study of COVID-19 is an ongoing area of research
that is rapidly developing. As of February 1st 2021 we know that COVID-19 has the
capacity to present in a number of strains with varying levels of transmissibility and
lethality. The existence of these strains could be examined as a potential area of
further study in the future. Similarly the model could be extended over a longer
period of time as more data becomes available.

Another area that could be developed on in further study is the fitting of the
model to data using techniques such as least-squares regression, which has not been
attempted here due to the stochastic nature of the model and high numbers of pa-
rameters. This could be achieved by considering the population model described in
Equations (3.1) - (3.7) and focusing on either infection or death data which is freely
available from Ordnance Survey Ireland’s COVID Statistics Profile[15] as used in this
model or from the WHO’s Coronavirus Dashboard for analysis of countries other than
Ireland[20]. It should be noted, however, that when considering data from the early
stages of the pandemic that the full extent of infection may not be captured in the
data. This could be due to reporting errors as aspects such as asymptomatic cases
may have not been tested for or correctly identified in early stages due to a lack of fa-
miliarity with the disease at the time. Following this, Python libraries such as pandas
and sklearn could be used to perform regression analysis and estimate alternative
values for the interaction of mortality parameters β and µ, respectively.
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Appendix A. Calculation of the Basic Reproductive Number. To
calculate the population-level basic reproductive number R0 for a k = 3 age-cohort
SEIRD model described by Equations (3.9) - (3.15), we consider an aggregation of
the 3 age-cohorts to represent the entire population such that,

(A.1) x1 =
3∑
i=1

Si, x2 =
3∑
i=1

Ei, x3 =
3∑
i=1

Ii, x4 =
3∑
i=1

Ri, x5 =
3∑
i=1

Di.

It should be noted that in defining the compartment x3 in Equation (A.1) we let
Ii = Iai + Ipi + Isi denote all actively infectious members of cohort i, which we will
use below for brevity. From this we can identify the relevant dynamic variables x2
and x3 and express them as the vector,

(A.2) x = (x2, x3)

Next, we consider the matrices F and V about a disease free equilibrium point such 
that x = (0, 0) and compute the next-generation operator F V −1 as described in
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Section 3.3. The matrices are

F =
∂Fi(x0)

∂xj
=

(
0
∑
j

∑
i βij

0 0

)
,(A.3)

V =
∂Vi(x0)

∂xj
=

(
σ 0
−σ

∑
i γi

)
,(A.4)

FV −1 =

(∑
j

∑
i βij∑

i γi

∑
j

∑
i βij∑

i γi

0 0

)
.(A.5)

The basic reproductive number is computed by taking the eigenvalues λi of this matrix
and assigning the leading eigenvalue as R0, such that

λ1, λ2 = 0,

∑
j

∑
i βij∑

i γi
,(A.6)

R0 = Max(λ1, λ2),(A.7)

=⇒ R0 =

∑
j

∑
i βij∑

i γi
,(A.8)

as seen in Equation (3.19).
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