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Abstract

COVID-19 epidemics in many parts of the United States and the world have shown unexpected shifts
from exponential to linear growth in the number of daily new cases. Epidemics on configuration model
networks typically produce exponential growth, while epidemics on lattices produce linear growth. We
explore a network-based epidemic model that interpolates between lattice-like and configuration model
networks while keeping the degree distribution and basic reproduction number (R0) constant. This model
starts with nodes assigned random locations in a unit square and connected to their nearest neighbors.
A proportion p of the edges are disconnected and reconnected in a configuration model subnetwork. As
p increases, we observe a shift from linear to exponential growth. Realistic human contact networks
involve many local interactions and fewer long-distance interactions, so social distancing affects both the
effective reproduction number Rt and the proportion of long-distance connections in the network. While
the impact of changes in Rt is well-understood, far less is understood about the effect of more subtle
changes in network structure. Our analysis indicates that the threshold between linear and exponential
growth may occur even with a small percentage of reconfigured edges. Additionally, the number of total
infected individuals in an epidemic substantially increases around this threshold even when R0 remains
constant. This study reveals that implementing and relaxing social distancing restrictions can have more
complex and dramatic effects on epidemic dynamics than previously thought.

1 Introduction

In a pandemic, accurate predictive models of epidemic dynamics are critical for preparation of public health
and healthcare systems, planning interventions, and evaluating the effectiveness of these interventions. How-
ever, traditional modeling techniques for predicting the behavior of epidemics have failed to reflect the
patterns of infection in the United States. This project uses a network-based SIR model that interpolates
between lattice-like networks and configuration model networks in an effort to explain unexpected patterns
in the daily incidence of new COVID-19 cases seen at local and regional levels in the United States and other
countries.

In an epidemic model, a network may be used to represent stable interactions among individu-
als [13]. Many network-based epidemic models use configuration model networks, where nodes are assigned
degrees (i.e. numbers of neighbors) and then these “stubs” are connected completely at random. Epidemics
simulated on configuration model-based networks fit the expected growth pattern seen in the likes of China
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and South Korea, where daily new case numbers (epidemic curves) show a clear period of exponential growth
before peaking and decaying. Case resurgences are able to be implemented via change points in the case
of South Korea, while still fitting the expected trends in the data (Eben Kenah and Grzegorz A. Rempala,
private communication, June 2020). However, U.S. case data only initially exemplifies the expected expo-
nential growth pattern before devolving into unexpected patterns of linear growth and plateaus. This is
exemplified in Figure 1, which shows the new cases per day in the state of Ohio (Grzegorz A. Rempala,
private communication, June 2020).

Figure 1: Ohio: New cases per day (epidemic curve) as of August 1st

Previous research shows that the pattern is reflective of social changes (caused by COVID-19
regulation and restrictions), not by the network structure or testing saturation [13]. Furthermore, while
the patterns largely appear to be a result of the aforementioned social changes, further investigation would
be required to determine if the patterns stem from some structure within the epidemic, such as a fractal.
This is currently beyond the scope of the project.

While these differing patterns of growth can be implemented into a model by using change points,
adding many parameter changes can be difficult and may raise the level of uncertainty in the results. The
fact that these patterns are common but difficult to replicate using change points suggests that they are
caused by something more fundamental.

Here, we develop and explore a model that is able to reproduce the switch in epidemic curve
dynamics from linear to exponential growth without the addition of a change point. Instead, we introduce a
lattice-like structure to the network by assigning nodes a random position in the unit square and connecting
them to their nearest neighbors with available stubs. This creates networks that are able to reflect linear
growth patterns. This new model recreates patterns seen in the COVID-19 data by altering the network
structure that the epidemic runs on, rearranging from a lattice-like structure to a configuration model with
probability p, which represents the proportion of interactions one has with someone outside of their immediate
community. We analyze the transition between linear and exponential growth by investigating the effect of
different values of p, the level of connectivity of the network, R0 and Rt values, and other attributes.

We find that the shift between linear and exponential epidemic curve growth occurs at low values of
p, regardless of the reproductive potential of the epidemic (R0). When examining the final sizes of epidemics
as a function of p, the threshold where there is a clear separation between small, self-limited outbreaks
and large epidemics was found to emerge faster at higher values of R0. Once we determine an epidemic
size that accurately classifies small epidemics and large epidemics, we can investigate the probability of a
large epidemic. The results show that small increases in the p can have large effects on the probability and
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final sizes of large epidemics and on the dynamics of an epidemic. Ultimately, this research can potentially
explain some of the patterns seen in the COVID-19 pandemic and further explain some of the impacts of a
precarious reopening on the U.S. epidemic. This analysis finds that a lattice-like network is likely to be a
more accurate representation of the social interactions in the United States during times of social distancing
and quarantining behavior, producing the linear growth and plateau patterns seen in epidemic curves like
that in Figure 1. This is promising for future research, as much of the network-based modeling for COVID-19
has been simulated on configuration models, which only produce exponential growth dynamics. The addition
of the probability parameter p, which interpolates between these network structures, produces the shift in
growth patterns and provides a basis for understanding the transition between linear and exponential case
growth.

2 Methods

We implemented a network-based Susceptible-Infected-Recovered (SIR) model in Python, where the network
can interpolate between a configuration model and a lattice-like structure [16]. The model is structured such
that it contains a given number of nodes (representative of a population of people) each having a degree that
is meant to show the average number of people they interact with. On a contact network, infection spreads
between people in close proximity, represented in the network through edges. Edges can be broken, usually
by some social distancing or quarantining behavior, so that infection cannot be sent or received between the
two nodes that no longer connect. As infection spreads across the network, each person (or node) is classified
as either susceptible (S), infected (I), or recovered (R). Each individual starts in S, moves into I if infected,
and moves into R upon recovery or death. Terms and parameters necessary to understand the model are
listed in Table 1.

Configuration Model A network created by connecting all stubs in a collection of nodes uniformly at random.

Edge A link connecting two nodes. In this case, edges represent an instance of contact or
proximity between people.

Epidemic Curve A curve plotted over time that shows the number of new cases of an illness per day.

Lattice-like Network A network where the nodes are randomly positioned within the unit square, and
each node is given a specific degree from some distribution. The edges are then
connected based on the location of their nearest neighbors with available connections.

Node A vertex in a network that can be connected to other nodes by edges. In this
case, nodes represent an individual, each with a status defined by the SIR model.

p The probability that any given edge will be rearranged into a configuration model
sub-network. In the real world, this represents the percentage of interactions any
one person has with someone who lives outside their community.

R0 The basic reproduction number; measures transmission potential of an epidemic.
This is the average number of secondary infections produced by a typical case of
COVID-19 in a population of susceptible people.

Rt The effective reproductive number at time t; also measures transmission potential.
This considers the fact that the entire population does not remain susceptible over
the course of the epidemic. It’s the average number of secondary cases in a population
where the number of susceptible people decreases over the lifetime of the epidemic.

Rho (ρ) The percent of the population chosen at random at the beginning of the simulation
that are initially infected (introduces the disease to the rest of the population).
This is usually very small.

Stub A half edge. Two stubs, when attached, form an edge in the network.

Table 1: Definitions
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2.1 Assumptions

We made several assumptions in the development and use of this model, particularly in the use of a com-
partmental SIR model (susceptible-infectious-recovered) which has commonly been used in the modeling of
COVID-19 [13]. They are as follows:

1. Each individual/node in the network has some number of neighbors greater than 0 that they are
connected to by an edge, given by a degree (usually determined by a Poisson or negative binomial
distribution).

2. Infectious individuals can infect their immediate neighbors at a fixed rate that is greater than 0. The
rate of recovery is also assumed to be constant and greater than 0.

3. Infection and recovery times are assumed to be exponentially distributed.

4. There is no latent period between being infected and being infectious to other individuals.

5. Based on the given transmission and recovery rates, nodes can change their status between the com-
partments of the SIR model.

6. Recovered individuals cannot infect others or be reinfected.

The justification for the above assumptions is as follows. For Assumption 1, the graph-based ap-
proach has previously been shown to be a reliable epidemic model [8]. Additionally, Poisson and negative
binomial distributions are common degree distributions applied to real world networks. These distributions
imitate interacting with your closest neighbors, not the entirety of a social network, thus limiting the number
of edges in the model. The fixed rates of infection and recovery are reflective of real-world occupational/spa-
tial interaction. Assumptions 1 and 2 naturally lead into the exponential distribution of assumption 3, since
a constant infection rate leads to the probability of infection growing exponentially with time. Although
Assumption 3 can be relaxed, this leads to a more complicated model, which is unnecessary given the scope
of this paper [17].

In Assumption 4, we remove the possibility of compartments for latent periods, hospitalization, and
other states. Ultimately, adding a latent period or more compartments to the SIR model will not affect the
results of the model, since adding these will only delay the onset of the infection. This affects the timing
of the epidemic, but does not change the overall resulting behavior of the epidemic or the results of the
analysis. Thus, leaving them out drastically reduces any unnecessary calculations. Assumption 5 follows
from the nature of the SIR model. For Assumption 6, it should be noted that the literature shows viruses
similar to COVID-19 give at least partial immunity to future infections [6]. Since the analysis that we
conduct focuses on a relatively brief timescale, the possibility of reinfection for the population is negligible.
Thus, we assume individuals will not be reinfected in our model.

2.2 Model Overview

The model must to be able to show both patterns of exponential growth, typically seen in a configuration
model network, and linear growth, produced by a lattice or lattice-like network. Thus, both structures are
present in the model and are able to run independently from each other.

2.2.1 Configuration Model

The model was first built as a simple stochastic SIR epidemic run on a configuration model network. The
configuration model is a network that is made by assigning each node a degree and connecting stubs to form
edges until each node meets their desired degree [1, 10, 11]. Using an SIR model from the Epidemics on
Networks package [7], we can run epidemics on configuration model networks produced using the NetworkX
package [3]. This produced epidemic curves with exponential growth and decay. This portion of the model
assumes constant infectiousness and exponentially-distributed infectious periods. This portion of the model
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was predominantly tested and used with a Poisson degree distribution with mean λ. Binomial and negative
binomial distributions were also tested and produced similar results.

When running SIR epidemics, the Epidemics on Networks package produces arrays for each of these
compartments: susceptible, infectious, and recovered [7]. These arrays update each time a person moves
between these compartments. While useful, this produces curves that are more akin to prevalence curves
(active cases per day) instead of an incidence curves (new cases per day). In order to find the incidence curve,
it is necessary to find the number of new infections in distinct time steps, instead of at the random, often
non-integer values where the arrays are updated. This is done by finding the difference between the number
of susceptible people at these new time steps and plotting the decrease in the number of susceptible people
as the number of new infections. We use “epidemic curve” to refer to incidence curves, not the prevalence
curve produced directly from the SIR command.

While building the configuration network for the model, a function was added that allows the user
to view the distribution of pairwise distances across the network. Pairwise distances in a network reveal
the shortest possible path between any node pair (i, j), which are then plotted in a histogram format for
convenience. The pairwise distances are found using the all pairs shortest path length function from
the NetworkX package, which finds the minimum number of edges crossed between any two nodes [3]. For
example, if three nodes are connected in a triangle, then the pairwise distance for any pair of nodes is one,
even though there exists both a path of length one and of length two between any pair. The ability to
analyze the distribution of pairwise distances between nodes permits one to see the level of connectivity
of the network. A more connected network has shorter pairwise distances on average, so an infection can
spread faster, further, and more reliably. This facet of the model gains further significance later on in
the modeling process when we inspect the threshold between linear and exponential growth, as epidemics
with different growth patterns have notable dissimilarities in their level of connectivity. Running epidemics
on a configuration model thus produces the typical exponential growth-peak-decay pattern that is seen in
textbook epidemic curves.

2.2.2 Lattice-like Model

The next step was running epidemics in the same manner on a lattice-like network in order to show patterns of
linear growth. While lattice structures show linear growth dynamics when an epidemic is run on them, using
a pure lattice would not accurately capture variation in the number of social connections that individuals
have. In a pure two-dimensional lattice, nodes are positioned equidistant from each other and all have degree
four, except for the nodes at the corners (which have degree two) and the edges (which have degree three). By
creating a network that is lattice-like, we are able to create linear growth dynamics while retaining variation
in the degrees of the nodes. Given a graph, a positional dictionary, and a degree list, this algorithm creates
a lattice-like network by connecting nodes sequentially by the shortest relative distance between them and
their neighbors until they have reached the degree k assigned to them by a degree distribution [9, 5]. This
algorithm is titled build lattice like edges within the code, and it is available in the appendix.

The build lattice like edges algorithm takes in a given graph, G, a positional dictionary that
relates every node in G to a coordinate in the unit square, and finally, a list of desired degrees for each node
in G. First, a dictionary is created that relates each node in G to a list of squared distances from itself to
all other nodes. Since two is the maximum distance squared for any two points within the unit square, the
number two is designated as a place holder for the index that would be the distance between a node and
itself. This will become useful when looking for minimum distances. Then, a loop iterates over every node
in G. While a node has not yet reached the desired number of connections according to the given degree list,
the algorithm does the following: it finds the node with the minimum value in its distance dictionary entry,
connects the nodes together with an edge, and replaces the minimum distance with two so that the algorithm
cannot connect the nodes together again. If either node reaches its desired number of nodes, the algorithm
turns all of its distance dictionary entries to two, thus preventing it from connecting to other nodes.

It is important to note that the nodes are not connected by the shortest absolute distances, as
build lattice like edges iterates through the nodes in such a way that nodes that are the closest neighbors
to another particular node may have already reached k connections before they can be connected to their
absolute closest neighbor. An algorithm based off absolute distance connects the two closest nodes first, and
then the second two closest nodes until all nodes have their desired k connections. While an algorithm was
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constructed that did connect nodes according to this method (see Figure 2), it produced networks that were
over-connected to the point where it would always produce fast exponential epidemic growth, which was
ultimately undesirable.

Figure 2: Above are two networks made with the same nodes, node positions, degree distribution, and number
of edges. The left algorithm is build lattice like edges, which connects edges by iterating through the
nodes. The right algorithm connects edges based off absolute distances.

Like the configuration model network, epidemics were run on the lattice-like network created by
build lattice like edges and the pairwise distances across the network were also calculated. This lattice-
like network showed the desired linear growth dynamics.

2.2.3 Interpolation Between the Two Models

Since the U.S. COVID-19 epidemic data reveals instances of both linear and exponential growth, it is
necessary to use both the configuration model and the lattice-like network to reflect these dynamics. The
model combines the two networks by beginning with a lattice-like network with a given degree distribution,
usually Poisson. Edges on the network are broken with probability p, and the resulting stubs are reconnected
into a configuration model subnetwork. These reconnected edges will be referred to as long-distance edges.
This type of edge does not change the probability of infection across them, as the name might imply. This
reconfiguration of edges creates a hybrid of the configuration model and lattice-like networks depending
on the desired p. Thus, a pure lattice-like network is produced when p = 0, and a pure configuration
model network is produced when p = 1, as seen in Figure 3. No matter what value of p is used, the degree
distribution is the same. Since networks can exemplify distinct characteristics despite having the same degree
distribution, we can anticipate varying results from fluctuating values of p [14].

Figure 3: This shows a pure lattice graph changing into a configuration model-based network with proba-
bilities (from left to right) 0, 0.5, and 1.
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Ultimately, this model allows us to run epidemics and extract their epidemic curves. We are also
able to produce a histogram of pairwise distances, as well as an R-effective curve, revealing the change in Rt

over the course of the epidemic. The final model not only creates epidemics that have linear and exponential
patterns of growth, but also permits further analysis of the transition between lattice-like dynamics (linear
growth) and configuration model dynamics (exponential growth) by changing the mean degree of the Poisson
distribution, R0, and p.

The final function of the model, known as epi analyze, allows a user to input a list of degrees (of a
distribution of their choice) and a value of p, and receive their choice of output, including an epidemic curve,
the network the epidemic is run on, a histogram of the pairwise distance distribution, and an R-effective
curve. One is able to view both the prevalence curve creating by the SIR model as well as the incidence
epidemic curve extracted from the data. The epidemics can also be produced on a linear or logarithmic
scale for ease of viewing different growth dynamics. Figure 4 shows the epi analyze function with all of
the possible plots drawn. Note that the epidemic produced in Figure 4 is a single epidemic simulation, not
a representation of a real-life epidemic.

Figure 4: The results from the epi analyze function with all possible outputs

3 Analysis

It is important to understand what can cause a shift between the exponential and linear growth of disease
incidence, as seen in many parts of the United States and the world, in order to prevent and control such
outbreaks in the future. Previous analysis has revealed that the shift seen in Ohio (see Figure 1) is not a
result of geographic distribution (i.e. overlapping but distinct epidemics in different regions of the state) or
saturation of testing (i.e. reported growth does not represent the true growth of the epidemic) [Eben Kenah
and Grzegorz A. Rempala, private communication, June 2020].

The network-based SIR model produced here is successful in producing these shifts in growth
dynamics, which is a promising step in the right direction. This section will analyze the threshold between
exponential and linear growth in greater detail, and attempt to find a possible explanation for the patterns
seen in the U.S. COVID-19 epidemic.

3.1 Final Size and Threshold Analysis

Cursory analysis of the model’s outputs revealed that the transition from exponential to linear growth usually
occurs at low values of p that depend on the R0 given to the model. In order to approximate the location
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of the threshold more specifically, the final sizes of a broad range of epidemics at different p and R0 values
were investigated. The final size of an epidemic is the total number of cases recorded over the lifetime of
an epidemic, including the initially infected population. When infection is introduced to the population,
there are two possible outcomes: a small outbreak that goes stochastically extinct after infecting a small
number of individuals or a large outbreak that infects a substantial fraction of the population. To analyze
the probability of a large epidemic, it is important to find an outbreak size that can distinguish between
these two possibilities.

Using the build lattice like edges algorithm created in Section 2.2, one main data set was sim-
ulated to conduct this threshold analysis on. In this simulation, one initially infected person was introduced
into a population of 1,600 people. The network had a Poisson degree distribution with a mean of ten. The
simulation produced data for three different values of R0: 1.5, 2, and 3. These values were chosen in order
to show the range of behavior for epidemics of varying levels of severity. An R0-value that is around one will
naturally show much more variability in epidemic size, with a gradually declining chance of large outbreaks
as one gets closer to R0 = 1.0. Meanwhile, a higher R0-value, like R0 = 3.0, is more likely to produce
epidemics that impact a greater portion of the population, with a lesser chance of a small outbreak.

Finally, epidemics were simulated at an assortment of probabilities. Probabilities from p ∈ [0, 0.1]
by increments of 0.0025 and p ∈ [.2, 1.0] by increments of 0.1 were chosen. The former range used much
smaller increments because the threshold is first seen to emerge at probabilities below 0.1, even at low R0

values. At each combination of p and R0 values, 2,000 epidemics were simulated and their final sizes were
recorded, producing a total of 300,000 epidemics for this threshold analysis.

Figure 5: Final Size Distribution Over Three Different Values of p for R0 = 1.5, 2.0

For each R0 and p, a histogram was produced in R in order to show the distribution of final epidemic
sizes as probability increased [12]. Examining the histograms for each R0 value reveals how altering the
network structure by increasing p changes the epidemic final size distribution. For each R0, a threshold
emerges as p increases and a gap in the final size distribution appears, below which are the small outbreaks
and above which are the large epidemics. Animations of these distributions over changing probabilities are
available as supplemental files. In Figure 5, distributions of epidemic final sizes at selected values of R0 and
p show the influence of the probability of reconfiguring connections on an epidemic’s final size distribution.
R0 = 3.0 is not pictured, as the gap between small outbreaks and large epidemics is immediately visible
even at p = 0. At the lower R0-values, the threshold takes more time to emerge. At R0 = 2.0, a noticeable
break in epidemic size appears as early as p = 0.03, and increasing p skews the distribution towards larger
epidemics. At R0 = 1.5, the break appears at approximately p = 0.2, with the distribution skewing right
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more slowly with increasing p. Examining the lower and higher ends of the histograms for each R0 allows
for one to pinpoint the final size where this threshold emerges. For R0 = 1.5, the break occurs at around 80
total cases, while the breaks for R0 = 2.0 and R0 = 3.0 occur at 60 and 50 total cases, respectively.

3.2 Probability and Final Size of Large Epidemics

Using the threshold numbers outlined in the previous section, probabilities of large epidemics can be found for
our experimental R0 values and probabilities. The plot in Figure 6 shows the probability of a large outbreak
defined by the thresholds for a given combination of parameters. It should be noted that for Figure 6 and
later in Figure 7, the values of p were incremented by 0.1, excluding the additional data points on the interval
of p ∈ (0, 0.1) by 0.0025 used in the histograms of Section 3.1. Excluding these points does not impact the
overall trend of the graph, and thus have been removed to improve comprehension. Regression lines have
been added to adjust for the minute impact caused by removing these points.

As seen in Figure 6, there is an increase in the probability of having a large epidemic by up to 20%
for R0 values of 1.5 and 2.0 within the p interval [0, 0.4]. This increase is more dramatic for lower values
of R0 and p, which is important to note, since we expect the baseline value of p in a real-world network to
be between 0 and 0.1. After this interval, the higher values of p have roughly the same probability of an
outbreak. We anticipate the line of R0 = 3.0 to be flat, since at p = 0, the majority of epidemic final sizes are
either under 25 or above 1300 infected individuals. Thus, there is little potential for increased probability
of infection by changing the graph structures. We expect the lines to plateau at higher values of p, since at
a certain point the random connections overpower any innate structure in the network. Therefore, we can
attribute the graph’s lack of monotonicity to random variations in the finite number of simulations.

Figure 6: Probability of a Large Epidemic versus p

In a real-world scenario, depending on the approximate R0 of the disease and what value of p
accurately represents the connections between people through which infection can spread, the probability
of a large epidemic may be smaller than that predicted by many simple epidemic models. There appear
to have been several early introductions of COVID-19 into the United States that failed to expand into a
fully-fledged epidemic with exponential growth, which would be consistent with an R0 well below three and
a relatively low value of p [2].

In addition to analyzing the probability of a large outbreak occurring, the average final size of large
epidemics may also be calculated given the defined threshold from Section 3.1. Figure 7 shows a plot of the
average size of epidemics that are larger than the threshold epidemic sizes for each R0 value. For R0 = 3.0,
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the size of outbreaks shows little variability, staying more or less at a constant average size of approximately
1,500 cases for all p. This aligns with our findings from Figure 6, which determined that the probability of
a large epidemic occurring at R0 = 3.0 is almost certain regardless of the value of p. For R0 = 2.0, the size
begins at a starting average of 532 cases, and it more than doubles as p approaches 0.1, showing significant
growth in average final size as p only marginally increases. We again note that the large increase in final
sizes below p = 0.1 is critical, since the real-world baseline value of p is expected to be in this range. For
R0 = 1.5, there is a steady increase in average final size until p = 0.4, where it plateaus from that point
onward. The change in epidemic final sizes with p is more dramatic than the change in the probability of
a large epidemic, especially for R0 = 2.0, but both are affected by p. The effect of social distancing and
other health related policies would cause the real world network reconfiguration probability, p, to be lower
than average, and as seen in Figures 6 and 7, even a small increase in p can cause a significant jump in the
probability and final size of a large epidemic. This strongly suggests that it is critical that precautions are
taken seriously during a pandemic, as a local epidemic could balloon in size even when a small portion of
connections are reestablished.

Figure 7: Average Size for Large Epidemics versus p

3.3 Regression

In addition to examining the threshold between linear and exponential growth, the epidemic data can be
analyzed by estimating a regression trend line. To understand how linear or exponential the growth of new
cases of a particular epidemic may be, we first select the portion of data points that are halfway between the
start of the epidemic and the peak in infected incidence numbers. We choose this portion near the beginning
of the epidemic so that the depletion of susceptible people has not slowed down the spread of the epidemic
significantly. Afterwards, an exponential least-squares regression line is calculated according to the formula
y = ρN +aebx, where ρ is the percent of the population that is initially infected, N is the number of node in
the network, and the coefficient b describes the scale of exponential growth in the epidemic. When acquiring
the data, ten epidemics were simulated at every combination of R0 and p, with the probabilities selected
between 0 and 1 by increments of 0.01 and the same R0-values as Section 3.1. Finally, a plot of b versus p
was produced for each of the three R0-values, as seen in Figure 8.

Prior to evaluating the threshold for large epidemics, the curves of these plots did not appear as
anticipated, particularly for R0 = 1.5. The plots were expected to show an increase in the exponential
regression coefficient b as p increased, reflecting a transition from linear to exponential growth as more long-
distance connections were added into the graph. However, with R0 = 1.5 there is a bump in the data at very
small p values, creating an apparent increase in the regression exponent at small values of p. Upon looking
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more closely, it was determined that this is due to the fact that there was insufficient data to accurately
produce a trend line. To counteract this error, there was a restriction put on the epidemic that would ensure
the trend line would be made with sufficient data points. However, the bump in the data remained.

Figure 8: Exponential Regression Coefficient versus p for R0 = 1.5, 2, 3 [from left to right] before added
restrictions

After analyzing the threshold between large and small epidemics, an additional restriction was put
on the epidemic curves to guarantee a large epidemic occurs. This restriction is that the epidemic must
achieve a minimum of total infected individuals, which is designated by the threshold values from Section
3.2. This restriction was put in place to help filter out self-limited small outbreaks that were artificially
increasing the regression exponent at low values of p. After rerunning the data set, the bump in the R0 = 1.5
exponential coefficient plot was no longer there, while the desired increasing data trend remained for the
other R0 values. The corrected regression plots are shown in Figure 9. Interestingly, although the trend
line for R0 = 1.5 stays relatively constant, the variance of the line diminishes with p. This means that for
R0 = 1.5, the intensity of the epidemics on average does not change, and outlier data points are suppressed
as p increases. Additionally, R0 = 2.0 and R0 = 3.0 have curves that exhibit an increasing exponential
trend with constant variance. These trend lines show that as p increases, the shift from linear to exponential
growth occurs faster and with greater intensity at higher R0 values. This fits the expectations of the model,
as it is aimed to produce exponential growth more reliably at high p and R0 values and linear growth more
frequently at low p and R0.

It is important to note that the shift from linear to exponential growth cannot be explained by
shift in R0 values. Although, the intensity may change with R0, the linear growth phenomenon is due to the
shift in pairwise distance distributions and intrinsic network structure. As p increases, edges that were once
locally connected are reconfigured anywhere in the network. As a consequence, less edges are needed to be
crossed to get from one part of the network to another and this is defined by a shift in pairwise distances.
Within the terms of the epidemic, this means that infection spreads faster and more reliably.

Figure 9: Exponential Regression Coefficient versus p for R0 = 1.5, 2, 3 [from left to right] after added
restrictions
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4 Conclusion

The model produced in this research was not only able to produce epidemics of linear or exponential growth,
but was also able to show a transition in growth patterns by interpolating between different network struc-
tures. By creating a parameter p for the probability of long-distance connections, the model is able to show
these different growth dynamics as well as the transition between them. Beyond this, the model is able
to produce other aspects of an epidemic for analysis. This includes both incidence and prevalence curves,
R-effective curves, and pairwise distance distributions. The model thus allows one to see a multifaceted view
of an epidemic, further shedding light on the relationship between epidemic dynamics and the structure of
the underlying network.

Analyzing the final size distributions of epidemics in this model allowed us to identify a clear
threshold epidemic size at each R0 value. By determining the final size at which this separation between
large epidemics and small outbreaks occurs for each R0, we are able to understand how this threshold
relates to the probability and final size of a large epidemic. This model was able to replicate the transition
between exponential and linear growth that occurred in the state of Ohio around the time that social
distancing measures began. It is possible that the network of connections in the state resembled a lattice-
like network with enough long-distance connections to support exponential growth. Under social distancing,
these connections became more local (i.e. lower p) and there was a transition to linear growth with a
much longer plateau than would be expected under exponential growth and decay. If true, this would also
explain why multiple early introductions of COVID-19 to the United States resulted in apparently self-
limited outbreaks. This analysis suggests that the United States’ network of interactions is best modeled by
a lattice-like structure instead of the configuration model typically utilized in epidemic modeling.

These results have important implications in the real world COVID-19 epidemic. If the U.S. epi-
demic is modeled using a network structure that is inaccurate compared to the social interactions and
distancing measures that are occurring in real life, then predictions of case numbers and predictions could
be skewed, leaving health care systems and populations alike expecting an epidemic that is far different than
the one that will ultimately happen. In addition to social networks being better represented by a lattice-like
structure during this time, this research suggests that a small value of p could exist in the real world, as
increased social distancing measures means that there is a low probability of long-distance contact between
people. As the United States moves towards reopening, the value of p in the network structure will increase
due to increasingly diverse social interactions, creating a shift towards exponential growth of new cases. As
seen in Figures 6 and 7 respectively, there is a greater probability of experiencing large outbreaks and a
much higher final case count as p increases by even small amounts. As these connections are reestablished
in the United States, the network best representing our social interactions will move further away from the
lattice-like shape and more towards a configuration model, yielding exponential growth and a more severe
epidemic. It is crucial to keep this in mind as the United States and other countries ease social distancing
restrictions.

5 Further Research

Further research can be conducted to examine why these trends occur. While the simulations were able
to model a shift between linear and exponential growth as a function of p, it is still not entirely certain
what real world events may have caused the p value to change. While the introduction of social distancing
and quarantining measures definitely contributed to the switch in network structure, other events may have
played a part in this. Other countries have also engaged in these measures, many of them committing to
social distancing with far more zeal than the United States, and are still seeing mainly exponential growth
patterns in their epidemic curves. Although it could just be that the United States has a remarkably different
geographic arrangement of its population, it is also possible that other factors could be exacerbating these
unexpected growth dynamics.

Regardless, most epidemic research is conducted on the assumption that configuration models are
the most accurate representations of contact-spacial networks, thus producing the expected exponential
patterns of growth seen in textbook epidemic curves. As the present growth of the epidemic in the United
States seems to be better-represented by a lattice-like network, it would be useful for epidemiologists and
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epidemic-models to explore network structures like the ones analyzed here. This could provide a more
accurate description of the expected dynamics of epidemics for the future, and better prepare the United
States for future epidemic scenarios.

Furthermore, analysis of the epidemic simulations could be refined by utilizing dynamic survival
analysis [4]. While this research maintained constant transmission and recovery rates, these parameters
could be changed in order to reflect the transmission and recovery of COVID-19 in different areas of the
nation (Eben Kenah and Grzegorz A. Rempala, private communication, June 2020) [13]. Dynamic survival
analysis has the potential to more accurately predict parameters for the model based on real-time epidemic
data from specific areas of the United States. While this was utilized briefly within the research, it warrants
more exploration.

Finally, models using small-world epidemics could be looked at with a similar analysis [15]. It
has already been shown in Figure 10 that the small world model exhibits linear and exponential epidemic
growth similar to our lattice-like interpolation model. The most important difference between the two is that
nodes in our model can have different degree distributions. A more detailed investigation of the relationship
between these two models is also warranted given the discoveries of this research.

Figure 10: Small-world epidemic prevalence curves with p = 0 on the left and p = 1 on the right.

6 Appendix: Lattice-like Network Algorithm

Below is the code to build a graph with lattice-like edges as described in section 2.3.2.

1 def build_lattice_like_edges(G, pos , deg_lst):

2 """

3 This function adds edges to a network based of a given degree list , such that the closer

two nodes are to one another , the more likely they are to be connected. The graph with

the added edges are returned

4 """

5 #Raise an error if there is not a degree given for each node

6 if len(deg_lst) != G.number_of_nodes (): raise ValueError("The degree list must have

7 the same number of values as nodes in the graph")

8 G, relabel_dict = relabel_nodes(G)

9 pos = relabel_pos(pos)

10 # A distance squared dictionary is made with format dist[node ]=[( d_0)**2, (d_1)**2, ...,

(d_n)**2]

11 dist_dict = get_node_to_dist_dict(pos)

12 #For every node , check that it does not already have its desired number of

13 #connections , and if not find the next closest node with an available stub and

14 #connect them together. Repeat until the node has meet its desired number of
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15 #connections. If there are no nodes to connect to, move onto the next node in the

16 #network.

17 for source in G.nodes ():

18 while G.degree[source] < deg_lst[source ]:

19 if dist_dict[source] != [2] * G.number_of_nodes ():

20 target = dist_dict[source ].index(min(dist_dict[source ]))

21 if G.degree[target] == deg_lst[target ]:

22 dist_dict[target] = [2] * G.number_of_nodes ()

23 for node in G.nodes():

24 elif G.degree[source] == deg_lst[source ]:

25 dist_dict[source] = [2] * G.number_of_nodes ()

26 for node in G.nodes(): dist_dict[node][ source] = 2

27 else:

28 G.add_edge(source , target)

29 dist_dict[source ][ target] = 2

30 dist_dict[target ][ source] = 2

31 else:

32 break

33 G = nx.relabel_nodes(G, relabel_dict)

34 return G
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