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1 Abstract

SARS-CoV-2, the virus responsible for COVID-19, has killed hundreds of thou-
sands of Americans. Physical distancing measures and record-setting vaccine
roll out played a key role in slowing COVID-19 spread, but the advent of new
SARS-CoV-2 variants remains a real threat. Implementing strategies to mini-
mize COVID-19 hospitalizations will be key to controlling the toll of COVID-19
variants and future novel pathogens, but non-physical distancing strategies re-
ceive relatively little attention. We present a novel system of differential equa-
tions designed to predict the relative effects of hospitalizing fewer COVID-19
patients and increasing ICU bed availability on delaying ICU bed shortages.
This model, which we call SEAQIRD, was calibrated to mortality data on two
US states with different peak infection times from mid-March – mid-May 2020.
It found that when the probability of hospitalization is already low, decreas-
ing it further can have a large effect on delaying an ICU bed shortage in both
states. Meanwhile, altering the proportion of ICU beds available to COVID-19
patients had markedly different effects on when a bed shortage was reached in
the two states. This trend remained consistent when the model’s most sensitive
parameters were altered.

2 Introduction

At the time of writing this, John’s Hopkins University reports that about
600,000 Americans have died of COVID-19 (https://coronavirus.jhu.edu/) - the
disease caused by the coronavirus SARS-CoV-2. Ever since the initial outbreak,
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the primary goal of US public health measures has been to slow COVID-19 in-
fection rates enough that hospitals are not overwhelmed by a large influx of 
diseased individuals, also phrased as “flattening the curve”. Until the recent 
vaccine roll-out, this goal was mostly achieved through physical distancing –
any measure that increases the average distance or number of barriers between 
individuals from different households. Physical distancing is often defined by 
the closing of workplaces, schools, and non-essential businesses [34], but the 
wearing of personal protective equipment (PPE) like gloves, face-coverings, and 
eye protection also match this broad definition. Physical distancing measures 
have been invaluable for mitigating COVID-19 spread, lowering the growth rate 
of the disease [9] and preventing at least half a million COVID-19 cases [34]. 
However, physical distancing is not without drawbacks.

Physical distancing imposes significant economic and psychological costs 
that are themselves the common subject of COVID-19 models [29]. Closing 
businesses and restricting travel in response to the COVID-19 pandemic dis-
rupted US supply chains [14], exacerbated social inequalities [11], and increased 
rates of anxiety and depression [6]. There’s even evidence to suggest that physi-
cal or social distancing may increase the spread of conspiracy theories [13]. Fur-
thermore, physical distancing measures are ultimately voluntary and experts 
expect such measures to be less effective as lockdowns continue and isolated 
individuals inevitably grow bored [24]. News outlets report numerous stories 
of Americans resisting physical distancing measures, especially the wearing of 
masks [8]. Physical distancing could be the best tool America has for halting the 
spread of future COVID-19 variants but considering supplementary strategies 
may limit the need for physical distancing, and therefore its consequences, in 
future pandemics.

We present a model that considers two non-physical distancing strategies 
to prevent overwhelming hospitals with COVID-19 infections: (1) hospitalizing 
fewer patients with COVID-19 and (2) increasing hospital capacity for COVID-
19 patients. The former can be accomplished by selectively hospitalizing only 
serious COVID-19 cases, allowing less serious cases to self-isolate, while the 
latter can be accomplished by increasing the number of ICU beds, ventilators, 
PPE, and hospital staff. For simplicity, we focus on just ICU bed counts as a 
measure of hospital capacity and only consider the states of Washington (WA) 
and Colorado (CO) because of their similar case numbers but different peak 
infection times from March - May 2020.

Washington was the first state in the U.S. to have confirmed COVID-19 
infections [28]. When COVID-19 first arrived there, it spread rapidly among 
the elderly and nurses at long-term care facilities [25]. Newspapers at the time 
reported a reasonable fear that there would not be enough hospital beds in 
the whole state to care for the coming wave of COVID-19 infected patients 
[4]. WA enacted stay-at-home orders in mid-March and many other states like 
CO soon followed, as uncontrolled community-level transmission was already 
occurring in other states [23]. In fact, early in the pandemic, CO had one of 
the highest death counts in the US, just behind California [30]. Thanks to 
policies to expand hospital capacity and enact physical distancing, Washington
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and CO avoided exceeding the state-wide limit on hospital beds from March
- May. Thus, knowing the relative benefits of increasing hospital capacity vs
decreasing hospitalization in either of these states is still relevant today. Neither
of these strategies should replace physical distancing, of course, but they can
still contribute to mitigation efforts.

3 Methods

We employed a system of ordinary differential equations to model the spread
of COVID-19 in WA and CO. We chose to model just WA and CO because of
their similar case numbers during their initial outbreaks, their high-quality re-
porting according to COVID-tracking project (see Table S1), but different peak
infection times. We further focused on data from only the period of March 15th
– May 18th as this captured the majority of the first “infection wave” in both
states. Focusing on this single period allowed us to avoid explicitly modeling
complicated changes in human behavior that eventually lead to multiple waves
of infection in both states. This focus also makes our study more relevant to
future initial pandemic scenarios where public health agencies have relatively
little data on disease dynamics. Most of the model parameters were estimated
from previous studies on COVID-19 spread. The remaining parameters were
estimated by minimizing the sum of squared errors between the model and data
on cumulative deaths over time. Our model was calibrated to mortality data
only because, due to testing limitations, counts of COVID-19 deaths are gener-
ally considered more reliable than counts of COVID-19 cases [3]. All simulations
and analyses were conducted in R [31]. Simulation, optimization, and data vi-
sualization were all executed with the deSolve, Flexible Modeling Environment
(FME), and ggplot2 packages respectively [35],[36],[41].

3.1 Gathering Data

All of the datasets input into our model are listed in Table S2, along with hyper-
links to their associated websites. Counts of COVID-19 deaths during the period
of March 15th – May 18th were downloaded from the novel coronavirus infection
map hosted by the University of Washington. Counts of COVID-19 hospital-
izations were downloaded from a publicly available database hosted by Definitive
Healthcare, a healthcare data analytics company (https://www.definitivehc.com/about).
To correct for under-reporting of hospitalizations, data on hospitalization re-
sponse rates were downloaded from each state’s respective Department of Health 
(DOH) website. This data has since been removed from the WA DOH website, 
but a copy of the dataset is included in the supplemental (Table S3). Next, the 
number of ICU beds in WA was downloaded directly from the WA DOH web-
site, but this information could not be found on the CO DOH website. Thus, 
a report of 2018 ICU bed counts from a local CO news organization was used 
instead. Finally, population size estimates for both states were acquired from 
their respective US Census Bureau websites.
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3.2 Correction for under-reporting by hospitals

Not all hospitals report counts of COVID-19 cases to their state governments
every day. For the states we studied, fewer hospitals reported COVID-19 hos-
pitalizations during weekends than weekdays (see Tables S3 and S4). The lack
of daily reporting partly contributes to hospitalization reports underestimating
the true number of hospitalizations. To account for under-reporting of hospi-
talizations, we applied a simple correction based on the assumption that the
ratio of hospitalizations to number of hospitals was the same for the sample of
reporting hospitals in a state as it is for all hospitals in a state. In other words:

U

K
=
u

k

Where U is the number of hospitalizations in the entire state, K is the number
of hospitals in the entire state, u is the number of reported hospitalizations, and
k is number of reporting hospitals. U is the only unknown in this equation,
meaning it can be calculated as:

U =
Ku

k

To apply this correction to the entire time series, we wrote U and u as
functions of time U(t) and u(t) respectively:

U(t) =
Ku(t)

k

The WA DOH only counted the number of reporting hospitals for May 9th
– May 15th, so data from this period was extrapolated to the entire time span
of March 15th – May 18th (see Table S3). There are 92 acute care hospitals in
the entire state, but only 66 hospitals reported case counts every day for May
9th – May 15th on average. Thus:

U(t) =
92u(t)

66

The CO DOH website also reports the percentage of hospitals that update
COVID-19 data. However, these data are deleted from the website weekly.
Thus, the average percentage of hospitals reporting data had to be estimated
from data from July 4th – July 9th (see Table S4). About 75.43 percent of CO
hospitals reported COVID-19 cases every day during this period on average.
Thus, the applied correction was:

U(t) =
100u(t)

75.43

3.3 Model formulation

Our system of ordinary differential equations included a total of 7 state variables 
and 8 parameters, which are defined in Tables 1 and diagrammed in Figure 1.
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Figure 1: A compartment diagram depicting the system of ordinary differential
equations used in this study. See Tables S5 and S6 for variable and parameter
definitions.

From Figure 1, the full set of differential equations describing the spread of
COVID-19 in our model can be written as:

dS

dt
= −αS (I + cE + cA+ bQ) (1)

dE

dt
= αS (I + cE + cA+ bQ)− βE (2)

dA

dt
= pβE −

(
1

ζ

)
A (3)

dI

dt
= (1− p)βE − 1

χ
I (4)

dQ

dt
=

1

χ
I − 1

ζ − χ
Q (5)

dR

dt
= q

1

ζ − χ
Q+

1

ζ
A (6)

dD

dt
= (1− q) 1

ζ − χ
Q (7)

We lastly define the number of hospitalized individuals at any moment in
time H(t) as:

H(t) = hQ (8)

Where h ∈ [0, 1]. In other words, the number of hospitalized individuals 
is assumed to be a constant proportion of the total number of quarantined 
individuals, which includes both hospitalized and home-bound individuals.
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Table 1: Definitions of parameters and state variables in SEAQIRD model.
Variable Definition Value Reference

α
Contact rate between sus-
ceptible and infected

fitted NA

β
inverse of incubation pe-
riod

1/3.60 days Li et al. 2020

ζ recovery time 24.7 days
Verity et al.
2020

χ
time until self-isolation
once symptoms appear

1 day NA

p
probability of asymp-
tomatic infection, given
exposure

0.86 or 0.425

Li et al.
2020;
Lavezzo
et al. 2020

q
probability of surviving a
symptomatic infection

0.986
Wu et al.
2020

b

infectiveness of quaran-
tined individuals relative
to non-quarantined in-
fected individuals

0.1 NA

c

infectiveness of exposed
and asympotmatic indi-
viduals relative to non-
quarantined infected indi-
viduals

0.55 Li et al. 2020

S
number of susceptible in-
dividuals

NA NA

E
number of exposed, but
not infectious individuals

NA NA

A
number of infected, but
asymptomatic individuals

NA NA

Q
number of infected, symp-
tomatic, and quarantined
individuals

NA NA

I
number of infected,
symptomatic, and non-
quarantined individuals

NA NA

R
number of recovered indi-
viduals

NA NA

D
number of dead individu-
als

NA NA

Equations 1 through 7 will be referred to as the SEAQIRD model for the
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remainder of the paper. The SEAQIRD model begins with assuming that sus-
ceptible individuals are exposed to COVID-19 at rates proportional to how often 
they contact individuals harboring SARS-CoV-2 (α).These individuals fall into 
multiple categories: symptomatic infected (I), exposed but undetermined symp-
tom development (E), asymptomatic infected (A), and symptomatic isolated 
infected (Q, for quarantined, which can mean either ”home-bound” or ”hospi-
talized”). The scaling factors c and b are meant to reflect the “infectiveness” of 
individuals in the E, A, and Q compartments relative to the I compartment. We 
chose c to be 0.55, reflecting the finding that asymptomatic individuals are 55 
percent as infectious as symptomatic individuals [19]. We assumed b to be 0.1, 
reflecting how isolated individuals ideally contact susceptible individuals only 
rarely.

Once an individual is exposed (E) to SARS-CoV2, they were assumed to 
have a probability p of becoming asymptomatically infected (A) and a proba-
bility of 1–p of becoming symptomatically infected (I). Furthermore, the rate 
at which E individuals transformed into A or I individuals was assumed to be 
proportional the inverse of the incubation period, β, estimated as 1/6.6 days 
[19]. Asymptomatic individuals were assumed to never perish from COVID-19 
and to recover from the disease at a rate proportional to 1/ζ, the inverse of the 
recovery period. The recovery period, ζ, was estimated from a previous study 
on COVID-19 severity as 24.7 days [39]. This result agrees with other studies 
on COVID-19 suggesting that infected asymptomatic individuals typically shed 
SARS-CoV-2 viruses 15 – 26 days after initial infection [21].

Once an exposed individual (E) individual develops into a symptomatically 
infected individual (I), they mix with the population for χ days before isolating 
themselves (see equations 5 and 4). χ was assumed to be 1 day in all SEAQIRD 
models. Once isolated, the infectiveness of symptomatic individuals was as-
sumed to drop to 0.1α. This rate was intentionally made non-zero to account 
for any minor contact isolated individuals have with susceptible individuals, 
since quarantine measures are rarely perfect. Once isolated (Q), individuals 
had a probability q of recovering from the disease and a probability 1–q of dy-
ing (see equations 6 and 7). The value of q was estimated as 0.986, again based 
on COVID-19 studies in China [42]. In addition, some of the rate constants in 
equations 6 and 7 were assumed to be the inverse of recovery period – χ, where 
the “-χ” accounts for the time symptomatic individuals spend mixing with the 
population before isolating themselves.

For the sake of simplicity, we assume that recovered individuals (R) are not 
susceptible to re-infection with SARS-CoV-2. This is not known to be strictly 
true for SARS-CoV-2 infection in humans, but it is reasonable given how non-
human primates respond to SARS-CoV-2 infection [7].

3.4 Choosing initial conditions

Given that SARS-CoV-2 is a completely novel virus and there was no vaccine 
available in March 2020, the entire populations of WA and CO were assumed 
to be susceptible to SARS-CoV-2 infection. Thus, the number of susceptible
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individuals in either state on March 15th, S0, was initially estimated as:

N = S0 + E0 +A0 +Q0 + I0 +R0 +D0

N − E0 −A0 −Q0 − I0 −R0 −D0 = S0 (9)

Here, N is the total population size of the state and the other variables are 
the initial values for the given state’s SEAQIRD compartments. Importantly, 
equation 9 only defined the initial estimate of S0, but S0 was allowed to vary 
during the model fitting process (see section 3.6).

Since COVID-19 mortality data is generally reliable, the number cumulative 
deaths up until March 15th, D0, was not adjusted in the raw data. On the other 
hand, estimating the number of symptomatic, infected individuals required some 
adjustment. Ideally, the initial number of I individuals (I0) could be calculated 
as:

I0 = C0 − D0 − R0

Where C0, D0, and R0 are cumulative numbers of active COVID-19 cases, 
deaths, and recoveries up until March 15th, respectively. For simplicity, R0 and 
H0 were assumed to be small relative to C0 and D0 early in the pandemic, 
leaving just:

I0 = C0 − D0

However, C0 is drastically underestimated for the US population. One pre-
print study suggests that increasing the number of cases in the US by 179 percent 
would bring the US death rate down to a similar rate as South Korea, a country 
with reliable infection counts, after accounting for demographic differences [17]. 
Thus, I0 was estimated as:

I0 = 2.79C0 − D0

This calculation assumes that the correction for the US applies to individual 
states as well. The initial number of exposed individuals (E0) and asymptomatic 
infected individuals (A0) was assumed to be directly proportional to I0. In the 
absence of reliable data on these numbers, we decided:

E0 = 30I0

A0 = 8I0

because these numbers generated biologically reasonable model curves and 
they reflect how the majority of COVID-19 transmission occurs through asymp-
tomatic individuals [19].

Finally, the initial number of symptomatic, isolated individuals (Q0) was 
assumed to be:
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Q0 = 10H(0)

Here, H(0) is the number of individuals hospitalized with COVID-19 on 
March 15th. In other words, for every individual hospitalized with COVID-
19, there were assumed to be nine other symptomatic individuals that were 
self-isolating at home.

3.5 Sensitivity analysis

Once we developed the baseline SEAQIRD models (E0 = 30*I0, Q0 = 10*H(0), 
p = 0.86, q = 0.986, and χ = 1) for CO and WA conditions and parameter values 
were chosen, we tested the sensitivity of the WA and CO SEAQIRD models in 
two ways. First, we used the sensFun() command in the FME package to analyze 
the local sensitivity of the SEAQIRD model to all of its initial conditions and 
parameters [35]. This analysis was repeated twice, once for WA initial conditions 
(see Figures S2A, S2B, and S3) and once for CO initial conditions (see Figures 
S6A, S6B, and S7). Second, we then focused on the parameters p and q for 
both SEAQIRD models since they had by far the most influence on the model 
output. We re-ran both the WA and CO models under different values of p 
and q values while holding all other initial conditions at their baseline values. 
Estimates of p vary widely in published literature, so we ran the SEAQIRD 
model with two different values of p (0.86 and 0.425) while holding all other 
parameters and conditions at their baseline values (see Figures S9 - S12). The 
first value of p comes from a study that estimated the fraction of cases that 
went undocumented during a period of COVID-19 spread in China [19]. Cases 
often go undocumented when infected individuals have symptoms that are too 
mild for them to be concerned with getting tested for infection. Thus, we 
reasoned this fraction should be close to the value of p. The second value of p 
comes from a census in Italy where the authors directly observed 42.5 percent of 
their COVID-19 infected participants lacking symptoms [18]. We also ran the 
SEQIRD model with two different values of q, its baseline value of 0.986 and a 
value of 0.972 (see Figures S13 - S16), which doubles the probability of dying 
from a symptomatic infection relative to the baseline SEAQIRD model.

3.6 Fitting SEAQIRD to data

We used the Levenberg–Marquardt algorithm implemented in the FME package 
to optimize α and S0 such that the sum of squared error between the SEAQIRD 
model output and the curve of cumulative deaths over time for either WA or 
CO was minimized. We only fit these two parameters because these are the 
parameters that have the most influence on the model’s results besides p and q 
(see Figures S2 and S7). However, unlike p and q these numbers could not be 
reasonably estimated from previous studies. Furthermore, we could not fit ad-
ditional parameters with the paucity of data points we had without overfitting. 
Finally, we also only chose to fit the SEAQIRD model to mortality data because
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estimates of other state variables, such as symptomatic infections, are probably
massively under-counted. In all model fitting cases, the initial estimate of S0

was given by equation 9 and the initial estimate of α was 3E-7, but these values
were allowed to vary within bounds during the fitting process. α was always
bounded between 3E-6 and 3E-8 while S0 was bounded between 0.05 and 1.5
times its initial estimate. These bounds were chosen because they produced
biologically reasonable results (see Figures 2, S1A, and S5A).

3.7 Estimating probability of hospitalization given symp-
tomatic infection

The number of individuals hospitalized with COVID-19 was assumed to be a
constant fraction of the number of individuals in compartment Q (see equation
8). After simulating the SEAQIRD model based on the initial conditions de-
scribed above, this fraction was estimated for each state model by plotting the
number of hospitalizations in the state against the number of quarantined indi-
viduals output by the fitted SEAQIRD model at each time point. The slope of
the ordinary least squares regression line through these points (see Figures S1B
and S5B) estimated the probability of hospitalization given symptomatic infec-
tion (h), since all quarantined individuals are either hospitalized or not.This
resulted in an obvious underestimation of h (see Figures S1C and S5C). Thus,
we also tried estimating h numerically by multiplying the H(t) function by 10000
different constants increasing from 0 to 0.1 in increments of 1E-5 and calculating
the sum of squared error between the resulting curve and hospitalization counts
over time. The constant that gave the lowest sum of squared error between
H(t) ∗ h and the curve of hospitalization counts over time, after correcting for
under-reporting, thus estimated h (see Figures 5A and 5B).

3.8 Estimating effect of decreased hospitalization and in-
creased bed cap on delaying bed shortage

Pre-pandemic surveys suggest that about 50 – 80 percent of ICU beds in America 
are typically occupied at any given time [43]. Thus, we assumed that 30 percent 
of ICU beds in either WA or CO could be reasonably allocated to COVID-19 
infected patients during the modeling period, which is referred to as the hospital 
“bed cap” at some points in the paper. Once the probability of hospitalization 
given symptomatic infection (hereto referred to as the “hospitalization proba-
bility”) was estimated from the fit of SEAQIRD model to the hospitalization 
data, we tested the effect of altering the probability of hospitalization and the 
bed cap simultaneously by plugging 10000 different combinations of these two 
numbers spanning values from 0 – 1, in increments of 1E-5, into the SEAQIRD 
model (see Figures S4, S8, S10, S12, S14, S16).
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4 Results

4.1 Effective population sizes for COVID-19 transmission

Figure 2 presents the optimized baseline SEAQIRD model’s fits to mortality
data for CO and WA. The best fit parameters for α and S0 in under these condi-
tions were 5.990521e-07 and 4.814597e+05, respectively, for the WA SEAQIRD
model and 4.687143e-07 and 7.675917e+05, respectively, for the CO SEAQIRD
model (see Figure 2). The curves for the other state variables in the SEAQIRD
model, suggest that WA and CO had 39,805 and 53,742 symptomatic infected
individuals (I + Q), respectively, at their peak infection periods between March
15th and May 18th (see Figures S1 and S5). The number of asymptomatic
infected cases (E + A), on the other hand, peaked at 280,280 and 388,234
individuals for WA and CO respectively during this period. In the SEAQIRD
model, the peak number of hospitalizations occurred 24 and 37 days after March
15th for WA an CO, respectively. The actual peak in hospitalizations for these
states during the modeling period, however, occurred 21 days and 39 days after
March 15th, respectively. The probability of hospitalization given symptomatic
infection was estimated as 0.0290 (see Figure 3A) and 0.0236 (see Figure 3B)
for WA and CO, respectively. During the modeling period, CO started out as
having fewer death cases than WA, but then overtook WA death counts by the
end of the modeling period.

4.2 Effect of decreasing hospitalization on delaying bed
shortage

Hospitalizing fewer COVID-19 patients delayed the time at which the bed ca-
pacity for COVID-19 patients was exceeded (Figure 4). This effect increased as 
fewer COVID-19 patients were hospitalized, according to the concave up shape 
of the graph in Figure 4. The curves for both WA and CO reach asymptotes; in 
other words, values of the hospitalization probability below which the bed cap 
will never be exceeded. This occurred around a probability of 0.0123 for WA 
and about 0.00567 for CO.

4.3 Effect of increasing bed cap on delaying bed shortage

The graph of how the number of days until the bed cap is exceeded based on 
the proportion of available ICU beds looks markedly different between WA and 
CO (Figure 5). The curve for CO initially shows a concave down shape, but 
inflects around a value of of 0.5. The curve for WA, on the other hand, has 
a mostly concave up shape. Both curves approach an asymptote (see dotted 
lines in Figure 5) as the bed cap increases. For WA, this asymptote occurred 
around a bed cap of 57.5 percent of the maximum. The asymptote for CO, on 
the other hand, occurred at a bed cap of about 77.6 percent of the maximum. 
For a non-zero proportion of bed availability, bed caps were always exceeded 
later in CO than in WA.
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Figure 2: Points are raw counts of deaths due to COVID-19 since Jan. 21st 
- colored by the state in which the deaths occurred - and the lines are the 
SEAQIRD model fits to these points. For both models E0 = 30*I0, Q0 = 
10*H(0), p = 0.86, q = 0.986, and χ = 1.

4.4 SEAQIRD sensitivity to conditions and parameters

Once the SEAQIRD model was fit to each state’s data, we tested the local 
sensitivity of the SEAQIRD model to its initial conditions and α. We first 
used the local sensitivity analysis functions implemented in the FME package 
to identify the initial conditions with the largest influence on model output. S0, 
α, and D0, are well-estimated either directly from data or from the model fitting, 
whereas the values of the remaining conditions were assumed. Thus, we took 
the two parameters the SEAQIRD model was most sensitive to, p and q, altered 
their values, and recorded the effect on the SEAQIRD model’s predictions. We 
ran the SEAQIRD model with p set to 0.86 and 0.425, while keeping all other 
parameters and initial conditions at their baseline values. We also tried setting 
q to either 0.986 (it’s value in the baseline model) or 0.972 (which doubles the 
probability of dying from infection). The different values for p gave very different 
curves for both the WA and CO SEAQIRD models (see Figures S9 and S11), 
as did the different values of q (see Figures S13 and S15). However, even in 
these alternative scenarios, the effects of altering the hospitalization probability 
retained a more concave upward shape than altering the bed cap (see Figures
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Figure 3: (A)Points are counts of hospitalized COVID-19 patients in all WA hos-
pitals by day, corrected for underreporting by hospitals. Curve is Q(t) function 
output from SEAQIRD model multiplied by the probability of hospitalization 
given symptomatic infection, which was numerically estimated as 0.0289829.
(B) Points are counts of hospitalized COVID-19 patients in all CO hospitals by 
day, corrected for underreporting by hospitals. Curve is Q(t) function output 
from SEAQIRD model multiplied by the probability of hospitalization given 
symptomatic infection, which was estimated to be about 0.02357236. For both 
(A) and (B), SEAQIRD initial conditions included E0 = 30*I0, Q0 = 10*H(0), 
p0 = 0.86, q = 0.986 and χ = 1.

S10, S12, S14, S16).

5 Discussion

Some of SARS-CoV-2’s defining characteristics are that a large fraction of in-
fected individuals do not develop symptoms and that there’s a significant pre-
symptomatic period during which an individual can still spread the virus. This 
has led to massive levels of undocumented infection; some pre-print articles es-
timate that 19 million Americans have caught COVID-19, only a small fraction 
of which are laboratory confirmed cases [22]. We developed a novel system of 
differential equations to account for these asymptomatic and presymptomatic 
phases of COVID-19 infection, which happened to be similar to other models 
used to model COVID-19 spread [22]. This system was fit to data on COVID-
19 mortality, the most reliable data available on COVID-19 spread, in two US 
states. These different states had different infection dynamics and different peak 
infection dates. Including infection peaks in the analysis was especially impor-
tant because deterministic models like SEAQIRD can be especially misleading
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Figure 4: Dotted vertical lines represent asymptotes – the probability beyond
which the ICU bed cap would not be exceeded from March 15th – May 18th.
Both models used their baseline values for initial conditions and parameters.

when fit with only pre-peak data [10]. We then compared the effects of decreas-
ing the probability of hospitalization given symptomatic infection and increasing
the proportion of ICU beds available to COVID-19 patients on delaying when
the number of hospitalized COVID-19 patients exceeded the allotted ICU bed
capacity. Under the conditions simulated here, we observed that when the prob-
ability of hospitalization is already low, decreasing it further can have a large
effect on delaying an ICU bed shortage. Meanwhile, altering the proportion of
ICU beds available to COVID-19 patients had different effects on when a bed
shortage was reached in the two states. This finding was very robust for both
the WA and CO models under multiple sets of initial conditions and parameter
values.

5.1 Altering bed cap has different effects on delaying a
bed shortage in WA and CO

Our analyses focused on two parameters of the SEAQIRD model that best 
represented potential interventions for preventing a hospital bed shortage: the 
number of beds available to COVID-19 patients (expressed as a proportion of all
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Figure 5: Dotted vertical lines represent asymptotes – proportion of ICU bed 
availability beyond which the ICU bed cap would not be exceeded from March 
15th – May 18th . For both models E0 = 30*I0, Q0 = 10*H(0), p = 0.86, q = 
0.986, χ = 1.

beds in the state) and the probability of a symptomatic, infected individual of 
being hospitalized (h). We altered both of these parameters and observed their 
effects on when an ICU bed shortage (defined as the number of hospitalized 
individuals exceeding the number of available beds) was reached in WA and 
CO.

First, we altered one parameter while holding the other constant. For both 
WA and CO, decreasing the hospitalization probability had larger effects on 
delaying a bed shortage if this probability was already small (see Figure 4). 
However, the effect of increasing the bed cap differed drastically between the 
WA and CO models. Increasing the bed cap has a more sigmoid relationship 
with delaying a bed shortage in CO than it does in WA (see Figure 5). This is 
potentially due to differences in the total number of cases relative to hospital 
beds in both states. The maximum number of infected individuals (I + A) 
was much higher in CO than in WA (53,742 vs 39,805) while the number of 
ICU beds was also much lower in CO than WA (973 vs 1564). These factors 
combined could have made increasing the number of ICU beds in CO initially 
less effective at halting a bed shortage, leading to the sigmoid relationship in
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Figure 5. We also altered both the hospitalization probability and bed cap at
the same time and observed similar results (see Figures S10, S12, S14, S16).
Overall, our findings do not conflict with current CDC guidelines that tell sick
individuals to not go to hospitals unless they are experiencing severe COVID-19
symptoms [40].

5.2 SEAQIRD predictions are robust to initial conditions
and parameter values

The parameters with by far the largest influence on SEAQIRD dynamics are
the probability of developing a symptomatic infection given COVID-19 exposure
(p) and the probability of dying from a symptomatic COVID-19 infection (q).
Early studies on COVID-19 suggested that p could be fairly low – around 20
percent or less [16], [26]. Later studies suggested that this probability is likely
higher - upwards of 50 percent [18],[19]. Changing the values of p and q in
the SEAQIRD model had a large influence on the model output relative to the
other parameters and initial conditions (see Figures S2A, S3, S6A, S7). Thus,
we suspect that changes in p and q over time or between different groups of
people are mainly responsible for the poor fits between the SEAQIRD model
and hospitalization data (see Figure 3A and 3B). Rewriting these parameters to
be dependent on demographic characteristics, such as age, could improve these
fits.

5.3 Low effective population size for COVID-19 transmis-
sion in CO and WA

The effective population size of both the WA and CO SEAQIRD models was 
orders of magnitude lower than the actual population sizes of these states as 
estimated by the US census. This discrepancy is partly due to the lack of any 
lockdown effects in the SEAQIRD model. Thus, COVID-19 was restricted to 
spreading among only a subset of the WA and CO populations. The lack of lock-
down effects is arguably SEAQIRD model’s most obviously violated assumption. 
WA lockdowns began on March 23rd 2020 [15], not long into the simulation, 
closely followed by CO on March 26th [23]. However, there is some pre-print 
work suggesting that US individuals were already relaxing physical distancing 
measures by mid-April, perhaps limiting the lockdown effect in our data [44]. 
Other phenomenon could have also contributed to the small effective population 
size in the SEAQIRD model. For example, there are well-documented cases of 
individuals unexposed to COVID-19 having antibodies that react to SARS-CoV-
2 particles [32]. There’s also population-level evidence suggesting that certain 
pre-existing vaccines may have trained immune systems against COVID-19, al-
though these vaccines are not common in the US [5],[12]. Nonetheless, it is 
possible that pre-existing and trained immunity may have removed individuals 
from the susceptible populations in CO and WA, explaining why COVID-19 
only spread among a small subset of these populations in the SEAQIRD model. 
Incorporating lockdown effects, pre-existing immunity, and trained immunity
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into SEAQIRD-like models may improve their predictions. Understanding how
these nuances affect hospitalizations will be incredibly important as the US
continues to control the spread of COVID-19 and any variants that arise.
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