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Abstract. We introduce the singular value decomposition (SVD) along with some of its key
properties, illustrate its utility in image processing and audio processing, and show how this relates
to watermarking and digital ownership protection. After establishing experimental results regarding
image processing, we propose a modified version of a watermarking scheme introduced in Jain,
Arora, and Panigrahi, A reliable SVD based watermarking scheme, CoRR abs/0808.0309 (2008)
which offers improved robustness and imperceptibility properties.
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1. Introduction. In the 21st century, most media consumption and transmis-
sion occurs digitally. This introduces a major challenge: how can one prove their
ownership of a piece of digital media, such as a song, photograph, or book? Luck-
ily, the nature of digital information requires that such media is usually stored as a
data matrix of numerical values, which allows for the employment of mathematical
methods in digital ownership protection. To this end, we introduce the concept of
watermarking schemes, which allows one to embed identifying ownership information
into a piece of media with little to no perceptible change in the media.

To evaluate these schemes, we have some criteria which must be ensured. First,
we want our scheme to be imperceptible: the embedding of a watermark should not
leave any significant observable impact on the media. We also want our scheme to
be secure: a third party should not be able to manipulate our scheme and try to
establish themselves as the false owner of our media. Finally, we want to maintain
some robustness against distortions: ideally, our watermarked media could undergo
some kind of compression, distortion, or even an intentional attack, and we could
still extract our watermark and reasonably prove our ownership. We evaluate the
performance of three schemes according to these criteria, including two existing wa-
termarking schemes based upon the SVD and our proposed modification of one of
these schemes.

The code used to produce the results in this paper can be found in the GitHub
repository at https://github.com/S-I-SVD/Randomized-SVD.

1.1. SVD background. The singular value decomposition, or the SVD, was
first discovered independently by Eugenio Beltrami and Camille Jordan in the 1870s
as they were tackling problems related to bilinear forms in linear algebra. Since then,
it has become one of the most useful tools in linear algebra, seeing applications in
widely disparate fields.

The function of the SVD is to factorize a matrix into a product of three matrices,
which can then be decomposed further into a sum of rank-1 matrices. The SVD is
closely related to the eigenvalue decomposition (EVD): given a symmetric real n× n
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matrix X (i.e. for which XX> = X>X), there exists an orthogonal matrix P and
a diagonal matrix D such that X = PDP−1. In the EVD, the columns of P are
eigenvectors of X that form an orthonormal basis for Rn, and the diagonal entries of
D contain the corresponding eigenvalues [9]. However, the EVD can only be performed
on diagonalizable symmetric square matrices. To generalize the EVD, we have the
SVD. Note that although the SVD exists for complex matrices, we will be focusing
only on real matrices in our paper.

Let A be an m × n matrix with rank r. The definition of the SVD tells us that
A can be decomposed into three matrices: U , an m × m orthogonal matrix; V , an
n × n orthogonal matrix; and Σ, a diagonal matrix; such that A = UΣV >. This Σ
matrix consists of ordered positive diagonal entries σ1 ≥ σ2 ≥ . . . ≥ σr, with all of
the remaining diagonal entries being zero. These σ entries are known as the singular
values, and the columns of U and V are called the left and right singular vectors,
respectively.

Figure 1.1: SVD Matrices

The singular values of A are the square roots of each of the eigenvalues of AA> or
A>A. The left singular vectors are the eigenvectors of AA>, while the right singular
vectors are the eigenvectors of A>A.

As briefly mentioned earlier, one of the most valuable properties of the SVD is
that it is applicable to all matrices. This means that our matrix A can be any size or
represent any kind of information, and we would still be able to obtain its fundamental
SVD matrices. Based on this fact, we can apply SVD techniques to any data that
can be represented as a matrix, which we will show in Section 2 is of great utility for
digital ownership protection.

An important application of the SVD is in approximating matrices. For an m×n
matrix A with rank r, we take each left and right singular vector and the corresponding
singular value to factor A as

(1.1) A = UΣV > = σ1u1v
>
1 + σ2u2v

>
2 + σ3u3v

>
3 + · · ·+ σrurv

>
r

using the SVD, where u1, u2, . . . , ur are the columns of U and v1, v2, . . . , vr are the
columns of V . Let Ak be the sum of the first k terms in (1.1) for k ≤ r.

We define ‖A‖2 to be the `2 norm, also called the spectral norm of the matrix A,
where

‖A‖2 = max
x6=0

‖Ax‖2
‖x‖2

= σ1.

We define ‖A‖F to be the Frobenius norm of the matrix A [13], where

‖A‖F =
√
σ2
1 + · · ·+ σ2

r .
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The Eckart-Young Theorem states that for any B with rank k, we have

‖A−B‖F ≥ ‖A−Ak‖F .

This also holds true for

‖A−B‖2 ≥ ‖A−Ak‖2 .

In other words, Ak is the closest rank k approximation to A. This means that
any low-rank approximation for a matrix found using the SVD would be the best
approximation possible at that particular rank [12].

1.2. Image Processing. Before discussing how we can utilize the SVD to pro-
tect ownership of media, we must first introduce how the SVD is applied to media
processing.

A grayscale image of size m × n is represented by an m × n array of luminosity
values and can be operated on directly. A color image is represented by an m× n× c
array, where c is 3 or 4. This can be thought of as an m × n array of c-tuples
representing the red, green, and blue, and potentially alpha components of each pixel.
Such a color image is represented by a 3m × n matrix, produced by “stacking” the
color channels.

A video can be thought of as an array of k images, each of which is represented
by an m× n× c array, where c is the number of color channels. Such a video can be
represented as a cmn× k matrix, where each of the k columns is a “flattened” image.

Both of these procedures are visualized in Figure 1.2. For more information about
the matrix representation of images and videos as well as the usage of the SVD in
media processing, please see [6] or [4].

(a) Color image

1
2

3

1 2 3

(b) Video

Figure 1.2: Matrix representation of images and videos

The Eckart-Young Theorem provides us with a remarkably simple image com-
pression algorithm, in which one only needs to compute a low-rank approximation of
the image. The only complication here is that one must choose the rank of the ap-
proximation, and the desirable choice varies with the complexity of the image. Since
the error in a rank k approximation Ak of a matrix A depends on the singular value
distribution of A−Ak, or equivalently the singular values σk+1, σk+2, . . . , σr of A, one
may use the singular value distribution of A to choose an appropriate approximation
rank.
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The images that we are interested in compressing are rarely that simple. However,
many images can be approximated surprisingly well by a low-rank compression using
the SVD. In the language of linear algebra, we say that many images have very low
intrinsic rank.

(a) Original Image [5]

0 100 200 300
n

2

3

4

lo
g(
1+

σ n
)

(b) Singular Value Log Plot

(c) Rank 5 (d) Rank 10 (e) Rank 15 (f) Rank 50

Figure 1.3: Examples of Image Compression

Figure 1.3 provides a clearer illustration of this. The original image is of rank 300.
However, we see that a rank 50 approximation computed using the SVD is almost
indistinguishable from the original. Most importantly, each reconstruction is simply
the sum of a certain number of rank-1 matrices: for example, Figure 1.3c is the sum
of 5 rank-1 matrices, and so on for Figures 1.3d-1.3f. The relative weight that each
rank-1 matrix contributes to the reconstruction of the original image is plotted using
the log plot in Figure 1.3b, where n refers to the nth singular value. This plot shows
that the first several rank-1 matrices will contain the most dominant aspects of the
original image, which we can visually confirm with the examples.

1.3. Singular Value Modification. We have seen how image compression us-
ing the SVD works. Knowing this, what would happen if we changed the SVD matrices
somehow? Specifically, how would uniformly applying some mapping to the singu-
lar values, such as multiplying or adding by a scalar, impact a reconstructed image?
Multiplication of the singular values by some scalar would just be equivalent to mul-
tiplying the entire matrix by that scalar. However, adding a scalar to each singular
value will influence the resulting image while still preserving some characteristics, as
seen in Figure 1.4 1.

1Landscape image from personal collection
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(a) +1000 (b) +10000 (c) +10000000

(d) +100 (e) -10000 (f) -10000000

Figure 1.4: Modifying Singular Values: Addition of a Scalar to each singular value

In this example, we see that adding relatively large scalars, such as 100, to each
singular value does not leave a noticeable impact on the image, while adding an even
larger scalar, such as 100000, can essentially result in the entries going out of range,
with few intelligible trace of the original image in the reconstruction. The sign of the
scalar does not seem to have a significant effect on the nature of the reconstruction.
The reconstruction of singular values by adding in values leaves an irregular layer of
vibrantly colored pixels as artifacts.

Note that the effect of adding a scalar to the singular values is dependent on the
magnitude of the singular values themselves, and that the qualitative results will vary
highly depending on the distribution of the singular values specific to a given matrix.

The most important result from studying this mapping is that smaller scalars
have a minimal impact on the reconstruction in comparison to larger scalars, which
leave noticeable artifacts. This will explain the choice of scaling value for watermark
embedding in Section 2.

In all of these cases, we notice that when the singular values are modified, many of
the dominant characteristics of the original image are preserved, while some are altered
depending on the respective mapping. This property of singular value modification
will be crucial in the successful embedding of a watermark, as we will see later on.

2. Watermarking Background. With an understanding of the SVD and its
use in computing low-rank approximations, we can now explore SVD-based digital
ownership protection methods. In particular, various watermarking schemes have
been developed that utilize the properties of the SVD matrices to “hide” some wa-
termark within the original data. As mentioned in 1, some primary considerations
in evaluating such schemes include perceptibility, security, and robustness against
distortions.

A watermarking scheme is given by an embedding function E and an extraction
function X . The function E takes a data matrix A, a watermark matrix W , and a
scaling factor α, and returns the watermarked matrix AW along with a key K. The
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scaling factor α determines the “intensity” with which to embed W into A. As we
will see in section 4, increasing α makes watermarks more visible but also more robust
against distortions.

2.1. Watermarking Security Evaluation. Before proceeding further into an
analysis of watermarking schemes, we first elaborate upon this security criterion. In
order for a watermarking scheme to be employable in proof of ownership, it is vital
that given a watermarked image AW , an adversary cannot produce a phony original
image Ap and watermark Wp such that the watermark Wp can be extracted from A.
This process was utilized in [8], and we use it to evaluate the security for each of the
watermarking schemes we analyze here. A basic test of security, then, is given by the
procedure described in Algorithm 2.1, using an image A, two watermarks W1,W2, a
user chosen scalar α, a watermark embedding function E , and an extraction function
X .

Algorithm 2.1 Watermarking Security Test

1: AW1
,K1 ← E(A,W1, α)

2: AW2
,K2 ← E(A,W2, α)

3: W̃2 ← X (AW1 ,K2)

4: Compare W̃2 to W2

Examples of E and X are given in section 2.2 and section 2.3.

2.2. The Liu & Tan Watermarking Scheme. The Liu & Tan watermarking
scheme, described in great detail in [11], is a widely-cited and foundational scheme in
SVD-based watermarking techniques. This method involves embedding a watermark
into a matrix’s singular values and then computing the SVD of this new matrix as a
means of embedding information, as is outlined in the following algorithm:

Algorithm 2.2 Liu & Tan: Embedding (AW ,K) = E(A,W,α)

1: Take the SVD of data matrix: A→ USV >

2: Add αW to S and compute the SVD of their sum: S + αW → UWSWV
>
W

3: Replace S with SW to reconstruct watermarked matrix: AW ← USWV
>

4: Save the keys: K ← (S,UW , VW , α)
5: return (AW ,K)

This scheme relies on replacing the singular values of A with the singular values
of S + αW in order to reconstruct a watermarked piece of media.

In Section 3, we visually see how when the singular values are slightly modified in
some way, the major characteristics of an image are still preserved. The final step of
the Liu & Tan embedding process is essentially taking advantage of this useful aspect
of the SVD.

The Liu & Tan scheme requires knowledge of UW , S, VW , and α, which can be
thought of as our keys to prove ownership.

To attempt to extract our watermark from a (possibly distorted) watermarked

image ÃW , we perform the following steps: The Liu & Tan watermarking scheme
changes the singular value spectrum of the watermarked image while leaving the
principal components unaffected. Because of this, embedding a watermark in an
image only enhances some of the already-present features of the image, making the
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Algorithm 2.3 Liu & Tan: Extraction W̃ = X (ÃW ,K)

1: (S,UW , VW , α)← K

2: Take the SVD of ÃW : ÃW → Ũ S̃W Ṽ
>

3: Construct D̃: D̃ ← UW S̃WV
>
W

4: Reconstruct watermarked matrix: W̃ ← 1
α (D̃ − S)

5: return W̃

watermark remarkably imperceptible for reasonably high values of α. Using the image
and watermark shown in Figure 2.1, this is demonstrated in Figure 2.2.

(a) Original image (b) Watermark [2]

Figure 2.1: Raccoon and fox images used in experiments

(a) α = 1 (b) α = 0.5 (c) α = 0.25 (d) α = 0.1

Figure 2.2: Images watermarked using Liu & Tan scheme [11]

In Figure 2.3, we test the Liu & Tan watermarking scheme’s security using the
basic security test outlined in Section 2.1 (Algorithm 2.1). As noted in [14], we observe
a major risk.
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(a) Phony watermark (W2) [15] (b) Watermarked image (AW1
) (c) Phony extracted (W̃2)

Figure 2.3: Basic security test for Liu & Tan watermarking scheme [11], using Algo-
rithm 2.1

As we can see in this example, a phony watermark is able to be extracted from
the watermarked image with near perfect accuracy. This essentially means that in
this scheme, anyone could claim ownership by extracting their own watermark from
the media. For example, someone could claim the rights to an image by claiming
that their phony watermark was the correct one, and since any watermark can be
extracted almost perfectly from the watermarked image, there is no way for the true
owner to indisputably prove their ownership. Naturally, this renders the Liu & Tan
watermarking scheme unusable as a reliable method of digital ownership protection.

2.3. The Jain et al. Watermarking Scheme. In [8], Jain et al. propose
a modification to the Liu & Tan watermarking scheme, where instead of embedding
the entire watermark in the singular value matrix of an image, we only embed the
principal components of the watermark.

Algorithm 2.4 Jain et al.: Embedding (AW ,K) = E(A,W,α)

1: Take the SVD of data matrix: A→ USV >

2: Take the SVD of watermark matrix: W → UWSWV
>
W

3: Add principal components to singular values of data matrix: S1 ← S + αUWSW
4: Replace S with S1 to reconstruct watermarked matrix:
4: AW ← US1V

>

5: Save the keys: K ← (A, VW , α)
6: return (AW ,K)

The corresponding extraction algorithm proposed by Jain et al. is listed as below.

Algorithm 2.5 Jain et al.: Extraction W̃ = X (ÃW ,K)

1: (A, VW , α)← K

2: Subtract A from ÃW : D = ÃW −A = αUUWSWV
>

3: Reconstruct watermarked matrix: W̃ ← α−1U>DV V >W
4: return W̃

As in Figure 2.2, we test various values of α for embedding the fox image into the
raccoon image using the Jain et al. watermarking scheme and display the results in
Figure 2.4.
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(a) α = 1 (b) α = 0.5 (c) α = 0.25 (d) α = 0.1 (e) α = 0.01

Figure 2.4: Images watermarked using Jain et al. scheme [8]

Figure 2.4 shows that the Jain et al. scheme requires very low values of α in
order to retain the qualities of the original image, and we will see later that it is also
less robust to distortions. However, it does have a major advantage over the Liu &
Tan watermarking scheme: a much-improved level of security. Here, as in Figure 2.3,
we perform the basic security test for the Jain et al. watermarking scheme. As we
can see in Figure 2.5, extracting the incorrect watermark from the image (employing
the security test described in Algorithm 2.1 with the Jain embedding and extraction
functions) produces an image that barely resembles the watermark.

(a) Watermarked image (b) Watermark extracted (c) Phony watermark extracted

Figure 2.5: Basic security test for Jain et al. watermarking scheme [8] as in Figure
2.3, using Algorithm 2.1

The idea of the Jain et al. scheme is that in contrast with the Liu & Tan scheme,
in which a scaled version of the entire W is added into S, we are instead embedding
a scaled version of only partial information about W , i.e. its principal components
UWSW . Thus, someone trying to prove ownership would need the complementary
information VW in order to correctly extract the watermark.
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3. Our Modified Watermarking Scheme. When considering the matrix op-
erations involved in Jain et al. embedding process, we can see that

AW = US1V
>

= U(S + αUWSW )V >

= USV > + αUUWSWV
>

= A+ αUUWSWV
>.(3.1)

Despite the Jain et al. scheme’s improved security, we see that this scheme is
equivalent to just adding a scalar multiple of the matrix UUWSWV

> to the original
matrix A. This tells us that the perceptibility of the watermark in an image will
increase linearly with α.

This additive term, αUUWSWV
>, presents us with something to modify and

hopefully improve. It turns out that by replacing this term with αUWSWV
>, we

can construct a new watermarking scheme that preserves some desirable properties
(security and robustness to distortions) of the Jain watermarking scheme while also
increasing imperceptibility of the embedded watermark. Again, the formulation of this
modified scheme as being a matrix added into an image means that the perceptibility
of the watermark in the image will be directly proportional to the α we choose. From
now on, we will refer to this new process as our Modified Jain watermarking scheme.
The embedding and extraction processes are outlined below.

Algorithm 3.1 Modified Jain: Embedding (AW ,K) = E(A,W,α)

1: Take the SVD of cover matrix: A→ USV >

2: Take the SVD of watermark matrix: W → UWSWV
>
W

3: Add additive term to cover matrix: AW = A+ αUWSWV
>

4: Save the keys: K ← (A, V, α)
5: return (AW ,K)

Algorithm 3.2 Modified Jain: Extraction W̃ = X (ÃW ,K)

1: (A, VW , α)← K

2: Use keys to reconstruct watermark from potentially distorted ÃW :

W̃ ← (ÃW−A)V V >
W

α

3: return W̃

Figure 3.1 shows the results of embedding the fox watermark in the raccoon image
using various scaling factors α. We notice that for this modified scheme, α = 0.1 or
α = 0.25 will suffice in maintaining a reasonable degree of imperceptibility, and even
slightly larger values are still not too noticeable.
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(a) α = 1 (b) α = 0.5 (c) α = 0.25 (d) α = 0.1

Figure 3.1: Images watermarked using the modified Jain watermarking scheme

When we apply the basic security test described in Algorithm 2.1 with the mod-
ified Jain embedding and extraction functions, we obtain the following results:

(a) Watermarked image (b) Watermark (c) Phony watermark extracted

Figure 3.2: Basic security test for Modified Jain watermarking scheme as in Figure
2.3, using Algorithm 2.1

As in the Jain et al. scheme, the extracted phony watermark is significantly
distorted, and our modified scheme passes the basic security test.

3.1. Comparing Jain et al. and Modified Jain Watermarking Schemes.
The above experimental results seem to indicate that the modified Jain watermarking
scheme preserves the desirable robustness properties of the Jain et al. watermarking
scheme while improving on the imperceptibility of the embedded watermark. In this
section, we support this observation with some theoretical results and some additional
experimental results.

Recall that the Jain et al. watermarking scheme has an embedding function

EJ : (A,W,α) 7→
AJ = A+ αUUWSWV

>

K = (A, VW , α),

and extraction function

XJ : (A∗J ,K) 7→ W ∗J = α−1U>(A∗J −A)V V >W .

Also recall that the modified Jain et al. watermarking scheme has an embedding
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function

EM : (A,W,α) 7→
AM = A+ αUWSWV

>

K = (A, VW , α),

and extraction function

XM : (A∗M ,K) 7→ W ∗M = α−1(A∗M −A)V V >W .

Using the above, we now show that the Frobenius norm error incurred in the
extracted watermark in response to an additive perturbation P on the watermarked
matrix is the same for the modified and unmodified Jain et al. scheme, and this error
can be expressed in terms of ‖P‖ and α, where ‖·‖ is any unitarily invariant norm.

Proposition 3.1. Let A, W , and P be matrices, let α ∈ R, and let ‖·‖ be a
unitarily invariant matrix norm. With notation as above, Let

(AJ ,KJ) = EJ(A,W,α),

(AM ,KM ) = EM (A,W,α),

W̃J = XJ(AJ + P,KJ), and

W̃M = XM (AM + P,KM ).

Then we have ∥∥∥W − W̃J

∥∥∥ =
∥∥∥W − W̃M

∥∥∥ =
‖P‖
|α|

.

Proof. Apply the SVD to obtain A = USV > and W = UWSWV
>
W . Under the

Jain et al. watermarking scheme, if we attempt to extract the distorted watermark
W̃J from the perturbed matrix ÃJ = AJ + P , we find that

W ∗J = α−1(U>(ÃJ −A)V V >W

= α−1U>(AJ + P −A)V V >W

= α−1U>(A+ αUUWSWV
> + P −A)V V >W

= α−1U>(αUUWSWV
> + P )V V >W

= UWSWV
>
W + α−1U>PV V >W

= W + α−1U>PV V >W

Computing the error with respect to the norm ‖·‖, we find that∥∥∥W̃J −W
∥∥∥ =

∥∥α−1U>PV V >W∥∥ =
‖P‖
|α|

,

since the matrices U, V , and VW are orthogonal.
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Similarly, for the modified Jain watermarking scheme, we find that

W̃J = α−1(ÃM −A)V V >W

= α−1(AM + P −A)V V >W

= α−1(A+ αUWSWV
> + P −A)V V >W

= α−1(αUWSWV
> + P )V V >W

= UWSWV
>
W + α−1PV V >W

= W + α−1PV V >W ,

and ∥∥∥W̃M −W
∥∥∥ =

∥∥α−1PV V >W∥∥ =
‖P‖
|α|

,

since V, VW are orthogonal matrices.

In particular, this result holds when ‖·‖ is the Frobenius or `2 norm.
Note that an additive perturbation to the watermarked matrix results in an ad-

ditive perturbation to the extracted watermark. The proof of Proposition 3.1 also
shows that the error in the extracted watermark increases with ‖P‖F and decreases
as α increases, as expected.

Next, informed by the experimental examples in Sections 3 and 2.3, we examine
how the perceptibly of the watermark differs for the modified and unmodified Jain
et al. watermarking schemes, similar to the error estimation for the Liu & Tan
watermarking scheme given in [11].

Examining errors in terms of a unitarily invariant norm ‖·‖, we find that

‖AJ −A‖ =
∥∥αUUWSWV >∥∥ = α ‖W‖ ,

and

‖AM −A‖ =
∥∥αUWSWV >∥∥ = α ‖W‖ ,

since the matrices U,UW , and V are orthogonal. Thus, the error between the water-
marked and original matrix for the modified and unmodified Jain et al. watermarking
schemes are the same. However, the removal of the multiplier U in the additive term
αUUWSWV

> seems to have desirable effects on the imperceptibility of the watermark
in the image. Thus, we use other methods to examine the relationships between AJ
and A, and AM and A.

As in [3], we define the correlation between two matrices X and Y to be

corr(X,Y ) =
〈X,Y 〉F
‖X‖F ‖Y ‖F

,

where 〈X,Y 〉F is the Frobenius inner product 〈X,Y 〉F = Tr(X>Y ). Note that −1 ≤
corr(X,Y ) ≤ 1, and if X is a scalar multiple of Y , then corr(X,Y ) = 1. This is the
cosine of the angle between X and Y . In Figure 3.3, we display the results of some
experiments in which we embedded some watermarks into images with various scaling
factors α and examined the correlation between the resulting watermarked image and
the original image.
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(a) Raccoon watermarked by
fox
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(b) Raccoon watermarked by
noise
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(c) Fox watermarked by
husky

Figure 3.3: Correlations between image (A) and watermarked image (AW ) after wa-
termark embedding with various scaling factors α

The correlation between the watermarked and original images remains above 0.95
for the modified Jain scheme, while it drops quickly for the unmodified version. This
means that with the modified Jain scheme, the watermarked image is approximately a
scalar multiple of the original image. This, combined with the results on the Frobenius
norm error between the watermarked image and the original image, indicate that
the modified Jain et al. watermarking scheme has better imperceptibility than the
unmodified for any given scaling factor α, which is consistent with observation.

Although the error in the extracted watermark after additive perturbation is not
different between the modified and unmodified Jain et al. schemes, the property of
the modified Jain scheme described in the previous paragraph allows us to use larger
scaling factors α in practice without a negative impact on perceptibility, resulting in
less error in the extracted watermark.

4. Robustness Against Distortions. There are many of ways that a water-
marked piece of media could become somehow distorted in its lifetime. It could
undergo a deliberate cyber attack by some malicious actor. It might be shortened
somehow, whether through the clipping of a video clip or the cropping of an image.
It may even undergo SVD-based low rank compression. Thus, another major task
in designing an watermarking scheme is in ensuring that a watermarked media can
undergo some distortion and still contain proof of ownership to a reasonable degree.

As images are digitally transmitted, it is common that they might undergo low
rank compression. While we already know that many natural images are often of
intrinsically low-rank structure and can thus be compressed to a much lower rank,
we are curious about how compression will affect extraction accuracy in watermark-
ing schemes. We provide some examples in Figure 4.1, where the tree image is the
watermark being embedded into the landscape image 2.

1Tree image from personal collection
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(a) Liu & Tan: rank 300, α = 0.01 (b) Liu & Tan: rank 300, α = 0.1

(c) Jain: rank 300, α = 0.01 (d) Jain: rank 300, α = 0.1

(e) Modified Jain: rank 300, α = 0.01 (f) Modified Jain: rank 300, α = 0.1

Figure 4.1: Robustness Against Low-Rank Compression

Low-rank compression is a one example of a common distortion. The plots in
Figure 4.2 illustrate how as the rank is compressed using the SVD along the x-axis,
the error according to the Frobenius norm of the extracted watermark compared with
the original watermark is increased.
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Figure 4.2: Robustness Against Low-Rank Compression Plots
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Images can also be cropped, which eliminates entries from its matrix and compli-
cate watermark extraction. We again provide examples of how watermarking schemes
might withstand this in Figure 4.3 by changing 20 rows or columns on the right or
bottom of the watermarked images to zeros as a means of simulating cropping.

(a) Liu & Tan: 20 rows from bottom, α =
0.01

(b) Liu & Tan: 20 columns from right,
α = 0.01

(c) Jain: 20 rows from bottom, α = 0.01 (d) Jain: 20 columns from right, α = 0.01

(e) Modified Jain: 20 rows from bottom,
α = 0.01

(f) Modified Jain: 20 columns from right,
α = 0.01

Figure 4.3: Robustness Against Cropping

We see from Figure 4.3 that the Liu & Tan scheme does exhibit robustness against
cropping, although this is somewhat misleading, as its failure of the basic security test
would suggest. For the Jain and Modified Jain schemes, even just 20 rows removed
renders the extracted watermarks almost unrecognizable. Note that the side from
which rows or columns were removed appears to matter.

However, note that the experiments presented in Figure 4.3 represent a somewhat
idealized situation for cropping, in which we have knowledge of the original dimensions
of the watermarked image and can fill in the remaining entries of the cropped image
with zeros to match the dimension. What if a user were to receive a cropped version
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of a watermarked image not knowing the original dimensions of the image, or knowing
the original dimensions but not the side from which the image was cropped? This
indicates a limitation to SVD-based watermarking scheme robustness and presents a
potential challenge in practical implementation.

We also test how each scheme responds to rotations in Figure 4.4.

(a) 1◦ Rotation (b) 1◦ Liu & Tan (c) 1◦ Jain (d) 1◦ Modified Jain

(e) 25◦ Rotation (f) 25◦ Liu & Tan (g) 25◦ Jain (h) 25◦ Modified Jain

(i) 45◦ Rotation (j) 45◦ Liu & Tan (k) 45◦ Jain (l) 45◦ Modified Jain

(m) 90◦ Rotation (n) 90◦ Liu & Tan (o) 90◦ Jain (p) 90◦ Modified Jain

Figure 4.4: Robustness Against Rotations

Note that the Liu & Tan extracted watermarks are extremely accurate. Both the
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Jain and Modified Jain extracted watermarks are barely identifiable, even for just
a one degree rotation. This represents a limitation of our modified scheme for this
particular attack.

5. Audio Watermarking. A cornerstone property of the SVD is that it can
be applied to any matrix. Similarly, these watermarking schemes are not limited to
images and can also used for audio media such as songs or recordings. This is useful
in trademarking music and finding proof of plagiarism in the entertainment industry.

Mono audio signals, in their raw form, come in as an array of N points sampled
with frequency fs (typically 44 100 Hz). To convert audio signals into matrices, we use
the Short Time Fourier Transform (STFT), a time-frequency analysis technique. The
output is a rectangular matrix where the entry in coordinate (f, t) is a complex number
which describes the amplitude and phase of frequency f at time t. For visualization,
a spectrogram can be obtained from the STFT of a signal by plotting the magnitude
squared of the entries of the STFT.

Figure 5.1 displays an example audio signal and its associated spectrogram, with
time on the horizontal axis and frequency on the vertical axis.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

−5000

0

5000

10000

Am
pl

itu
de

(a) Audio signal

0 2 4 6 8 10 12 14 16
0

2500

5000

7500

10000

12500

15000

17500

20000

(b) Spectrogram

Figure 5.1: Visualization of Frequency vs. Time

We use a Short Time Fourier Transform (STFT) with window size 256 and shift
128 to convert audio signals into matrices. [10, 7] further describe the STFT.

As a brief example of the application of our modified scheme in audio ownership
protection, we can experiment with a 17-second clip from Bach Cello Suite No. 1
[1]. Just like how the modification of singular values were explored in Section 3 for
images, scaling the singular values of an audio file results in the altered spectrograms
seen in Figure 5.2. We multiply each singular value by a scalar p and observe that
the volume of the audio is louder as p is adjusted to be greater.
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(a) p = 4 (b) p = 2 (c) p = 0.5

Figure 5.2: Modification of singular values by a linear scalar p for audio represented
by their spectrograms and audio signals

While it is difficult to tell from visual inspection, it turns out that scaling the
audio by a factor less than one results in a lowering of volume.

Now, when we embed a 7-second clip of news introduction music into the 17-
second cello music clip according to the Modified Jain scheme with various values of
α, we obtain the results shown in Figure 5.3:

Figure 5.3: Audio watermark using the Modified Jain scheme with difference values
of α represented by their spectrograms and audio signals

Finally, to determine the robustness of the Modified Jain watermarking algorithm,
we apply four distortions to the watermarked music clip using external audio software:
to add reverb, to lower all pitches, and to remove the noise. These results are shown
in Figure 5.4 where the top two rows are the signals and spectrograms of the distorted
watermarked audios, and the bottom two rows are the signals and spectrograms of
the extracted watermark audios.
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(a) Removing Low
Frequencies

(b) Adding Reverb Ef-
fects

(c) Lowering by 1
semitone

(d) Lowering by 3
semitones

Figure 5.4: Distortions on Watermarked Audio using the Modified Jain Watermarking
Scheme and the Extracted Watermarks

6. Further Research Areas. We plan to explore what constitutes an ideal
watermark: is there a certain type of image or media that we can choose to ensure the
best robustness and security? In [11], Liu & Tan suggest that watermarks with random
entries are particularly desirable for their watermarking scheme. We have done some
experiments with this that suggest that there are certain benefits in security, but at
the cost of extraction accuracy. We hope to further refine these results in future work.

We are also interested in using alternative SVD algorithms to develop an optimal
watermarking scheme. It has been both mathematically and experimentally shown
that the randomized and compressed SVD algorithms can dramatically decrease com-
puting time while maintaining high performance and accuracy, especially for large
matrices [6], [4]. We hope to run experiments in order to quantify this speed-up in
the embedding and extraction process, as well as determine whether using such algo-
rithms has any significant impact on properties like extraction accuracy or security.

One key limitation to the approach taken in this paper is that the basic security
test outlined gives us a necessary but not necessarily sufficient condition for a water-
mark scheme to be secure. It will be important to explore more sophisticated notions
of watermark security in future work, such as issues related to embedding multiple
watermarks in the same image.

Finally, a key limitation to our proposed watermarking scheme is robustness
against distortions such as clipping and rotation. Addressing these limitations is
a natural next step in this work.
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7. Conclusions. The unique properties of the SVD have been utilized in many
fields, and are especially useful in protecting digital media. In this paper, we analyzed
existing SVD-based watermarking schemes and propose our own modified version of
the scheme put forth by Jain et al. in [8]. While the Liu-Tan watermarking scheme
[11] is extremely robust to distortions but lacking in terms of ownership protection, the
Jain watermarking scheme [8] gives up robustness to distortions and imperceptibility
for stronger security. Our proposed modification to the Jain watermarking scheme
preserves the security properties of the Jain watermarking scheme while improving
imperceptibility.

We also introduce various means of quantifying robustness against distortion and
attacks. Our goal for our modified scheme is to optimize the convenience and security
of SVD-based watermarking schemes to meet the rapidly-expanding need for digital
ownership protection.
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