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Abstract. Studies of microswimmers have received increasing attention since the 2000s fueled by the advance-

ments in micro-manufacturing and their potential for exciting biomedical applications. One of the

popular mathematical research directions is the optimization of the flagella- or cilia-kinematics to

maximize the swimming e�ciency, usually for isolated microswimmer. The collective behaviors, on

the other hand, are a↵ected by the types of microswimmers (e.g., pusher, puller, or neutral). Under-

standing the connections between the optimal activation of a given shape and its swimming-type can

have important implications on designing artificial microswimmers. In this work, we build an artifi-

cial neural network (ANN) that can predict the types of optimal microswimmers based solely on their

shapes. More interestingly, we show that the tangent vector information along the microswimmer

surface is important for the ANN to successfully classify the microswimmers.

1. Introduction. Microswimmers is a class of microscopic machines that can move in
fluid environments with a swimming motion. It was first observed in 1677 when Antonie Van
Leeuwenhoek remarked the jiggling motion of sperm cells (see, e.g., Budrikis [2020]). Since
then, microswimmers including many prokaryotes and eukaryotes have received increasing
attention from scientists in various fields, from biologists [Tamm, 1972, Sleigh, 1991] to math-
ematicians [Taylor, 1951, Brennen and Winet, 1977, Lauga and Powers, 2009, Ga↵ney et al.,
2011]. Some of the well-studied microswimmers are Volvox, spermatozoa, and Paramecium
(see Figure 1). These microswimmers have flagella- or cilia-based swimming motions, where
the flagella or cilia provide the driving force for the cell’s movement. Specifically, ciliated
microswimmers such as Paramecium and Opalina feature hundreds of motile cilia on the cell
surface. The coordinated motions of the dense ciliary carpet creates slip velocities tangent to
the cell surfaces and drive the microswimmers e�ciently.

On the other hand, artificial microswimmers have gained tractions since the early 2000s
benefitted by the significant advancements in micro-manufacturing. Some artificial microswim-
mers are inspired by their biological counterparts. For example, Dreyfus et al. [2005] designed
a microswimmer by attaching an externally actuated flagellum-like artificial component to a
human red blood cell. Other artificial microswimmers can swim without the external actua-
tion. For example, di↵usiophoretic particles propel themselves by exploiting the asymmetry of
chemical reactions on their surfaces [Anderson, 1989, Golestanian et al., 2007]. Such particles,
like the Janus particle [Howse et al., 2007], generate chemical gradients which in turn create
an e↵ective steady slip velocity on the surface by osmosis e↵ects. Exciting biomedical applica-
tions of artificial microswimmers include cargo transport [Klumpp and Lipowsky, 2005], drug
delivery [Qiu et al., 2015], artificial insemination [Medina-Sánchez et al., 2016], sensing [Sun
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(a) (b) (c)

Figure 1. Gallery of biological microswimmers under microscopes. (a): Volox [Prochnik et al., 2010]. (b):

bull spermatozoa [Parrish, 2010]. (c) Paramecium [Deuterostome]. All three types of cells present flagella- or

cilia-based swimming motion, and move in fluid environments by squirming their flagella.

et al., 2020], and imaging [Yan et al., 2017].
Promising applications of artificial microswimmers require careful designs of these micro-

scopic machines. One of the important metrics is the hydrodynamic e�ciency. A popular
hydrodynamic e�ciency is proposed by Lighthill [1952] that measures the ratio between the
‘useful work’ and the total work, where the useful work is defined as the work needed to toll a
rigid body of the microswimmer’s shape at the given speed. The optimal slip velocity (the slip
velocity that leads to the highest hydrodynamic e�ciency) of spheroidal microswimmers can
be solved semi-analytically [Leshansky et al., 2007]. A recently proposed numerical algorithm
can solve the optimal slip velocity of any arbitrary axisymmetric shape [Guo et al., 2021]. This
algorithm takes advantage of the linearity of the problem (Stokes equations) and formulates
the optimization problem as a quadratic optimization problem, which can be solved directly
in seconds on a laptop computer.

Besides optimizing individual microswimmers, it is also important to take their collective
motions into consideration. Di↵erent types of microswimmers can cluster, swarm, and interact
non-trivially with solid boundaries, which may further lead to interesting behaviors such as
complex chaotic flows, enhanced particle velocities, e�cient fluid mixing (see Saintillan and
Shelley [2015] and the reference therein). Many of these behaviors can be explained by the
reduced order models that classify microswimmers into three types, ‘pusher’, ‘pullers’, and
‘neutrals’. The classification is based on the magnitude of stresslet, which is the symmetric
first moment of the stresses exerted by the particle on the fluid [Kim and Karrila, 2013].
The microswimmers are called pushers, pullers, and neutrals if the magnitudes are less than,
greater than, and equal to zero, respectively. Figure 2(a) shows an example pusher E. Coli. In
this case, the flagellum (red) provides the force to push the cell body (grey) to move forward.
Figure 2(b) shows an example puller Chlamydomonas, in which the flagella locate in front of
the cell body and pull it to move forward. Note that biological microswimmers are often not
hydrodynamically optimal [Guo et al., 2014], presumbly because they have other biological
functions to serve such as feeding and chemical sensing. Artificial microswimmers, on the
contrary, can be designed as hydrodynamically optimal. The goal of this paper is to design a
framework to predict the classifications of optimal microswimmers, biological or artificial, for
a given shape.

The conventional approach to classify optimal microswimmer with a given shape involves
220
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(a) (b)

E.Coli (Pusher) Chlamydomonas (Puller)

Figure 2. Cartoons of pusher microswimmer and puller microswimmer. The grey parts represent the cell 
body, and the red parts represent the activation force. Both swimmers swim upwards. Pusher microswimmer’s 
activation force is located at the back of the cell body, and puller microswimmer’s activation force is located at the 
front on the cell body. The black arrows indicate the induced fluid flows. Note that biological microswimmers 
are not necessarily hydrodyamically optimal. This cartoon only serves as an illustrative purpose for classic 
pusher and puller microswimmers.

first optimizing the slip profile and then compute the stresslet induced by the microswimmer. 
Even though e↵ective optimization algorithms exist, this approach is still limited by one’s 
ability and comfort level at optimization as well as computation of the stresslets. A heuristic 
scalar metric is recently proposed by Guo et al. [2021] that can predict the classification using 
shape-information only. This heuristic metric is motivated by numerical observations and 
takes into account geometric features such as the tangent direction along the generating curve 
and the distance to the axis of symmetry. While the metric does a good job at predicting 
classifications (29 out of 32 microswimmers studied in the paper were correctly classified), the 
form of the metric is relatively arbitrary and provides little information about which geometric 
feature plays a more significant role in making the prediction.

In order to gain more insights on designing microswimmers and to leverage the ever-so-
growing strength of data-driven sciences, we look into machine learning approaches. Machine 
learning and fluid dynamics research are tightly knitted historically. Researchers have ap-
plied various machine learning algorithms including proper orthogonal decomposition (POD), 
dynamic mode decomposition (DMD), genetic algorithms (GA) in fluid dynamics to extract 
flow feature, model flow dynamic, and optimize and control flows [Brunton et al., 2020]. 
In particular, artificial neural networks (ANN) presents promising applications in classifying 
canonical behaviors and dynamic regimes. At the same time, ANN has also greatly succeeded 
in classification tasks outside of the conventional fluid dynamics field. Some examples include 
hand-written digits recognition [LeCun et al., 1989a,b], facial recognition [Lawrence et al., 
1997], medical diagnosis [Kononenko, 2001]. The power and flexibility of ANN stem from its 
modular structure. ANN consists of layers of artificial neurons, categorized into the input, 
hidden, and output layers. Each neuron in the ANN receives an input, processes it through an 
activation function, and produces an output [Nielsen, 2015]. The ANN is trained by process-
ing the inputting examples and forming probability-weighted associations between each layer
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Flow field Flow field

Figure 3. Generate a microswimmer by rotating the generating curve. The figure on the left is a gen-

erating curve, and the figure on the right is its corresponding microswimmer. We obtain the axisymmetric

microswimmer on the right by rotating the generating curve around the y-axis by 360 degrees. |u| measures the

optimal slip velocity on the surface of the microswimmer. A color towards red signifies smaller magnitude of

the optimal slip, and a color towards blue represents a larger magnitude. Note that the shown microswimmer

after optimization is neutral, and is generated using equation 2.1 with a = 0.15 and k = 6. Sample generated

microswimmers classified as pusher and puller are given in 4. Figures are generated using the Matlab App

Xlip [Guo, 2021].

of neurons. It is worth noting that although naively adopting ANN structures in a black-box
fashion can yield respectful accuracies for our classification problem, it is still unable to dis-
cern the more important geometric feature in the prediction process. To this end, we carefully
design experiments with di↵erent input vectors to ANNs with the same structure and compare
the classification results from both the accuracy and e�ciency point of view. Our results help
us to understand which geometric feature is more useful to this classification problem using
ANN.

The paper is organized as follows: In section 2, we introduce the two shape families used
in our experiment and our choice of the ANN structure; we present the classification results
using four di↵erent ways to structure the input vector in section 3; we discuss our results and
their implications in section 4.

2. Model and Methods. In this project, we focus on studying axisymmetric microswim-
mers. By symmetry, any axisymmetric shape can be obtained by rotating a generating curve
around the y-axis by 360 degrees. See Figure 3 for a visual representation.

In general, we consider two families of axisymmetric shapes: the wavy shapes

(2.1) Z(✓) = [1 + a cos(k✓)]ei(⇡/2�✓),

and the spherical harmonic shapes

(2.2) Z(✓) = [1 + rYn
m(✓, 0)]ei(⇡/2

�✓).
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In both formulas, ✓ 2 [0,⇡] is the polar angle. a and k are the amplitude and the wavenumber
for the wavy shapes; Y m

n (✓, 0) is the spherical harmonic of degree n and order m evaluated at
colatitude ✓ and longitude 0, and r represents the perturbation size. In the remaining of the
paper, we use x and y to denote the real and the imaginary parts of the complex number Z
along the generating curve.

Note that the shapes corresponding to di↵erent shape parameters do not necessarily have
the same north and south poles, which may add another level of di�culty in training the neural
network. To eliminate such e↵ects, we scale and translate the generating curve such that the
poles are always a unit distance away from the origin along the y-axis. The training labels
of the microswimmers are obtained following the algorithm documented in Guo et al. [2021].
Simply speaking, the algorithm first computes the optimal slip profile given a microswimmer’s
generating curve, then integrate the resulting stress tensor to classify the microswimmers. The
geometric information along the generating curves and the computed labels are used to train
the neural network, which will be discussed in the following paragraphs.

We use Tensorflow to construct a dense neural network. The neural network contains four
layers, including one input layer, one output layer, and two hidden layers. The input layer
takes in the geometric information of the generating curves, and the output layer presents the
classification result. We discretize the generating curve into pieces of equal arclength by N
points along the curve. Depending on the choice of models, we either construct the ANN’s
input vectors by using only the (x, y) coordinates of the points or by using both the (x, y)
coordinates and the tangent directions of the discretization points, resulting in input vectors
of lengths 2N and 4N respectively. Figure 4 is a visual representation of the structure of our
neural network in which only the (x, y) coordinates are used.

While training the model, we split the data into 80% training and 20% test datasets
while keeping the same ratio of pushers, pullers, and neutrals between the training set and
the test set. We apply the adaptive moment estimation for optimization, sparse categorical
cross-entropy as the loss function, relu as the activation function for both hidden layers, and
softmax as the activation function for the output layer. We use the default parameters for
all other variables in the function. To prevent the model from overfitting, we draw 30% data
from the end of the randomly shu✏ed training set as the validation set prior to training. The
validation set is used for the early stopping criterion, which monitors the validation losses
with patience of 10. That is to say, we will halt the training process if the validation loss is
greater than the current minimum loss for ten consecutive epochs. Note that the model is
never trained using the validation set. The validation set is only evaluated at the end of each
epoch as an indicator of potential overfitting.

We generate 515 wavy shapes using equation (2.1) and 513 spherical harmonic shapes
using equation (2.2). Among the total of 1028 microswimmers, 430 are neutrals, 310 are
pushers, and 288 are pullers. We use two hidden layers with 100 and 50 nodes respectively in
our ANN structure. As will be shown in Section 3, this structure yields high accuracies for
both training and test sets.

3. Results. We start by training an ANN that takes the (x, y) coordinates of N = 100
discretization points along the generating curve as the input data. As a result, each input 
vector is 200-dimensional. We refer to this model as the base model. In addition to the base
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Figure 4. Neural Network structure. A neural network has three types of layers: the input layer, the hidden 
layers, and the output layer. The input layer takes in the data then passes the data to the hidden layer for 
processing. Lastly, the model spits out the result from the output layer. The lines connecting each layer show 
the training process, while each layer feeds the data to its subsequent layer.

model, we construct input vectors with both the (x, y) coordinates and the tangent directions 
at each point. The tangent vector at each discretization point is computed using a forward 
di↵erence scheme. Note that appending the tangent vectors doubles the dimension of the 
input vectors. To make a fair comparison, we use a coarser discretization on the generating 
curve with 50 evenly distributed points, which yields the same dimension of the input vector 
as the base model. We refer to this case as the test model .

The accuracies and model losses of the base model are shown in Figure 5(a-b). Specifically, 
the training accuracy increases from 42.26% to 86.78% and the validation accuracy increases 
from 48.99% to 85.43% within 79 epochs, when the training ends due to the early stopping 
criteria based on the validation losses. The model losses decrease from about 1.1 to 0.4 for 
both the training set and the validation set. The test accuracy for the trained model is 83.98%.

Figure 5(c) shows that the training accuracy of the test model increases from 47.65% to 
91.13% and the validation accuracy increases from 59.51% to 89.47% within 45 epochs. The 
test accuracy of this model is 88.35%, about 5% higher than the base model. The final model 
losses for the test model are also lower than those of the base model (Fig. 5(d)).

To further understand the results of the trained neural network for each microswimmer 
type, we generate a confusion matrix of the base model in Figure 6(a). The diagonal elements 
show the percentage of the microswimmers being correctly classified, and the o↵-diagonal 
ones demonstrate the mis-classified percentages. As we can see, the classifications of neutral 
microswimmers is significantly more accurate than that of pullers and pushers. Specifically, all
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Figure 5. Model Accuracy and loss for the base model and the test model. (a) and (b) Training, validation

accuracy and model loss for model trained with 100 discretization points as input. (c) and (d) Model accuracy

and loss for model trained with 50 discretization points and corresponding tangent vectors.

neutral microswimmers are correctly classified, while the classification accuracies for pullers
and pushers are 71% and 74% respectively. Among the 29% mis-classified pullers, 16% are
classified as neutral and 14% as pullers.1 Similarly, 15% of pushers are mis-classified as
neutrals and 11% as pushers.

To reduce the high-accuracy bias introduced by the neutral microswimmers, we separate
each type of microswimmers and train three more models with two types of microswimmers
at a time. The confusion matrices of these three models are shown in Figure 6(b-d). The
classification accuracies for pushers and pullers are significantly improved in all three models,
and the advantages of neutral microswimmers become less prominent.

The confusion matrices of the test model are shown in Figure 6(e-h). The accuracies for
pullers and pushers are improved from the base model and the accuracy for the neutral ones
remains high. Additionally, including the tangent vectors significantly reduces the percentage

1
up to round-o↵ error.
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and pushers, respectively. (e) test model trained with pullers, neutrals, and pushers; (f)-(h) test model trained

with only pullers and neutrals, pullers and pushers, or neutrals and pushers, respectively.

of mis-classified pushers (pullers) as pullers (pushers).
To reduce random error, we perform 20 Monte Carlo simulations for the base and test

models. The average test accuracies and the average number of epochs required for the
model to converge are summarized in Table 1. While both models share the same dimension
of input vectors, including the corresponding tangent vector indeed noticeably increases the
model accuracies—average test accuracy increases from 82.06% (base model) to 87.99% (test
model). Additionally, the average number of epochs required is reduced from 73 to 55, a
roughly 25% computational save.

Table 1
Average Test Accuracy (TA) and the Number of Epochs (NOE) among 20 model trains for the four models.

TA, NOE Without tangent vector With tangent vector
82.06% 85.32%

100 points 72.6 50.15

(base model)

83.86% 87.99%

50 points 85.05 55.15

(test model)
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In addition to the base and test models, we investigate two other models with input 
data containing 100 points with tangent vectors and 50 points without tangent vectors as 
shown in Table 1 for references. In general, when the number of discretization points are 
fixed, including the tangent vectors increases the test accuracies and reduces the number of 
epochs required; when the type of input is fixed (with or without tangent vector), halving the 
number of discretization points from 100 to 50 also increases the test accuracies yet requires 
more number of epochs to converge.

4. Discussions. In our work, we constructed an artificial neural network using TensorFlow 
in Python to classify optimal microswimmers based solely on their shapes. We showed that, 
using a simple dense neural network with two hidden layers, the trained neural network 
achieved a high prediction accuracy consistently. The datasets are taken from two families of 
microswimmers that cover a wide range of shapes and the corresponding labels are computed 
using a numerical method documented in a recent paper [Guo et al., 2021].

Compared to the conventional approaches to classify optimal microswimmers that fluid 
dynamicists are familiar with, the trained neural network bypassed the optimization as well 
as the stress integration steps and required only the microswimmers shape information. For 
example, the input vectors of the neural network consist of solely the positions of the dis-
cretization points along the generating curve in the base model.

We further explored the shape features that can help the artificial neutral network to 
classify the microswimmers. Specifically, we examined whether providing the tangent vectors 
at each discretization point in addition to the position vectors as input of the artificial neural 
network can increase the classification accuracy. Keeping the hyperparameter combination 
used in the base model model (e.g., number of hidden layers, number of nodes in each hidden 
layer), we further trained three models with the same set of microswimmers yet provided 
the ANN with di↵erent input information. The trained models yielded di↵erent training, 
validation, and test accuracies as well as number of epochs needed for convergence.

Specifically, we showed that providing tangent vector information while keeping the num-
ber of discretization points increases the test accuracy (Table 1). On the other hand, halving 
the number of discretization points from 100 to 50 also increases the test accuracy. The test 
model (50 points with tangent vector information) boasts the highest test accuracy among 
all four models. In addition to the increase of accuracy, reducing the number of discretiza-
tion points also increases the average epoch needed to convergence. These two observations 
combined likely means that the additional 50 discretization points on the generating curve do 
not add useful information for model training yet increases the potential of overfitting, as the 
number of model parameters increase with the dimension of the input vector.

It is interesting to note that the model trained with the highest dimension of input informa-
tion (100 points with tangent vector case) needs the fewest number of epochs to convergence. 
This may allude one to believe that this model has the least computational cost. However, 
as the computational cost scales with the number of model parameters, this model actually 
requires about 15% higher computational cost than the base model and 51% higher than the 
test model, which has the least computational cost among the four models.

Both the base and test models are extremely accurate when classifying the neutral mi-
croswimmers, while the classification accuracies for pullers and pushers are similar but notica-
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bly lower than the classification accuracy for neutrals, as shown in Figure 6. Additionally, the 
mis-classified labels have a bias towards the neutrals. We believe that this model performance 
can be explained by how the true labels for the training data are generated. As discussed 
before, the pusher/puller labels are determined by the sign of the stress integral along the gen-
erating curve, and the neutral is a middle state that the stress integral is 0. Therefore, when 
the model prediction fails for a puller or a pusher, it is more likely that the microswimmer is 
predicted as a neutral as it lies between the puller and pusher.

Note that we employed an ANN with a relatively simple structure–two hidden layers and 
a set of fixed hyperparameters–that yielded a desirable model performance. Although fine-
tuning the ANN structure may lead to even better model performance, it is not our intension 
of this paper to construct the neural network with the highest prediction accuracy. Rather, we 
used this simple-structured model to examine and found that providing tangent information 
can boost the model accuracy at reduced computational cost. Given our ANN’s minimalist 
structure, we believe the conclusion made in the paper can be generalized to other ANN with 
more complex structures.

Several extensions to the work can be interesting. In this work, we only considered two 
families of axisymmetric microswimmers—the wavy shape and the spherical harmonic shape. 
However, our approach can be naturally generalized to include other axisymmetric families as 
well. The extension to non-axisymmetric shapes is theoretically manageable but significantly 
more challenging. One of the foreseeable challenges is that the result will likely be dependent 
on the surface discretization schemes, not to mention the very high dimensional input vectors. 
Moreover, we only focused on microswimmers in zero-Reynolds number Newtonian fluids in 
this work. It will be of great interest to apply similar method to classifications of optimal 
microswimmers in other complex fluids.

Changing hyperparameters such as the number of hidden layers, the number of nodes 
per layer, or even applying more advanced neural networks such as the convolutional neural 
network (CNN) will all influence the model accuracy. Additionally, our work only focused 
on one type of shape feature besides the position, the tangent vector, further works can 
explore other shape features of the microswimmers such as the area of the cross section and 
curvatures. It follows that another exciting improvement to make on our approach is to have 
the model to extract the most useful features automatically with advanced algorithms such as 
SINDy [Brunton et al., 2016]. Lastly, although we do not currently have access to experimental 
data, we will be excited to see future experiments related to this work.
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Appendix. In addition to the neutral example shown in Figure 3, we present two addi-
tional microswimmers in Figure 7, where one of which is classified as pusher after optimization
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and the other is classified as puller after optimization.

(a) (b)

Figure 7. Pusher and puller microswimmers generated by equation 2.1. (a) shows a pusher microswimmer

generated by 2.1, with a = 0.1, k = -7. (b) shows a puller microswimmer generated by equation 2.1, with a =

0.4, k = 3. Figures are generated using the Matlab App Xlip [Guo, 2021].
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