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Abstract. The causes behind complications in laser-assisted tattoo removal are currently not well understood,
and in the literature relating to tattoo removal the emphasis on removal treatment is on removal
technologies and tools, not best parameters involved in the treatment process. Additionally, the very
challenge of determining best practices is difficult given the complexity of interactions between fac-
tors that may correlate to these complications. In this paper we apply a battery of classical statistical
methods and techniques to identify features that may be closely correlated to causes of complication
during the tattoo removal process, and report quantitative evidence for potential best practices. We
develop elementary statistical descriptions of tattoo data collected by the largest gang rehabilitation
and reentry organization in the world, Homeboy Industries; perform parametric and nonparametric
tests of significance; and finally, produce a statistical model explaining treatment parameter inter-
actions, as well as develop a ranking system for treatment parameters utilizing bootstrapping and
gradient boosting.
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1. Introduction. Current best treatment practices for laser-assisted tattoo removal are ad
hoc at best, and the interactions between parameters involved in the tattoo removal treatment
process are not well understood. For instance, it is believed that patient demographic factors
may potentially affect treatment outcomes (e.g., factors such as patient age and gender), and
that these factors are a source of variation in physiological processes between individuals (i.e.,
skin reactivity and healing time vary demographically). Additionally, much of the research
surrounding tattoo removal is focused on the clinical trial setting with an emphasis on dis-
covering new innovations for laser-assisted tattoo removal [1]. While there is considerable
debate on laser pulse duration standards, it still remains that there is no precise and standard
system for best practices that has been shown to be both optimally effective and safe [15]. A
reason for the lack of understanding of safe treatment practices is a general lack of records of
treament parameters causing complications [11].

For our study we explore data recorded by Homeboy Industries, the largest gang rehabil-
itation program in the world, which offers free tattoo removal treatment services for former
gang members seeking to remove gang-related tattoos. We utilize various statistical methods
and demonstrate some results of inference relating to laser-assisted tattoo removal treatment
procedures performed in a practical clinical setting at Homeboy Industries in Los Angeles.

In our data there are four types of complications that are associated with tattoo removals:
hyperpigmentation and hypopigmentation, or increased and decreased skin pigmentation, re-
spectively; scarring, visible tissue regrowth; and keloids, scarring with excessive skin over-
growth in the treated area. We emphasize that while the complication rate among the studied
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sample is low, the main concern for all tattoo-removal practitioners is a commitment to do-
ing as little harm as possible. For this reason, our primary concern with the available data
is to simply understand complication occurrence and nonoccurence in general, grouping all
instances of complications together without distinction. The main significance of this design
is to understand the tattoo removal process as one that may potentially discourage patients
seeking removal from continuing the treatment process, and cause unnecessary grief in ad-
dition to any preexisting tattoo regret, as is commonly surveyed amongst individuals with
tattoos [21].

With these concerns in mind we broadly study the following research questions:
1. What demographic factors, if any, place a patient at an increased likelihood of expe-

riencing complications?
2. How are clinicians currently approaching the laser tattoo removal process–are there

any significant sources of variation with respect to tattoo demographic factors and
laser settings (e.g., face tattoos, tattoo age, etc...)?

3. What laser removal treatment parameters seem to be statistically significant with
complication occurrence, and at what particular settings?

4. If healthcare practitioners were to be selectively wary of certain treatment parameters
in the laser tattoo removal process is there a potential rank of caution in selecting
certain treatment parameters?

Generally, in this paper we apply a full range of inference techniques and machine learning 
methods to develop an understanding of best tattoo removal treatment parameters. The 
data measures treatment settings used on a tattoo over multiple treatment appointments. 
Data is provided at both the patient level and the treatment level for a given tattoo. With 
regards to methods used, we begin with analyzing the significance of patient demographic 
factors that are understood to be correlated with complication occurrence by utilizing simple 
statistical tests, addressing the first research question. We then perform parametric and 
nonparametric tests of significance for analysis of variance (e.g., Kruskal-Wallis, Wilcoxon rank 
sum and randomization) and use Tukey’s honestly significant difference (HSD) test to identify 
important sources of variation for current clinician approaches to tattoo removal. Finally, 
we fit a logistic regression model to identify statistically significant treatment parameters, 
and perform multiple gradient boosting using decision trees to form a ranking of treatment 
parameters that a health care practitioner should be most aware of during laser-assisted tattoo 
removal procedures—the aforementioned “rank of caution.”

This paper is organized as follows: Section 2 details the dataset and provides descriptions 
of the methods utilized; Section 3 presents results of the methods employed; Section 4 discusses 
the results; we conclude the paper in Section 5 with last remarks.

2. Data and Methods. The individuals that come through Homeboy industries are often 
former gang members, and many of them have tattoos that may be offensive or attract negative 
attention. In this section, we discuss the various datasets recorded by Homeboy Industries. 
The final cleaned datasets that were used in our analysis detailed tattoo level data and patient 
demographic data.

We also utilized many different statistical tests and methods, both parametric and non-
parametric. We detail the properties of these tests and their requirements for legitimate
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application to the data. All computations were done with R-4.0.3 [20]. We used the caret

library as the primary driver for applying the machine learning algorithms in our study. All
computing was done on a Linux machine running Ubuntu 20.04 with an Intel 10700K proces-
sor.

2.1. Patient Demographic Data. Including observations with missing values, there are
a total of 2,118 tattoo observations among 502 patients recorded in the data. We briefly
detail the various factors that were recorded at the patient demographic level in Table 1. We
note the importance of the Fitzpatrick score—a measure developed in 1975 to classify skin
tones [8]—as it is currently believed in the literature that the efficacy of selected treatment
parameters for laser-assisted tattoo removal is dependent on the Fitzpatrick score.

Table 1
Table detailing patient demographic and patient-level factors of interest.

Variable Description

Patient Age Age of the patient as of 10 June 2020 (integer-valued)
Sex Male or female (one-hot encoded as male/not-male, binary)
Ethnicity Hispanic/Latino, or not (one-hot encoded, binary)
Race Pacific Islander, American/Alaskan Indian, Black, Asian, Latino/Hispanic, white,

multiracial, other (nominal)
Treatment Total Total number of treatment visits at Homeboy for tattoo removal (integer-valued)
Total Tattoos Total number of tattoos listed by patient (integer-valued)
Fitzpatrick Score Fairest tone (I) to deeply pigmented (VI) (ordinal)
Complications Indication of whether a patient ever experienced any complication (one-hot encoded,

binary)

2.2. Tattoo Level Data. At the tattoo level, the data provided by Homeboy Industries 
includes characteristics of tattoos that went through laser assisted tattoo removal. At the 
tattoo level we perform statistical analysis on various factors grouped by whether the observed 
tattoo ever experienced a complication in the treatment sequence. We briefly detail the tattoo 
level features in Table 2. The data at the tattoo level are important because it provides insight 
into the significance of tattoo composition in whether a complication is likely to develop as 
a result of undergoing laser treatment as recorded, as well as challenge some assumptions of 
existing best practices.

2.3. Treatment Level Data. For each tattoo at the treatment level we detail four main pa-
rameters involved in laser-assisted tattoo removal, parameters that are actual tattoo-removal 
laser settings: fluence, spot size, wavelength and frequency. We briefly detail the treatment-
level features in Table 3. Apart from observing complication occurrence/non-occurrence as a 
response variable in our analysis with respect to tattoo-level factors and patient demographic 
features, we also study the variation of treatment parameters (e.g., fluence, spot size) selected 
by practitioners given a particular tattoo characteristic such as tattoo color and age. The 
intention for viewing treatment parameters as a response characteristic is to gauge whether 
current clinician practices are at all particular to tattoo-level characteristics at a statistically 
significant level.

In our study, some additional design choices were made with regards to studying the 
treatment parameters over a given treatment sequence. Since the composition of tattoos have
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Table 2
Table detailing tattoo level factors of interest.

Variable Description

Category Tattoo location on body (nominal)
Age Age of tattoo (integer-valued)
Colors Whether the tattoo was black/blue or had other colors (one-hot encoded as black-

blue/not-black-blue, binary)
Professional Whether the tattoo was done professionally, or by an amateur (one-hot encoded as

professional/not-professional, binary)
Treatment Total Total number of treatments recorded for a tattoo (integer-valued)
Fitzpatrick Score Fitzpatrick skin tone rate: fairest tone at I to deeply pigmented at VI (ordinal)
Complications Indication of whether the tattoo ever experienced any complication at all (one-hot

encoded, binary)

great variation between and within different tattoo characteristics (e.g., color, ink composition
and size) the number of treatments recorded varied greatly between tattoos. For example, a
treatment sequence may have lasted over 10 weeks for one recorded tattoo, another may have
had only a single appointment. Thus, two variations of variable transformation on the laser
treatment parameters were made.

Table 3
Table detailing treatment level variables of interest.

Variable Description

Fluence Laser heat and energy intensity measured in joules/cm2 (continuous)
Spot Size Laser spot radius measured in millimeters (continuous)
Wavelength Laser wavelength at two levels (532nm and 1064nm, binary)
Frequency Laser frequency measured in Hertz at two levels (5Hz and 10Hz, binary)
Treatment Day Days since first treatment (integer-valued)

The first variation is to simply record the mean and standard deviation of the above 
treatment settings for the entire period in which a tattoo had undergone treatment; this 
variation was used to study current clinician practices at Homeboy Industries to see how 
responses of laser settings changed (i.e., how clinicians selected different treatment parameters) 
on average as a result of varying tattoo characteristics. The second variation also records the 
means and standard deviations of the distribution of treatment parameters in sequence, but 
only up to the first instance of a complication occurring; naturally, if a complication never 
occurs in a tattoo, the mean and standard deviation of applied laser settings are computed 
over the entire treatment period. Figure 1 shows time series of fluence (in red), one of the four 
possible laser parameters, over different tattoos with data from the full time series up until the 
first-arrival of a complication—as well as change the of laser fluence between treatments (in 
blue), to be detailed below. Note the irregular duration of time intervals between treatments, 
as well as clear nonlinear fluctuations of fluence chosen by clinicians.

Furthermore, as an extension of the first complication arrival data, we create additional 
variables of means and standard deviations with forward finite differences. For a given variable, 
representing a time-series treatment parameter, we compute mean and standard deviations
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Figure 1. We show fluence levels fluctuating by clinician application of laser-assisted tattoo removal. The
plots in the first row are of fluence settings for a tattoo that does not develop any complications, while the plots
in the second row are of one that has experienced complications. The red time series graphs represents the
recorded fluence levels, while the blue time series graphs represent the corresponding forward differenced time
series of fluence levels. Additionally, note that the time intervals are not uniform.

for

∆xk = xk − xk−1,

where the terminating point in the time series, xt, is dependent on whether we are observ-
ing first-arrivals of complications or the entire treatment sequence for a treated tattoo. For
example, if we are observing laser fluence for first-arrivals data we produce a forward finite
difference variable ∆x, where the time series terminates at the index in the sequence cor-
responding to the treatment where a complication was first reported. Consequently, when
computing the mean and standard deviations with respect to this forward finite difference our
expressions simplify as

∆x =
1

Nt − 1

(
Nt∑
k=2

∆xk

)
=

1

Nt − 1

Nt∑
k=2

(xk − xk−1) =
1

Nt − 1
(xNt − x1) ,

where we are essentially measuring the average likelihood of a given treatment parameter set-
ting from the first appointment to the terminal appointment (i.e., the full treatment sequence 
for original treatment-level dataset in its entirety, and the truncated treatment sequence for
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the first-arrivals dataset). Similarly, for standard deviations of the differenced time series:

σ̂∆x =

√
(S∆x)2 =

√√√√ 1

Nt − 2

Nt∑
k=2

(
∆xk −∆x

)2
=

√∑Nt
k=2(∆xk)2

Nt − 2
−
(
Nt − 1

Nt − 2

)
∆x

2
,

where Nt is the number of treatments given to a particular tattoo (note the linear unbiased 
estimate of standard deviation). The purpose of this variable differencing is to eliminate any
apparent trend; a first order forward differencing effectively applies a linear filter to our time
series [22]. The plots of the time series in Figure 1 demonstrates the variation of xk and ∆xk 
with respect to laser fluence. Tattoo removal clinicians generally aim to gradually increase the
fluence over the treatment sequence, the effect of this difference is to essentially flatten this
linearly trending process, and characterize the distribution of applied laser treatment settings
into statistical parameters (e.g., mean and standard deviation).

2.4. Statistical Inference. We applied both parametric and nonparametric statistical
tests of significance to identify statistically significant factors correlated to complication occur-
rence in our data (in all our tests we use α = 0.06). We were interested in observing differences
in proportions across different patient demographics and tattoo level factors. We applied the
z-test for two proportion testing as well as the chi-square test of independence for more than
two sample proportions. (It may seem unnecessary to use a z-test for proportions—and the
data itself is from a “single” sample—, but we’d like to make the specification that patients
that experienced a complication are distinct from those that did not, and that the z-test for
proportions is consequently comparable to a chi-square test of factors with two levels.) The
hypothesis statement generally for k-sample proportions is

H0 : pa − pb = 0
Ha : pa − pb 6= 0

where pa and pb represent distinct sample proportions, pairwise, across k-samples. The nec-

essary assumptions for these tests were found to be met before their application: independent
samples and observations, sufficient sample sizes, and mutually exclusive categories in vari-
ables [17].

Along with these statistical descriptions of proportions, we additionally were interested in
observing current distribution differences in removal practices and laser treatment settings. We
use Welch’s two-sample t-test to observe parametric differences of averages between different
treatment settings by whether a tattoo experienced a complication or not [24, 25]. When
the necessary assumptions for a t-test failed—observation independence, sufficient sample size
and normality—we resorted to using the Wilcoxon rank sum test and the randomization test.
We strictly applied the Wilcoxon rank sum test to responses that were categorical-ordinal on
independent observations [16]. The null hypothesis for the Wilcoxon rank sum test is that the
difference in central tendency of the distributions in our data is randomly occurring, with the
alternative being that difference in central tendency is not random, at a statistically significant

level.
In our implementation of the randomization test we were interested to see if the measured

difference of sample averages for settings applied to tattoos that developed complications
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versus those that did not were of random chance. Algorithm 2.1 details the randomization
test.

Algorithm 2.1 Randomization Test

Let N be the number of times resampling occurs
Let ∆µ := µ0 − µ1 be the empirical difference of means between samples
for iteration < N (sufficiently large) do

Remove observation labels, creating null distribution, H0 ∼ X, in array
Let X∗:=Permute(X), randomly permuting observations in array
Split X∗ by p̂0 and p̂1 label proportions for samples X∗p̂0 and X∗p̂1
Let µ̂∗0 :=Mean(X∗p̂0) and µ̂∗1 :=Mean(X∗p̂1), randomized means
Let (∆X∗) be the randomized empirical distribution of differences
Compute µ̂∗∆ := µ̂∗0 − µ̂∗1 and store into (∆X∗)

end for
Let B be an array of true/false values corresponding to {(∆X∗) ≤ −|∆µ|, |∆µ| ≤ (∆X∗)}
Transform B into an array of numeric values 0/1; 1 for true, 0 for false
return Empirical p-value, p̂∗ :=Mean(B)

The null hypothesis of the randomization test is that the statistic of interest is produced by
random chance, with the alternative being that the observed sample statistic is not randomly
produced at a statistically significant level. Both the Wilcoxon rank sum and randomization
tests allow for an interpretation of differences between factor levels that are correlated to
complication rates, albeit with less statistical power being nonparametric with relative sample
sizes between complication and noncomplication tattoos being heavily unbalanced, 2,000 to
118, respectively [9].

Finally, in comparing the means across multiple levels of a factor we applied one-way
analysis of variance (ANOVA) where parametric assumptions for normal probablity distribu-
tions were satisfied, and a Kruskal-Wallis test for one-way ANOVA where these assumptions
were violated. We verified the assumptions of normality, linearity and homoscedasticity [3, 5].
The hypotheses for one-way ANOVA are

H0 : µ1 = µ2 = · · · = µk

Ha : µi 6= µj , for some i 6= j

where the null hypothesis says that the population means between k groups of categories 
are equal, and alternative says that at a statistically significant level there exists a difference 
among the k population means. Applying ANOVA to our sample tattoo data we reject our null 
hypothesis, or do not reject our null hypothesis—in which case we then accept the alternative 
hypothesis. In order to locate the source of variation where shown to be significant, we applied 
Tukey’s HSD test as a multiple comparison among the multi-level factors for which one-way 
ANOVA was applied [23]. (In our actual study below we prefer the Tukey-Kramer HSD over 
an alternative post hoc such as Fisher’s LSD for multiple pairwise comparison in analyses 
involving a large number of factor levels (> 4) as the Tukey-Kramer HSD test generally 
controls the overall type 1 error rate—probability of falsely rejecting the null hypothesis
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[18].) In particular, we used the Tukey-Kramer HSD test to account for unequal samples
when computing the studentized range distribution statistic for the corresponding confidence
interval

x̄i· − x̄j· ±
qα;k;N−k√

2
σ̂ε

√
1

ni
+

1

nj

where i and j represent distinct sample distributions from different populations; without loss of
generality, x̄j· and nj represents the sample average and sample size for the feature of interest, 
respectively. The coefficient qα;k;N−k is the upper α percentage points of the studentized range 
statistic, q, defined as

q = 
x̄√max − x̄min

MSE/n

where x̄max and x̄min are the largest and smallest sample means; N is the number of obser-

vations; k is the number of populations or levels in a factor; and N − k is the degrees of 
freedom associated with the mean squared error, MSE , in the studentized range statistic and 
n represents the number of observations [13]. Additionally, σ̂ε denotes the square root of the 
overall variation of the feature of interest in our total population.

When our parametric conditions failed (e.g., sample distribution normality and homoscedas-
ticity), we resorted to applying the Kruskal-Wallis test for one-way nonparametric ANOVA 
[14]. The null hypothesis of this test is that the medians of our populations are equal, and 
the alternative is that the there is at least one source of random variation among our pop-
ulations with a median that is statistically significant among some pair of populations (e.g., 
median fluence of settings applied to tattoos on the face versus tattoos on the neck or those 
on the upper extremeties). As a natural post hoc for multiple pairwise comparisons after the 
Kruskal-Wallis test we utilized Dunn’s test. We find for the factors that failed the ANOVA 
assumptions, if the shape of continuous distributions between groups are nearly identical, we 
are permitted to interpret Dunn’s test as a multiple pairwise comparison test of population 
median differences (i.e., test of statistically significant differences between population group 
medians based on provided sample data). We additionally apply the Benjamini-Hochberg 
correction for controlling the false discovery rate for this comparison, as opposed to a more 
strict p-value adjustment procedure such as Bonferroni’s correction [2, 19].

2.5. Statistical Learning. In addition to performing inference, we were interested in de-
veloping statistical models of our data as related to complication occurrence (and nonoccur-
rence) across the first-arrivals tattoo-level dataset. In our data for complication occurrence, 
the actual response corresponds to a binary classification problem where complication occur-
rence in a given tattoo treatment sequence corresponds to a “true” outcome and complication 
nonoccurrence corresponds to a “false” outcome. Generally, logistic regression models a prob-
abilistic relationship of the occurrence of some response along with its predictors [12]. More 
precisely, logistic regression models the following:

p(X1, X2, . . . , Xn) = P (Y = 1|X1, X2, . . . , Xn),

where in our case we have a binary label response of complication one-hot encoded as “1” and 
complication nonoccurrence encoded as “0”; and there are n = 10 predictors, after heuristically
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removing highly correlated variables using an absolute correlation threshold of 0.6. The p
represents the probability that a given observation with its corresponding inputs are of an
outcome relating to tattoo complication. The precise formulation of the logistic regression
model is

p(X1, X2, . . . , Xn) =
eβ0+β1X1+···+βnXn

1 + eβ0+β1X1+···+βnXn

The coefficients of the logistic regression model are estimated using maximum likelihood esti-
mation (MLE) [4]. These estimates asymptotically follow a normal distribution, from which
we can infer statistical significance and evident dependence on the corresponding variables to
the response in the data. We use this process to identify statistically significant predictors of
treatment parameters corresponding to complications (again, with an α = 0.06).

In addition to modelling our data to find statistically significant factors corresponding to
complication occurrence, we wanted to produce a ranking of statistically significant variables
in our data. We do this using decision trees, gradient boosting and bootstrapping [10, 6].
Decision trees are machine learning models that recursively stratify (split) a feature space—
tattoo treatment parameters in our case—into regions that are estimated to be numerically
associated to a given response variable. Boosting is a general statistical/machine learning
paradigm that involves bootstrapping a dataset into many copies, and sequentially fitting
multiple machine learning models to the dataset. In this boosting procedure on decision
trees there are three tuning parameters: B, the number of trees; λ, a shrinkage parameter
controlling the learning rate of the boosting method; and d, the number of splits in a decision
tree, or variables to consider in the feature space stratification process—alternatively, d is also
understood as the interaction depth, controlling the order of complexity of our decision trees
(e.g., if d = 1, we have only a single layer of splits; if d = 2, we have a first layer of feature
space stratification, followed by another; and so on).

Boosting with decision trees on a given dataset can produce ranks of variable impor-
tance through the mean decrease in Gini index, a measure of total variance across K classes,
formulated as

G =
K∑
k=1

p̂mk(1− p̂mk),

where p̂mk represents the proportion of training observations in the mth stratified region 
corresponding to the labels of class k. The rank of variable importance is measured by the 
mean decrease in the Gini index over all the decision trees fitted in the boosting procedure, 
where the higher the mean decrease in the Gini index for that variable, the more important 
it is. From this procedure we additionally bootstrap our dataset by fitting these gradient 
boosted trees in our dataset 300 times, with each fit utilizing tuned hyperparameters from 
repeated k-fold cross validation.

k-fold cross-validation is a model hyperparameter tuning method that works by looking 
over a set of candidate tuning parameters and testing from all combinations of candidate 
settings to find the best hyperparameter configuration. More precisely, k partitions of the

original dataset are made where over each partition, k̃, the model is fit over the complement k− 
1 partitions; the performance metric of choice—for our gradient boosted trees, we use accuracy
for simplicity—is then averaged and recorded for a given hyperparameter combination; among
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the sample of measurements of average performance, the hyperparameter configuration with
the best average performance is selected for final model training and testing. Repeated k-
fold cross validation does exactly all of the above, but extends the cross-validation process
by “repeating” k-fold cross-validation on new permutations of data such that different data
points are relocated to different partitions between k-fold processes. For gradient boosting, we
tuned our model between 50, 100 and 150 trees; our shrinkage parameter was kept constant
at 0.1; and the interaction depth was chosen between 1, 2 and 3.

Finally, we then produce an empirical distribution of ranks of variable importance for
features considered in our model; the most frequent rank of a particular feature is then assigned
as the feature’s empirical importance rank. The final rankings of these features then decide
which features tattoo removal practitioners should be most aware of in the tattoo removal
treatment process.

3. Results. We tabulate our results of statistical inference as well as present the results
of our machine learning models. Throughout we discuss results and the particular application
of our methods to data.

3.1. Statistical Descriptions. Below are tables corresponding to two-sample (Table 4) and
k-sample proportion tests (Table 5). We measure complication rates across different factors
at the patient demographic and tattoo levels. In our tables, “Tattoo Complication” refers to
whether a single tattoo ever experiences a complication (i.e., complication occurrence/non-
occurrence) within a treatment sequence spanning multiple days.

Table 4
Details of two-sample proportions and p-values for z-test. Statistically significant factors determining sig-

nificant proportion differences in complication rates differences are marked by the asterisk. The “True” column
represents proportions that are characterized by the factor of interest; “False” column represents proportions
that do not have the given factor characteristic.

Response Proportion by Factor True False p-value

Treatment Completion by Complication 0.14407 0.07300 0.0083*
Tattoo Complication by Colored Tattoo 0.10857 0.04996 0.0035*
Tattoo Complication by Professional 0.09351 0.04291 0.0010*
Complication by Sex (Male/Female) 0.09964 0.11764 0.6163
Complication by Patient Median Age 0.13061 0.08560 0.1381
Complication by Patient Ethnicity 0.12010 0.06723 0.1452
Complication by Tattoo Median Age 0.06379 0.08560 0.5562
Complication by Patient Fitzpatrick Score (> III) 0.12000 0.10287 0.5562

In our application of Welch’s t-test, Wilcoxon’s rank sum and randomization tests, we 
observe the distribution differences of settings applied to the tattoos over treatments up until 
the first arrival of a complication in the treatment sequence; if a tattoo never experiences 
a complication the statistics of treatment parameters is computed across all treatments for 
that tattoo. Table 6 shows the results from our t-test as applied to distributions of time-
series statistics (mean and standard deviation) computed over our settings that satisfies some 
heuristic observations of normality; Table 7 shows the results of Wilcoxon rank sum and 
randomization tests over distributions of sample statistics that did not satisfy normality and 
followed highly irregular distribution shapes (i.e., multimodal and skewed).
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Table 5
Details of k-sample proportions and p-values for chi-squared tests of independence. Statistically significant

factors determining significant proportion differences in complication rates are marked by the asterisk. We
characterize each factor as four-level ordinal factors defined as quarters split by quartile values; we have a
five-number summary as well, omitting trivial minimums, for each factor listed below from our sample.

Reponse by Factor Parameter 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter

Summary 4 (Q1) 7 (Q2) 12 (Q3) 65 (Max)
ni 122 116 117 122

Complication by
Total # of Treatments
Tattoo (p=6.51e-10*) p̂i 0.02417 0.03349 0.05181 0.12277

Summary 4 (Q1) 7 (Q2) 12 (Q3) 100 (Max)Complication by Total
# of Tattoos per
Patient (p=0.08395)

ni 92 70 87 100
p̂i 0.11957 0.18571 0.08046 0.07000

Summary 11 (Q1) 24 (Q2) 52 (Q3) 72 (Max)
ni 122 116 117 122

Complication by Total
# of Treatments
Patient (p=1.35e-06*) p̂i 0.04918 0.06034 0.09402 0.24590

Summary 1.4375 (Q1) 1.9134 (Q2) 2.5445 (Q3) 4.5773 (Max)Complication by
Mean Fluence (J/cm2)
(p=3.532e-05*)

ni 508 505 509 509
p̂i 0.01771 0.04554 0.07466 0.07662

Summary 3 yrs (Q1) 7 yrs (Q2) 12 yrs (Q3) 40 yrs (Max)
ni 292 306 233 253

Tattoo Complication
by Tattoo Age
(p=0.1316) p̂i 0.03425 0.071895 0.05150 0.075099

Summary 29 yrs (Q1) 34 yrs (Q2) 41 yrs (Q3) 80 yrs (Max)
ni 148 109 128 117

Patient Complication
by Patient Age
(p=0.2807) p̂i 0.09459 0.07339 0.14844 0.11111

Table 6
We present the sample averages of these settings along with the corresponding p-values from Welch’s t-test.

We find no statistically significant treatment settings among these parameters.

Treatment Parameter Complication No Complication p-value

Mean Fluence 1.958739 2.013944 0.5713
Mean Differenced Fluence 0.1848074 0.1729800 0.8181
Mean Spot Size 4.875772 4.942978 0.4402
Mean Differenced Spot Size -0.06056931 -0.08294852 0.6542

Additionally, we have our results for current clinician practices and approaches. Table 8 
presents our results from the Kruskal-Wallis one-way ANOVA for treatment parameters with 
distributions that violated the assumptions required for parametric one-way ANOVA. We ap-
plied non-parametric one-way ANOVA to study current variations of treatment parameters 
that were are found to be of practical interest in the literature. In particular we were interested 
in how clinicians applied different settings based on the tattoo age quartile. We found that 
the average fluence, average spot size, and standard deviation of differenced laser frequency 
were all statistically significant treatment parameters from our nonparametric ANOVA. Ap-
plying Dunn’s test for multiple pairwise comparisons with the Benjamini-Hochberg correction 
on these statistically significant treatment parameters—again, with hypotheses on significant 
differences between group medians—, we discovered statistical significance. For average flu-
ence there was a statistically significant difference between tattoos from quartiles 1 and 4 
(padj. ≈ 0.02136); for average spot size no pairs were found to have a significant difference; 
and f or standard deviation in differenced laser f requency, quartiles 1 and 2 (padj. ≈ 0.01610),
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Table 7
We observe nonparameteric differences of statistics of treatment settings that are irregularly distributed

with respect to the “first-arrivals” of complications data. For the Wilcoxon rank sum test we compute the sam-
ple median, and for the randomization test we compute the sample average. For each treatment parameter we
present the results in two rows for sample median (η̂, Wilcoxon rank sum) and sample mean (µ̂, randomization).
As an additional comment, we find that for some factors, although the medians were the same, the distribution
shapes between groups were found to be relatively distinct enough—due in part to the large imbalance of com-
plication (118 tattoos with complications), no complication labels (2000 tattoos without complications)—in our
nonparametric tests to be able to acquire such small p-values.

Treatment Parameter Statistic Complication No Complication p-value

η̂ 1064 1064 9.197e-06*
Mean Wavelength

µ̂ 1010.425 1050.169 0.0013*

η̂ 0 0 0.05684*Mean Differenced
Frequency µ̂ 0.23336582 0.03502956 0.0312*

η̂ 0.80475 0.72648 0.05307*Spot Size Standard
Deviation µ̂ 0.8165863 0.6899222 0.0056*

η̂ 0 0 1.784e-06*Mean Differenced
Wavelength µ̂ 4.663210 1.571152 0.1722

η̂ 9.375 9.375 0.5299
Mean Frequency

µ̂ 9.056429 9.145180 0.2733

η̂ 61 71.5 0.5928Average Days Between
Treatments µ̂ 95.78247 102.58342 0.3339

2 and 3 (padj. ≈ 0.03489), 1 and 4 (padj. ≈ 0.00822), and 3 and 4 (padj. ≈ 0.04335) were found
to have statistically significant differences between group medians.

Table 8
Sample medians by tattoo age quarters (i.e., tattoo age in first quarter, second quarter...) and Kruskal-

Wallis p-values. All parameters listed were found to be statistically significant; in other words, clinicians
exercised distinct application of laser parameters based on tattoo age. We include a five number summary on
tattoo age as well.

Quarter 1st 2nd 3rd 4th

Five Number Summary 0yrs (Min) 3yrs (Q1) 7yrs (Q2) 12yrs (Q3) 40yrs (Max)

ni 292 306 233 253 p-value

Mean Fluence (η̂i) 1.85 1.86 1.967708 2.15 0.001946*
Mean Spot Size (η̂i) 4.870833 4.833333 4.8 4.823 7.314e-05*
SD Differ. Frequency (η̂i) 2.5 2.236068 2.526044 2.236068 2.294e-05*

In our application of parametric one-way ANOVA for studying means, we found particular 
interest in the application of average fluence with regards to the location of the tattoo on 
the body. There indeed exists some statistically significant variation with how a clinician 
chooses a particular fluence level with respect to tattoo location. Across tattoo locations on 
the body, the distributions of fluence were found to be relatively constant in variation and 
normally distributed. We obtained a p-value of 3.61-e05 for our one-way ANOVA. Then, 
applying Tukey’s HSD test among tattoo location, we found that tattoos applied to the 
upper extremities and face had the most significant variation in average fluence applied—with 
sample averages of 2.09J/cm2 and 1.996J/cm2, respectively—among other tattoo locations on 
the body such as lower extremities, back, chest, neck, head and abdomen.
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3.2. Significant Factors. We report our machine learning results in this section. Table 9
shows the numeric results of rank from our bootstrapped gradient boosting decision trees
as well as the coefficient estimates and corresponding p-values from our logistic regression
model. It should be noted that for both the logistic regression and gradient-boosted decision
tree models, we removed a few variables from consideration. The removed variables were found
to have high absolute Pearson correlation coefficient values (> 0.6) with other variables in the
first-arrival sample statistics dataset of treatment parameters. The intention of reducing the
number of predictors was to simplify our model and reduce any potential inflation of explained
variation in our results.

To elaborate on our variable filtering procedure, if k pairs of variables were found to be
highly correlated, as defined just before, and there existed a common variable between the k
pairs, only the common variable would be kept in the model (e.g., in correlated pairs (a, b) and
(b, c), with correlation -0.9 and 0.65, respectively, variables a and c would be removed from
the model). For unique highly correlated pairs of variables, such variables were eliminated
based on actual feature content; for example, if a variable such as standard deviation spot
size was found to be correlated with mean differenced frequency, and a variable characterizing
laser frequency was completely absent from the current variable selection, we would prefer the
mean difference frequency variable. The intention of keeping only the common variable within
the pairs is to minimize model complexity by expressing the model with as few variables as
heuristically possible. Additionally, we emphasize that the purpose of applying statistical
machine learning was to essentially simulate clinician laser removal practices. Consequently,
no patient demographic or tattoo characteristic features were considered as in clinical settings
different clinicians would essentially meet with different patients randomly with overwhelm-
ing primary consideration of previous laser treatment history over factors such as patient age,
skin tone and other patient demographic features. Furthermore, including demographic infor-
mation effectively and entirely removed over half the data points due to missing data in our
demographic features.

For our models we ultimately selected 10 predictors with the filtering method that we de-
scribed; however, we separately built a distinct logistic regression model through purposeful
selection and general variable selection procedures [26]. To be precise, we additionally consid-
ered patient demographic features such as Fitzpatrick score—even with the effect of omitting
data points due to missing data—, and the total number of treatments on the tattoo, but these
factors were all either insignificant in univariate logistic regression, or essentially created data
leakage. For factors such as the total number of treatments on a tattoo, a patient may logi-
cally terminate the treatment sequence much earlier due to poor results compared to a patient
that completes and goes through the full treatment sequence, thus creating data leakage. Yet,
this process of deliberately building a logistic regression model produced a final model absent
of interaction terms and feature transformations (e.g., polynomial splines, log and exponent
transformations, etc...). Our deliberate process of model building included independently fit-
ting each feature as univariate model; comparing different models using likelihood ratio tests
(tests of similarity between models); diagnosing model residual deviance (model prediction
error); and respecting the principal of parsimony, or preference over more economic models
utilizing fewer features.

Our separate logistic regression model, distinct from the model developed with a priori
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filtering, included the following features: average spot size (p ≈ 0.00010), standard deviation
in spot size (p ≈ 0.00549), standard deviation in wavelength (p ≈ 1.41e-05), and standard
deviation of days between appointments (p ≈ 9.11e-07). With a Hosmer and Lemeshow
goodness-of-fit test—a common test for assessing similarities of a logistic regression model’s
performance compared to true labels—, we have a p-value of 0.08479 (> 0.06) indicating no
statistically significant difference between observed and fitted values. Observing our model’s
ability to distinguish complications from no complication labels, we used the receiver operator
characteristic (ROC) curve and the area under the curve (AUC), finding an AUC of approxi-
mately 0.731, where the AUC can be interpreted as the probability that given two data points
of different labels, the input data of the ”higher ranked” label (complication occurrence) will
be correctly ranked higher than the lower ranked label (complication nonoccurrence) [7].

With regards to the variable importance ranking system, with over 300 simulations of
fitting gradient boosted trees, we produced a discrete distribution of ranks for our variables,
as detailed in Section 2.5. In cases where the mode of ranks were tied between two factors,
these ties were broken by observing which rank mode was greater. For example, in Table 9, we
found that mean wavelength and mean differenced wavelength had rank modes of 1; however,
since the frequency of the rank mode for mean wavelength (100) was greater than the rank
mode of the mean differenced wavelength (90), we reassign “total ranks” for mean wavelength
as greater than the mean differenced wavelength. Figure 2 displays a few rank distributions
of variable importance from our simulations.

Table 9
Results from boosted decision tree simulations, and coefficient estimates and p-values for logistic regression

coefficients. Statistically significant logistic regression coefficients are asterisked. For our boosting procedure we
show the ranking of important features corresponding to the mode of the variables’ frequency distribution. Ties
in mode frequency rank were broken by comparing relative frequencies. Statistically significant logistic regression
coefficients are asterisked.

Treatment Parameter Total Rank Rank Mode Estimate p-value

Mean Wavelength 1 108 (1) -0.004299 0.00118*
Mean Differenced Fluence 2 84 (1 → 2) 0.550567 0.33951
Mean Differenced Wavelength 3 80 (1 → 2 → 3) 0.004979 0.35263
SD Spot Size 4 117 (4) 1.294140 0.00609*
Mean Days Between Appts. 5 93 (5) -0.001966 0.35287
Mean Differenced Spot Size 6 76 (5 → 6) 0.449331 0.38701
Mean Differenced Frequency 7 64 (6 → 7) 0.466965 0.04217*
Mean Spot Size 8 75 (7 → 8) -0.154691 0.71596
Mean Fluence 9 106 (9) -0.137015 0.59433
Mean Frequency 10 197 (10) 0.014290 0.93119

4. Discussion. For our tattoo data we applied a whole range of methods from classical 
statistical parametric tests to modern machine learning algorithms. We characterized the 
time series treatment data across all parameters using sample means and standard devia-
tions, as well as having performed forward finite differencing to characterize the variation in 
laser-assisted tattoo removal treatment parameters between appointments. From the trans-
formations made on our variables, we applied both parametric and nonparametric tests of
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Figure 2. Rank distributions of three variables with bars corresponding to “total rank” hatched. We assign
the rankings for each treatment parameter based on the mode of their rank. We see that Mean Wavelength (Rank
1), Mean Days Between Appts. (Rank 5), and Mean Fluence (Rank 9) are of descending order of importance
based on the location of the modes of ranks for each variable from 300 simulations.

significance to identify tattoo-level and patient demographic characteristics strongly corre-
lated to complication occcurence.

Below we list response-factor relationships that were found to be statistically significant
along with a brief details with regards to practical implications:

• Complication occurrence is related to decreased likelihood of tattoo removal treat-
ment completion. Patients may become ambivalent about continuing tattoo treat-
ments if a complication is experienced.
• Tattoo removal complications are statistically more likely for tattoos done by a

professional tattoo artist as opposed to an amateur artist. This may be due to the
depth of the tattoo placement and/or ink utilized in the professional tattoo process.
• Tattoo removal complications are statistically more likely for tattoos with color

(e.g., red, green, yellow) as opposed to black/blue tattoos. This may be due to the
skin reaction sensitivity in tattoos with certain pigments.
• Greater total number of treatments on a tattoo and number of treatments a patient

has undergone are all related to increased complication rates. With regards to tattoo
age, clinicians apply statistically greater average fluences and have greater variability
in spot size applied to tattoos over the treatment period.
• Greater average fluence applied to a tattoo is related to increased likelihood of com-

plication occurrence.
• Greater average laser wavelength over a treatment period is both parametrically and

non-parametrically related to increased likelihood of complication occurrence. Shorter
wavelengths may be emulating intense radiation causing complications associated with
skin discoloration.
• According to our logistic regression model, average wavelength, standard deviation in

laser spot size, and overall change of laser frequency applied to a tattoo through a given
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treatment sequence are related to increased likelihood of complication occurrence.
It is also worth noting the response-factor relationships that were found to not be statis-
tically significant with respect to the current literature (again, with brief explanations and
implications):

• The average number of days between appointments is not statistically related to com-
plication occurrence. The number of days between appointments in the data is suffi-
ciently long for skin recovery before a follow-up appointment.
• Tattoo age and patient age is not statistically related to the variation in complication

rates. This possibly suggests that current clinician approaches to tattoo removal take
into account tattoo and patient age, since the application of certain settings used by
clinicians vary between different ages at a statistically significant level.
• Between groups of tattoos that experienced complications and those that did not, the

variation in average laser fluence, overall change in laser fluence between the first and
last appointment, average spot size, and overall change in laser spot size between the
first and last appointment were not found to be distinct at a statistically significant
level.
• Patient sex, ethnicity, Fitzpatrick score, and being above the median age are not

statistically related to complication occurrence within a recorded treatment sequence,
independent of whether a patient completed the entire treatment process.

Finally, note the discrepancy of our results between the two machine learning models. 
Although our boosted decision tree procedure lowly ranks a statistically significant variable—
according to our logistic regression model—such as “Mean Difference Laser Frequency,” this 
result is not an inconsistent finding. The two models essentially offer distinct interpretations 
of the data.

The logistic regression model measures that in a total interaction of all ten variables, av-
erage wavelength, standard deviation in spot size, and average variation of laser frequency 
between the first appointment and pre-arrival of a recorded tattoo complication are statisti-
cally significant factors for the tattoo removal practitioner to be aware of in the treatment 
process. On the other hand, the aggregated boosted decision tree model ranks variables 
by observing how our predictions of complication occurrence/non-occurrence are affected if 
they are not considered in the interaction. For example, excluding average wavelength in 
the interaction of treatment parameters will most frequently negatively affect classification 
of complication occurrence/nonoccurrence in our data compared to the exclusion of average 
frequency which will be of least consequence in our predictions.

5. Conclusion. Limitations worth noting with respect to our findings are that these results 
are specific to our given dataset, which has a fair share of missing values without any data 
imputation having been performed, and we do avoid making any full clinical interpretations of 
our results as well. Yet, our data is relatively abundant and detailed, and we’ve applied many 
interesting techniques along with applying this ad hoc aggregated variable ranking procedure 
using gradient boosted decision trees, which may prove to be a theoretically well-justified and 
statistically powerful way of producing ranks of variable importance.
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