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Abstract

Due to the COVID-19 pandemic, there is an increasing demand for portable CT machines worldwide
in order to diagnose patients in a variety of settings. This has led to a need for CT image reconstruction
algorithms that can produce high quality images in the case when multiple types of geometry parameters
have been perturbed. In this paper we present an alternating minimization algorithm to address this issue,
where one step minimizes a regularized linear least squares problem, and the other step minimizes a bounded
non-linear least squares problem. Additionally, we survey existing methods to accelerate convergence of the
algorithm and discuss implementation details. Finally, numerical experiments are conducted to illustrate
the effectiveness of the algorithm.

1 Introduction

In medical imaging, computed tomography (CT) techniques are becoming increasingly popular for their ability

to produce high quality images of the human body. These help doctors diagnose several types of cancers and

recently handle COVID-19 cases. A CT scanner is a device that is composed of a scanning gantry, X-ray

generator, computer system, console panel and a physician’s viewing console. The scanning gantry is the part

that produces and detects X-rays. In a typical CT scan, a patient will lay on a bed that will move through the

gantry. An X-ray tube rotates around the patient and projects X-ray beams through the human body at different

angles. These X-ray measurements are then processed on a computer using mathematical algorithms to create

tomographic (cross-sectional) images of the tissues inside the body. Limitations arise when using CT scanners for

these medical procedures since these devices require extensive care, such as regular maintenance. Additionally,

transporting these to remote locations is not an easy task. Point-of-care imaging addresses these challenges

by allowing radiologists to add portable CT scanners to their departments to increase patient satisfaction and

improve medical outcomes. However, the parameters that are associated with the geometry of these devices

cannot always be precisely calibrated in point-of-care situations. These parameters may change over time, when
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the scanner is adjusted during the image acquisition process or when transported to a new location.

Figure 1: Object-Source-Detector

Figure 1 illustrates how an X-ray source rotates around an object during a typical CT acquisition process. The

location of the source is measured by a view angle, i.e, location of the source on a circle around the object,

and the distance from the source to the center of the object. If the location of the X-ray source has been

perturbed, the reconstructed image will be of very poor quality. The case where only the view angles have been

perturbed is an active area of research [16] [17]. In [6] Ding devises the numerical scheme we study, and uses it

to investigate when the angles and the distance from the source to the object are unknown. The purpose of this

paper is to study reconstruction methods in the case when both view angles and distance from the source to the

object have been perturbed. Ding performed one small experiment of this type, and we build upon his work by

testing larger images, larger perturbations, more acceleration techniques, more linear solvers, parallelizing the

code, and adding to the IRtools [8] package to include this algorithm.

The rest of the paper will proceed as follows. In section 2 we give a brief background to the CT problem, present

the algorithm, and discuss some theory behind the algorithm. Next in section 3 we provide an alternate form

of the algorithm as a fixed point iteration and discuss acceleration techniques to improve convergence. Section

4 outlines considerations for implementation including parallelization. Numerical experiments and results are

outlined in section 5. Future directions are presented in section 6. An example on how to set up and run an

experiment is given in the appendix.

2 Block Coordinate Descent

In this section, we discuss the mathematical concepts and modeling of the CT image reconstruction problem as

well as different techniques involved to effectively solve the inverse, ill-posed problem. We begin by setting up

the computed tomography problem which boils down to finding attenuation coefficients of an object made up of

multiple materials. An image can then be constructed by a color mapping based on the attenuation coefficients.

For an object made up of a single material, Beer’s Law describes the amount of radiation that can pass through

it [7]:

I = I0e
−µd. (2.1)
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In the above equation I0 is the initial energy of the X-ray that goes into an object, and I is the energy of the

X-ray that leaves it. d is the distance that the X-ray beam travels through the object and µ is the attenuation

coefficient. Figure 3 illustrates these parameters.

Figure 2: Beer’s Law for a Single Material Object

Beer’s law implies that

− log

(
I

I0

)
= µd.

Thus, if the initial and final radiation amounts are known, as well as the distance d, finding the attenuation

coefficient is as simple as solving a linear equation. In practice objects of interest are made up of several

materials, which each have their own attenuation coefficients as illustrated in figure 3.

Figure 3: Beer’s Law for an Object of Multiple Materials

Applying Beer’s law to each different material, assuming there are n materials, the X-ray energy leaving the

object can be written as

I = I0e
−

∑n
j=1 µjdj

which implies

− log

(
I

I0

)
=

n∑
j=1

µjdj .

This gives one linear equation in multiple variables, and so additional X-ray beams, at different angles, need to

be transmitted through the object to obtain n linearly independent equations for the n variables.

Most often in practice it is not known precisely where each material begins and ends. To overcome this a pixel

grid is overlaid on the object, and the attenuation of each pixel is sought. This involves taking measurements

using many X-ray projections from different angles. Often in practice the X-ray source projects multiple X-rays

spread out like a fan as illustrated in figure 4. In addition, the source and detector rotate around the object to

obtain additional measurements.
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Figure 4: Fan-beam X-rays

Now suppose that there are n pixels and m X-ray beams are projected through the object. Let dij be the

distance that the ith X-ray beam travels through pixel j. I0 is still the initial energy, and let Ii be the energy

of the ith X-ray beam as it leaves the object and hits the detector. Then the relationship between the unknown

attenuation coefficients and the known distances and energies can be written as a system of equations
d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
. . .

...
dm1 dm2 · · · dmn


︸ ︷︷ ︸

A


µ1

µ2

...
µn


︸ ︷︷ ︸

x

=


− log (I1/I0)
− log(I2/I0)

...
− log (Im/I0)


︸ ︷︷ ︸

b

. (2.2)

In this system of equations the vector b is known as the sinogram. Note that the matrix A in the above equation

will be sparse because each X-ray will only pass through a few of the pixels.

Now, notice that each distance dij is a function of the X-ray source location. Let R denote the distance of the

X-ray source to the center of the object, and θ denote the angle of rotation of the source relative to the center

of the object. Then the matrix A is a function of the vector p, denoted as A(p), where p contains the Ri, and

θi for each source location (that is each time a fan of X-ray beams is emitted).

In a standard computed tomography problem with known geometry parameters, solving equation (2.2) requires

regularization due to the ill-conditioning of A [9]. In this paper, the problem we seek to study has unknown

geometry parameters, and can be stated as

x = arg min
x,p

||A(p)x− b||22 + α2||x||22. (2.3)

Here α is a regularization parameter, which allows us to get a more accurate solution when the matrix A is

ill-conditioned. The regularization parameter recasts the ill-conditioned problem to a nearby well conditioned

one. We refer the reader to [10],[13] for information on the role of regularization in inverse and least squares

problems. The solution to (2.3) can be approximated by using an alternating minimization scheme known as

block coordinate descent or BCD, which we describe in algorithm 1.

Algorithm 1: Tomography Block Coordinate Descent

1 Input p0 ∈ Rm
2 Output xk

3 for k = 0, 1, 2, ... do
4 xk+1 = arg min ||A(pk)x− b||22 + α2||x||22
5 pk+1 = arg min ||A(p)xk+1 − b||22
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Thus, equation (2.3) can be approximated by an alternating minimization scheme where one iteration involves

solving a large linear least squares problem, and a large non-linear least squares problem. To solve the large reg-

ularized linear least squares problem in step 4, we mainly use a hybrid conjugate gradient method (LSQR) that

can automatically choose regularization parameters. Mathematical details describing this method can be found

in [12]. The implementation we use is described in [8] (specifically, we use the method called IRhybrid lsqr).

A comparision of this to other linear least squares solvers is given in section 5.3. To solve the non-linear least

squares problem in step 5 we use a projected quasi-Newton method in Kelley’s implicit filtering package [14].

3 Acceleration Techniques

In this section we discuss techniques to accelerate the convergence of the BCD algorithm. The key is to recast

the problem in terms of a fixed point problem.

Algorithm 2: Fixed Point Tomography Reconstruction

1 Input x0 ∈ Rn
2 Output xk
3 for k = 0, 1, 2, ... do
4 pk+1 = arg min ||A(p)xk − b||22
5 xk+1 = arg min ||A(pk+1)x− b||22 + α2||x||22

Now we define a function g that is one iteration of algorithm 2. That is assuming the b, α, and the function

A(p) are known define g(xk) as

g(xk) := arg min ||A(pk+1)x− b||22 + α2||x||22

where pk+1 is defined as

pk+1 := arg min ||A(p)xk − b||22.

Thus, the problem of finding an approximate solution of (2.3) becomes that of finding a fixed point of g. This

is useful as acceleration techniques for fixed point problems have been widely studied [19]. It should be noted

that the problem can also be stated in terms of finding a fixed point of g(ωk) where

g(ωk) := arg min ||A(p)x− b||22 + α2||x||22

and ωk := (xk,pk). However numerically this performed worse as shown in subsection 5.2.

In our numerical experiments we used three fixed point acceleration schemes, and the remainder of the section

will be devoted to discussing them. For the remainder of the section we will denote a function as f(x) if it is a

function is a single variable, and F (x) if it is a function of several variables.

We motivate the first two acceleration methods starting with the single variable fixed point problem of finding a

point xk such that f(xk) = xk+1. To begin, we let ∆ denote the difference operator, that is let ∆xk := f(xk)−xk,

∆f(xk) := f(f(xk)) − f(xk), and ∆2xk := ∆f(xk) − ∆xk. Aitken’s ∆2 method [1] along with its recursive

application and the second order Steffensen method are popular choices for solving single variable fixed point

problems [18]. The Aitken ∆2 method is derived from approximating the multiplying constant for a linearly

converging sequence, and can be stated as

xk+1 = xk −
(f(xn)− xn)2

f(f(xk))− 2f(xk) + xk
= xk −

(∆xk)2

∆2xk
.

Or equivalently

xk+1 = f(f(xk))− (∆f(xk))2

∆2xk
. (3.1)
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Vector generalizations of this algorithm have been extensively studied, see [19] for several references. Most come

from defining the inverse of a vector x as

x−1 := x
1

||x||22
.

Application of this definition to (3.1) leads to the Irons-Tuck method [11]

xk+1 = F (F (xk))− ∆F (xk) ·∆2xk
||∆2xk||2

∆F (xk).

Where · denotes the dot product, F (xk) is the vector valued function we seek to find a fixed point of, and the

∆ operator is defined as in the scalar case. Numerically the Irons-Tuck method has been shown to outperform

many other vector generalizations of the ∆2 process [15], but is computationally expensive when F (xk) is

expensive to evaluate. One alternative is to use the crossed secant method

xk+1 = F (xk)− (F (xk)− F (xk−1) · (∆xk −∆xk−1)

||(∆xk −∆xk−1)||22
∆xk.

It has the advantage of only needing one evaluation of F per iteration, and in many numerical tests performs

similar to the Irons-Tuck method [19]. In fact, if each iteration of the crossed secant method is alternated with

a standard fixed point iteration the resulting method is the Irons-Tuck method.

Another alternative is Anderson Acceleration, sometimes called Anderson Mixing. The general idea is to use

information from a predetermined number of residuals to increase convergence. Here we only state a more easily

implementable version of the algorithm. For a more general algorithm see [22]. Let r be the number of residuals

to use, and denote

Xk = (∆xk−r, · · · ,∆xk−1).

Then the Anderson Acceleration has the following form:

Algorithm 3: Anderson Acceleration

1 Input x0 ∈ Rn, r ≥ 1
2 Output xk
3 Compute F (x0) = x0 for k = 1, 2, ... do
4 rk = min{r, k}
5 γ(k) = arg min ||∆xk −Xkγ||2
6 xk+1 = F (xk)−

∑rk
i=1 γ

(k)
i [(F (xk−rk+i+1)− F (xk−rk+i)]

Implementation details can be found in [21]. In short, the linear least squares problem can be efficiently solved

by updating a QR factorization of X after every iteration. Additionally, we implemented a hyperparameter

which removes a column of X if the condition number of the upper triangular matrix in the QR factorization

becomes too large. In section 5.2 we compare the use of these three algorithms in our implementation.

4 Implementation

In this section we discuss practical considerations for the implementation of algorithm 1. Recall that each time

the X-ray source fires it is associated to one angle and one R parameter. Therefore A is created as

A(p) =

A(θ1, R1)
...

A(θn, Rn)

 .
The non-linear least squares problem can then be solved by solving subproblems of the form

min
θi,Ri

||A(θi, Ri)xk − bi||22
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where each bi is the corresponding part of the b vector. This is advantageous as it allows for easy parallelization

of algorithm 1 leading to significant speedup, and a comparison is made in subsection 5.1.

To simulate the problem we will use the IRTools package [8]. IRTools provides several state of the art regularized

linear least squares solvers which we will use in our implementation of algorithm 1. We will compare three

linear least squares solvers available in the IRtools package which use different forms of regularization. The

first is the hybrid-LSQR algorithm [12], which regularizes by adding a two-norm penalty term. The next is

the iteratively re-weighted norm approach or IRN [20], which uses a one-norm regularization. Finally, the fast

iterative shrinkage threshold algorithm or FISTA [2] is used which has no regularization term, but constrains

the solution vector x such that x ≥ 0. A comparison of these methods is given in subsection 5.3.

To approximate the solution of the non-linear least squares problem we compared two methods. The first is

a Trust-Region-Reflective algorithm studied in [4],[5] and implemented in the MATLAB function lsqnonlin.

The second is the method of implicit filtering [14] which uses a projected quasi-Newton iteration using difference

gradients. Both methods are for bounded problems with unknown derivative information, making them suitable

for our problem, as the geometry parameters can be realistically bounded. In our numerical tests we found that

implicit filtering led to a smaller image error and therefore it was used for all numerical experiments in the next

section.

5 Numerical Results

In this section we highlight several experiments for the tomography problem. In each problem an initial guess

for the R parameters and angle parameters were given. Then a perturbation generated uniformly was added

to each angle and R value, and the BCD was run to produce a better image. For all tests Gaussian noise was

added to the sinogram b creating a new vector bnoise = b + η, where ||η||2/||b||2 is equal to a specified noise

level, in this case 0.01. The initial guess for the view angles was always 0 : 2 : 358, and the initial guess for the R

parameters was 2. We will use the abbreviation U(a, b) for a uniform distribution when describing perturbations

to R and angle parameters. In the graphs below the angle and R parameter error represent the relative error

between the true perturbations and the current approximation of those perturbations. The `2-norm was used

for relative errors in each case and an initial guess of 0 was given for all perturbations.

The images used were the Shepp-Logan phantom (Figure 10a), and the spine image from the MATLAB image-

processing toolbox (Figure 6: True Image), with each image size being 256 × 256 unless otherwise stated. All

tests were run on a Microway system that has four Intel Xeon E5-4627 CPUs with 40 cores and 1 TB of memory

running Ubuntu Linux. An example of setting up and running a test is given in appendix A. In the rest of this

section we will first show a scaling study demonstrating the effectiveness of parallelizing the code. We will then

show that the fixed-point acceleration techniques produce a smaller image error and converge faster than not

using an acceleration technique. Finally, we compare several solvers for the linear least squares solver.

5.1 Parallel Speedup

In this section we demonstrate the effectiveness of the parallelization discussed in section 4. Table 1 shows a 20

iteration run of the same simulation using different image sizes with the image size being N ×N where n = N2.

In all the timing tests the Shepp-Logan phantom was used with perturbations as realizations of the distribution

U(−0.25, 0.25) added to each angle and R value. The hybrid-LSQR algorithm was used as the linear least

squares solver. The aforementioned computer was used with twelve workers.

68



N 32 64 128 256 512
Serial 257 714 1308 4238 13771

Parallel 35 166 289 1026 3810

Table 1: Run Times in Seconds

From the results in table 1 we see drastic speedup in all cases with the parallelization. For larger problems

solving the linear least squares problem appears to take most of the time, since A is a large matrix. For example

when N is 256 the size of A is 65160× 65536 and when N is 512 the size of A is 131400× 266256. Regardless,

the parallel implementation made possible by the problem model provides significant speedup.

5.2 Acceleration Test

The next test we ran was to compare the different acceleration techniques using the spine image. Perturbations

were added as realizations of U(−0.5, 0.5). The hybrid-LSQR algorithm was used as the linear least squares

solver, and the accelerated BCD algorithms were run for twenty iterations. In the legends in figure 5, BCD is

for no acceleration, CS for crossed secant, AA for Anderson Acceleration, and IT for the Irons-Tuck method.

To give reference to table 2 the tests were run on 12 local workers.

Figure 5: Graphs Comparing Acceleration Techniques

BCD CS AA IT
1004 1042 1095 2375

Table 2: Run Times in Seconds

From these tests we see that the acceleration techniques converge to slightly smaller error norms, with the

crossed secant method and Anderson Acceleration performing the best. The Irons-Tuck method converged

much better in the angle parameters, but took much longer. This was expected as the function evaluation is

quite expensive, and as previously noted Irons-Tuck requires an extra function evaluation at each iteration.

Figure 6 shows the true image, and the image after the parameter optimization. Despite having slightly larger

image error, the Irons-Tuck image seems to have the least background noise.
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Figure 6: Spine Images after Parameter Optimization

As previously mentioned, in these tests we solved for the fixed point where the fixed point is the image vector.

The table below compares the case when the fixed point vector is defined to be ω := (x,p), with the same

parameters as before.

Acceleration Scheme Fixed Point Type Angle Error R Error Image Error
Anderson

x 0.557 0.111 0.189
ω 14.642 14.020 0.190

Crossed Secant
x 0.614 0.112 0.189
ω 15.251 14.079 0.1774

Irons-Tuck
x 0.359 0.108 0.199
ω 14.009 14.009 0.195

Table 3: Comparison of Fixed Point Problems

As can be seen from table 3 when the ω fixed point scheme is used the image error remains approximately the

same, while the error in the angle and R parameters grows large. Thus, in our scheme we choose to only look

for a fixed point of x. The conclusion of this experiment overall is that when an accelerated fixed point scheme

on x is used it may produce a smaller image error norm.

Having shown acceleration techniques looking for a fixed point of x to be effective in reducing error, we now

demonstrate that giving a stopping tolerance they can effectively reduce the number of iterations needed to find

a fixed point. Different from the other experiments the perturbations used here are sampled from U(−0.25, 0.25)

with other factors such as R and view angle initial guesses, and image size held the same. We use a relative

error stopping criterion of
||xk − xk−1||2
||xk−1||2

≤ 0.03.

Below we show the results using BCD without acceleration and with Anderson Acceleration.
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Final Image Error Plot

Figure 7: Convergence of BCD without acceleration

Final Image Error Plot

Figure 8: Convergence of BCD with Anderson Acceleration

For this small example, using Anderson Acceleration caused the BCD to reach the stopping tolerance one

iteration faster than without it. Since the fixed point function g is expensive to evaluate saving one iteration

reduces computation time non-trivially. For example, in the test performed in figure 5 one evaluation of g

averaged 50.2 seconds to evaluate.

5.3 Comparison of Linear Least Squares Solvers

In this section we compare the performance of three linear least squares solvers available in the IRtools package

using hybrid LSQR, FISTA, IRN. We did two tests using the Shepp-Logan phantom. Perturbations were chosen

from realizations of U(−0.5, 0.5). No acceleration techniques were used in these tests.
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Figure 9: Graphs Comparing Linear Least Squares Solvers

In figure 9 we see that IRN and FISTA perform similarly, and drastically outperform the hyrbid-LSQR method.

Interestingly all three methods perform poorly on the angle parameter estimation. Despite having similar image

error norms, figure 10 illustrates that visually FISTA appears better than IRN.

(a) True Solution (b) LSQR (c) IRN (d) FISTA

Figure 10: Images for Linear Least Squares Comparison

The second test comparing the linear least squares solvers uses the same parameters as the previous test, except

the perturbations are samples of U(−1, 1). This is a significant amount of perturbation in this case as it is up

to half the original value of R and half the distance between each angle. Figure 11 shows the relative errors.

Figure 11: Graphs Comparing Linear Least Squares Solvers For Second Test Problem

Interestingly with a high perturbation level FISTA does the worst, while IRN continues to significantly out-

perform the LSQR algorithm. Unsurprisingly all three algorithms maintain a high relative error for the angles

when larger perturbations are added. Figure 12 shows the reconstructed image, and while no image is a high

quality reconstruction, it is clear IRN is the cleanest. The two tests show though that there is certainly an

image and perturbation level dependence as to which method has the best reconstructions.
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(a) True Solution (b) LSQR (c) IRN (d) FISTA

Figure 12: Images for Linear Least Squares Comparison for the Second Test Problem

6 Conclusion and Outlook

We have devised an algorithm to effectively estimate the unknown geometry parameters of an uncalibrated

portable CT machine. We exploited the problem structure to allow for parallelization and have shown significant

speedup. Also, we have used fixed-point acceleration techniques to both reduce the image error and the number

of iterations required for convergence. Additionally, we have surveyed and tested up-to-date methods to solve

regularized linear least squares problems, and have demonstrated that the best choice of solver depends on the

size of the perturbations to the geometry parameters.

In the future, we hope to investigate more about why the acceleration techniques work better only with the

image vector. Additionally, our stopping criterion was chosen naively, and there may be better a method for

choosing a stopping criterion and error tolerance, and we intend to investigate those. Finally, we will look into

other acceleration techniques for the optimization problem.

We also hope to apply our algorithm to other medical imaging applications where geometry parameters may be

unknown such as bedside tomosynthesis [3].
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A Running Numerical Experiments

Our implementation of algorithm 1 was built on top of the MATLAB IRtools package and naming conventions

were chosen to mirror it. Our code can be found at https://github.com/manuelarturosantana/TomoREU2021.

In the base IRtools package the function PRset is used to set up options for computed tomography problems

as follows

options = PRset(options, ‘field name1’,field value1, ‘field name2’,field value2).

We have updated PRset to accept values relating to BCD, such as an initial guess for the parameters. When a

field name is not passed in default values are selected. Then to simulate a CT problem with unknown geometry

parameters PRtomo var is used with the image size being n× n

[b,ProbInfo] = PRtomo var(n, options).

Above b is the right hand side vector with noise added, and ProbInfo contains the initial guess for the pa-

rameters. Thus, PRtomo var generates all the data necessary to simulate the inverse problem. Next the IRset

function is used to set up hyper-parameters for the solvers in IRtools

options = IRset(options, ‘field name1’,field value1, ‘field name2’,field value2).

Again IRset was updated to include parameters for BCD, such as which acceleration technique to use. Finally

a new function IRbcd computes the BCD

[x,iterInfo] = IRbcd(b,iterOptions, probInfo).

In the output x is the image vector after BCD terminates, and iterInfo contains information about errors

at each iteration. Now we proceed to demonstrate an example of simulating and solving a CT reconstruction

experiment with this code. To begin we generate the data

n = 64;

ProbOptions = PRset(‘Rpert’,0.25,‘anglespert’,0.25);

[b,probInfo] = PRtomo var(n,ProbOptions);

This generates a test problem where perturbations are samplings of a uniform distribution on the interval

[−0.125, 0.125] are added to the R values and the angles. For ease of computation the same perturbation is

added to every fourth of the angles and R values. The image for this problem is the Shepp-Logan phantom.

Figure 13 (a) represents the true solution, (b) is the solution with noise in the sinogram b, but true parameters,

and (c) is the solution with the initial guess parameters.
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(a) True Solution (b) True Parameters Solution (c) Initial Parameters Solution

Figure 13: Example Problem

The following codes sets up the iteration options and runs the problem

iterOptions= IRset(‘nonlinSolver’,‘imfil’,‘accel’,‘anderson’,‘BCDmaxIter’,10,...

‘Rbounds’,0.1250,‘angleBounds’,0.1250);

[x,iterInfo] = IRbcd(b,iterOptions,probInfo);

After solving the problem we see the solution and the relaltive error graph in figure 14. This illustrates after

the BCD algorithm we get a comparable solution to when the true geometry parameters are known.

Image after BCD

Figure 14: Example Problem Solution

The images in all five figures shown are generated with the following MATLAB code

PRshowbcd(iterInfo,probInfo).
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