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Abstract. Theoretical studies of PDE/ODE models describing ecosystem dynamics usually ignore seasonality
in environmental conditions. In this paper I study a model of two generic consumer species that
compete for a single limiting resource. I first consider constant resource input and then compare it to
the case when resource input is dependent on time with a seasonal (periodic) pattern. The model with
constant resource input is analysed analytically, by looking at the linear stability of every equilibrium.
The model with seasonal resource input is analysed through numerical simulations. Results of the
analysis show that seasonality has a significant effect on the outcome of the system, as when resource
input is dependent on time, there could be stable coexistence, which is not possible under constant
resource input. Moreover, metastable coexistence states exist for both resource input regimes if the
average fitness difference between species is small. Finally, times until extinction become longer if
resource input is not constant.

1. Introduction. In a setting where two species compete for the same limiting resource,
one of the species, even with the slightest advantage, will dominate over the other, and cause
the extinction of its competitor. This is the competitive exclusion principle [9]. The species
that dominates in this kind of system is determined by Tilman’s R∗ rule [16, 24], which states
that the species that will outcompete the other will be the one that can survive with less
amount of resource available.

A substantial amount of research using mathematical models has been done on coexis-
tence under competition for one limiting resource. The term ”limiting resource” refers to
a resource that limits growth and therefore, if insufficient in quantity, can be the cause of
one species dying out [6, 7, 16, 25]. According to the competitive exclusion principle, co-
existence cannot occur in these circumstances [9, 17]. However, in nature coexistence is
commonly observed. The competitive exclusion principle therefore suggests the presence of
other coexistence-enabling mechanisms [16].

Even when no mechanism stabilising coexistence is present, species coexistence can occur
through metastability [8]. A metastable state of an ecosystem in an inherently unstable state
that nevertheless occurs as a long transient. In the context of competition dynamics, it can
occur if two species have similar average fitness. In cases in which the competitive exclusion
principle applies, the near balance between species causes the extinction process to take a
long time. Therefore, coexistence can occur as a long transient in such cases. Mathematically,
metastability is characterised by the small magnitude of one of the eigenvalues in the linear
stability analysis of one (or more) of a model’s equilibria [20]. This describes slow convergence
or divergence to or from an equilibrium, meaning that coexistence may occur as a transient
state in the system.

Another mechanism that enables coexistence in a system of competition for the same
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limiting resource is seasonality in resource input over time [5, 14, 22]. Many ecosystems are
fundamentally underpinned by seasonality, especially in temperate and continental climates
[19].

Despite how common seasonal fluctuations are [26], resource input is considered to be
constant in many ODE/PDE models describing resource-consumer interactions. Therefore,
in this paper I will address the question of how seasonality affects metastable coexistence in
resource limited ecosystems. In Section 2 I will introduce the model, then in Section 3 I will
analyse the case with constant resource input, and finally in Section 4 I will compare it to the
case with seasonal resource input.

2. Competition for nutrients model. In the standard Lotka-Volterra competition model,
competition between species is modelled by combining all intra- and interspecific competitive
mechanisms into single parameters, the competition coefficients. However, in many environ-
ments, species typically compete for limiting resources, which is not accounted for explicitly in
the Lotka-Volterra model. The limiting nature of the resources requires explicit consideration
of consumer-resource dynamics in mathematical models. The following model describes the
interaction between two species competing for a single limiting resource:

dA1

dt
=

a1b1RA1

1 + a1h1R
− µ1A1,

dA2

dt
=

a2b2RA2

1 + a2h2R
− µ2A2,

dR

dt
= f(t)− jR− a1RA1

1 + a1h1R
− a2RA2

1 + a2h2R
.

(2.1)

In this model, Ai represents population density of species, i = 1, 2, and R is resource den-
sity. ai the rate at which species i reproduces, bi the nutrient-to-biomass conversion coefficient
(yield), hi is the handling time, µi is the death rate, f(t) is the nutrient input and j is the
nutrient decay rate. The parameter f = f(t) in this model will be considered as a constant at
first, in which case it will represent a constant resource input over time. This is an approach
commonly taken in many models describing consumer-resource interactions, despite being un-
able to account for temporal fluctuations in resource input in ecological systems. Therefore, I
will also consider the case in which f(t) is dependent on time in Section 4, meaning that the
resource input will be affected by seasonality.
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Parameter Interpretation Units

A1 Population density of species 1 g

A2 Population density of species 2 g

R Resource density g

t Time s

a1 Rate at which species 1 reproduces 1/gs

a2 Rate at which species 2 reproduces 1/gs

b1 Nutrient to biomass conversion coefficient of species 1 dimensionless

b2 Nutrient to biomass conversion coefficient of species 2 dimensionless

h1 Handling time of species 1 s

h2 Handling time of species 2 s

µ1 Death rate of species 1 1/s

µ2 Death rate of species 2 1/s

f(t) Nutrient input g/s

j Nutrient decay rate 1/s

Table 1: Dimensional model parameters, interpretation and units.

2.1. Nondimensionalisation. The model can be nondimensionalised by the following sub-
stitutions:

Bi =
Aia1
µ1

, R̃ =
Ra1b1
µ1

, t̃ = µ1t,(2.2)

and by dropping the tildes for brevity, we get the nondimensional model

dB1

dt
=

RB1

1 +K1R
−B1,

dB2

dt
=

gcRB2

1 +K2R
−mB2,

dR

dt
=r(t)− nR− RB1

1 +K1R
− gRB2

1 +K2R
,

(2.3)

where

K1 =
h1µ1

b1
, K2 =

a2h2µ1

a1b1
, m =

µ2

µ1
, r(t) =

f(t)

a1b1
, n =

j

µ1
, g =

a2
a1

, c =
b2
b1
.

The parameters K1 and K2 are are a combination of several constants of the original 
model, and they represent the handling time constant for species 1 and 2 respectively. The 
parameter r(t) represents resource input, and n represents the decay rate of the resource. 
Finally, m represents the ratio of the death rates, g is the ratio of the reproduction rates and 
c is the ratio of the nutrient conversion coefficients.
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3. Model analysis for constant resource input. In this section I will consider a constant
resource input, i.e. r(t) = r.

3.1. Equilibria. I will start the investigation into possible coexistence mechanisms in the
model by a calculation of the system’s equilibria, determined by setting the right-hand sides
of (2.3) equal to zero:

RB1

1 +K1R
−B1 = 0,

gcRB2

1 +K2R
−mB = 0,

r − nR− RB1

1 +K1R
− gRB2

1 +K2R
= 0.

(3.1)

There are three possible steady states, which are the following:

S1 =

(
K1r + n− r

K1 − 1
, 0,

1

1−K1

)
,

S2 =
(
0, 0,

r

n

)
,

S3 =

(
0,

c(K2mr − cgr +mn)

m(K2m− gc)
,

m

gc−K2m

)
.

Note that there is one extinction equilibrium (S2) in which no species survives and two
single-species equilibria (S1 and S3) in which one species competitively excludes the other,
but no coexistence state. S2 is always biologically relevant, i.e. it is always a positive real
number. For S1 to be biologically relevant, K1 < 1 and r > n

1−K1
are required. For S3 to be

biologically relevant K2 <
gc
m and r > mn

cg−K2m
are required.

3.2. Linear stability analysis. In this section I will look at the linear stability of the
equilibria found in the previous section. To determine the stability of an equilibrium, it is
necessary to first find the eigenvalues of the Jacobian matrix of the system, evaluated at the
equilibrium. For model (2.3), the Jacobian is:

J =


R

K1R+ 1
− 1 0

B1

K1R+ 1
− RB1K1

(K1R+ 1)2

0
gcR

K2R+ 1
−m

gcB2

K2R+ 1
− gcRB2K2

(K2R+ 1)2

− R

K1R+ 1
− gR

K2R+ 1
−n− B1

K1R+ 1
+

RB1K1

(K1R+ 1)2
− gB2

K2R+ 1
+

gRB2K2

(K2R+ 1)2

 .

For an equilibrium to be stable, the real parts of all the eigenvalues of J need to be negative. 
Determination of stability conditions for the extinction steady state S2 is straightforward 
through direct calculation of the Jacobian’s eigenvalues, but for S1 and S3, I will take a 
different approach, as some of the eigenvalues are algebraically complex.
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I will start by analysing S2, for which the Jacobian is:

J2 =


−K1−n+r
K1r+n 0 0

0 −K2mr+cgr−nm
K2r+n 0

− r
K1r+n − gr

K2r+n −n

 .

The eigenvalues of J2 are:

λ2
1 = −n, λ2

2 =
−K2mr + cgr − nm

K2r + n
, λ2

3 =
−K1r − n+ r

K1r + n
,

where the subscript is the index of the eigenvalue and the superscript is the index of the
equilibrium. Note that λ2

1 < 0 because n > 0, therefore the equilibrium is stable if and only
if λ2

2 < 0 and λ2
3 < 0, which holds if r < min( mn

cg−K2m
, n
1−K1

).

For S1 and S3, it is harder to analyse the eigenvalues this way. Substituting S1, the
Jacobian matrix J becomes:

J1 =

 0 0 (K1 − 1)((K1 − 1)r + n)

0 (−K1+K2+1)m−gc
−K2+K1−1 0

−1 g
−K2+K1−1 −K2

1r + (−n+ 2r)K1 − r

 .

To find the eigenvalues, the equation |J1 − λI| = 0 needs to be solved. The equation can
be simplified to(

(−K1 +K2 + 1)m− gc

−K2 +K1 − 1
− λ

) ∣∣∣∣−λ (K1 − 1)((K1 − 1)r + n)
−1 (−K2

1r + (−n+ 2r)K1 − r)− λ

∣∣∣∣ = 0.

Note that the eigenvalues of S1 are found using the cofactor expansion. Therefore, S1

is stable if and only if it is stable to the introduction a competitor species (determined by

λ1
3 = (−K1+K2+1)m−gc

−K2+K1−1 ) and stable in the sense of a single-species model (determined by the
eigenvalues of M22(J1), where M22(J1) denotes the submatrix obtained from J1 by deleting
its second row and second column). M22(J1) is the following matrix, and can be thought of
the Jacobian matrix defining a single-species model:

M22(J1) =

(
0 (K1 − 1)((K1 − 1)r + n)
−1 −K2

1r + (−n+ 2r)K1 − r

)
.

For M22(J1), the trace is tr(M22(J1)) = −K2
1r+2K1r−K1n−r, which for the first steady

state,
(
K1r+n−r
K1−1 , 1

1−K1

)
, to be stable, needs to be smaller than 0. Solving the inequality I get

the condition that r > K1n
2K1−K2

1−1
. In this case det(M22(J1)) > 0 for all parameter values, as

K1 < 1.
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The eigenvalue determining stability to the introduction of a competitor is:

λ1
3 =

(−K1 +K2 + 1)m− gc

−K2 +K1 − 1
.

For the steady state
(
K1r+n−r
K1−1 , 0, 1

1−K1

)
to be stable, λ1

3 < 0 is needed, and m > cg
K2−K1+1

is required for stability.
Combined, for S1 to be stable, the following conditions must hold:

r >
K1n

2K1 −K2
1 − 1

, m >
cg

K2 −K1 + 1
.(3.2)

Similarly, for S3, the Jacobian matrix becomes:

J3 =


(−K1+K2+1)m−gc

(K1−K2)m+gc 0 0

0 0 (−K2m+gc)((−K2r−n)m+cgr)
gm

− m
(K1−K2)m+gc −m

c
−K2

2m
2r+2K2cgmr−c2g2r−K2m2n

gcm

 .

To find the eigenvalues, the equation |J3 − λI| = 0 needs to be solved. The equation can
be simplified to:

(
(−K1 +K2 + 1)m− gc

(K1 −K2)m+ gc
− λ

) ∣∣∣∣∣−λ (−K2m+gc)((−K2r−n)m+cgr)
gm

−m
c (

−K2
2m

2r+2K2cgmr−c2g2r−K2m2n
gcm )− λ

∣∣∣∣∣ = 0.

Again, the eigenvalues of S3 are found using the cofactor expansion. Two of the eigenvalues
are found from the reduced matrix and the remaining eigenvalue λ3

3 =
(−K1+K2+1)m−gc

(K1−K2)m+gc deter-

mines the stability of the steady state to the introduction of a competitor species. M11(J3) is
defined in a similar manner as M22(J1).

For M11(J3), where M11(J3) denotes the submatrix obtained from J3 by deleting its first
row and first column, determining the stability in the sense of the single-species model, the
trace is

tr(M11(J3)) =
K2

2m
2r + 2K2cgmr − c2g2r −K2m

2n

cgm
,

which for the third steady state,
(
c(K2mr−cgr+mn)

m(K2m−gc) , m
gc−K2m

)
, to be stable, tr(M11(J3)) < 0

is needed. Solving the inequality, we get the condition r > K2m2n
2K2cgm−K2

2m
2−c2g2

. In this case

det(M11(J3)) > 0 for all parameter values.
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The remaining eigenvalue determining stability to the introduction of a competitor is:

λ3
3 =

(−K1 +K2 + 1)m− gc

(K1 −K2)m+ gc
,

which needs to be smaller than 0 for the third steady state,
(
0, c(K2mr−cgr+mn)

m(K2m−gc) , m
gc−K2m

)
, to

be stable. Thus, m < cg
K1−K2−1 is required for stability.

Therefore for the steady state S3 to be stable the following conditions must hold:

r >
K2m

2n

2K2cgm−K2
2m

2 − c2g2
, m <

cg

K1 −K2 − 1
.(3.3)

For any given parameter set, only one competitor species can survive (Table 2), as S1 and
S3 have opposite stability conditions on m. Therefore these two equilibria cannot be stable
at the same time.

Equilibrium Conditions for stability

S1 =
(
K1r+n−r
K1−1 , 0, 1

1−K1

)
r > K1n

2K1−K2
1−1

and m > cg
K2−K1+1

S2 =
(
0, 0, r

n

)
r < mn

cg−K2m
and r < n

1−K1

S3 =
(
0, c(K2mr−cgr+mn)

m(K2m−cg) , m
cg−K2m

)
r > K2m2n

2K2cgm−K2
2m

2−c2g2
and m < cg

K2−K1+1

Table 2: Conditions for stability for each of the equilibria

3.3. The special case when m = cg
K2−K1+1 . It was shown in the linear stability analysis

above that the steady states S1 and S3 cannot be stable at the same time. But, what happens
if m = cg

K2−K1+1?
In this case, calculation of the Jacobian’s eigenvalues for both S1 and S3 yield a zero eigen-

value. Therefore, linear stability analysis is unable to provide information on the equilibria’s
stability. Tools from non-linear analysis could be used to acquire more information on the
equilibria’s stability in this special case [12], but this is not attempted here. Instead, I use
numerical simulations to investigate the system’s dynamics for m = cg

K2−K1+1 . The system
can be solved numerically using Matlab’s ODE solver ode15s. Visualisations of the model
solution show that in this case, there is stable coexistence (Figure 1).
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Figure 1: Numerical simulation for the threshold case m = cg
K2−K1+1 , with values K1 = 1

2 ,

K2 = 2, g = 1, c = 1, m = 2
5 , r = 10 and n = 1.

3.4. Biological interpretation. The previous section revealed the behaviour of the model
for the cases m < cg

K2−K1+1 , m = cg
K2−K1+1 and m > cg

K2−K1+1 from a mathematical point of
view. In this section I will interpret these model dynamics from a biological viewpoint.

I will start comparing the resource components of the first and third equilibria, which I
will call R∗

1 and R∗
3, respectively. Recall that they are given by

R∗
1 =

1

1−K1
,

R∗
3 =

m

cg −K2m
.

Solving the equation R1 = R3, the resources are equal if and only if m = cg
K2−K1+1 . Thus,

R1 < R3, then m > cg
K2−K1+1 , and if R1 > R3, then m < cg

K2−K1+1 .
The threshold on m is the same as one of the conditions for stability for the first and third 

equilibria (S1 and S3). Therefore, provided that resource input r is sufficiently large, S3 is
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stable if and only if R1 > R3 and S1 is stable if and only if R1 < R3. Thus, it can be concluded
that the species that survives is the one that can reduce the resource the most. This is known
as Tilman’s R∗ rule [16]. Hence, a species’ ability to reduce the limiting resource can also be
associated with its average fitness. Moreover,

(3.4) m︸︷︷︸
mortality

−

growth rate︷ ︸︸ ︷
cg

K2 −K1 + 1︸ ︷︷ ︸
handling time

can be regarded as the average fitness difference between both species, meaning the ability
to survive depends on a species’ mortality rate, growth rate and handling time relative to its
competitor. That is, if the average fitness difference is negative, then S3 is stable and B2

competitively excludes B1, and vice versa if the average fitness difference is positive, then S1

is stable and B1 competitively excludes B2. Furthermore, if m = cg
K2−K1+1 , then R1 = R3.

This means that both species have the same capacity to reduce the resource and identical
average fitness, and there is coexistence. All of this is shown in Figure 2.

3.5. Metastability. The analysis above highlights that stable coexistence is only possible
if the two species have exactly the same average fitness (i.e. m = cg

K2−K1+1) and any slight
variation from this would lead to the extinction of one of the species. Extinction in this
paper is defined as the time text, such that min(B1(t), B2(t)) < 1 for all t ≥ text. However,
in biological systems it is highly unrealistic for two species to have exactly the same average
fitness. Nevertheless, if m is close to the critical value, numerical simulations reveal that it
takes a long time for one of the species to go extinct (a long time being of an order of 104). This
means that the two species will be able to coexist for a long period of time before one of them
vanishes. This phenomenon is called metastability and it occurs if the species’ average fitness
is similar. The sign of m − cg

K2−K1+1 determines to which equilibrium the system converges
eventually and its magnitude determines whether metastability occurs or not. Metastability
occurs if the largest absolute value of the eigenvalue of the stable single-species equilibrium is
small. Thus, for initial conditions where the species coexist, the system transits to the stable
equilibrium very slowly, making the system spend a long time in a transient coexistence state.
This phenomenon is called metastability, because solutions observed in a short time interval
appear to be stable despite their inherent instability. Figure 3 shows an example in which
metastability occurs:

Furthermore, the time it takes until one of the species goes extinct can be predicted with
excellent accuracy using the eigenvalues from the linear stability analysis, considering a species
extinct when the density is less than 1 for all t > text. This can be demonstrated by plotting
the time until extinction against 1

λmax
, where λmax is the biggest eigenvalue of the unstable

single-species steady state (Figure 4).

4. Time-dependent fluctuations in resource input. In a real life setting, the resource
input is never constant, due to it being dependent on weather and many other factors. While 
resource input is typically underpinned by stochastic mechanisms, seasonal trends play a role
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Figure 2: This figure shows the maximum eigenvalues (blue and red) and resource densities
(black and green) of S1 and S3. Note that at the point where both species have the same
average fitness both species have the same ability to reduce the resource.

in temperate and continental climates [21]. This can be represented in the model by making
r(t), the nutrient input, dependent on time.

There are many potential ways to impose time dependence on r(t). Here I compare two
choices to the case where r is constant. One is having the value for r change every 50 time
units in a periodic fashion with period T = 100:

r1(t) =

{
a, 100n ≤ t<100n+ 50

b, 100n+ 50 ≤ t<100(n+ 1)
,
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Figure 3: Numerical simulation with m = 0.39995, K1 =
1
2 , K2 = 2, g = 1, c = 1, r = 10 and

n = 1. The left column shows the behaviour of the system after a long time, while the right
column is zoomed in on the first 30 time points.

where a,b ∈ R and n ∈ [0,∞). In the numerical simulations I use a = 5 and b = 15, which
means that the average resource input is 10, the same as in the numerical simulations with
constant resource input.

The other approach is to impose a sinusoidal oscillation on the resource input by setting:

r2(t) = r + C sin

(
2π

T
t

)
,

where r ∈ R, C is a constant between 0 and r, to ensure that resource input is never smaller
than 0, which would not be biologically relevant. In this case I also set T = 100 and r = 10.
Note that r is set to the constant value of r used in the analysis in Section 3.

Because r(t) is dependent on time, in these cases the linear stability analysis is considerably
more challenging. Therefore I will restrict the analysis to numerical simulations.

Model simulations (Figure 5) suggest that equilibria are, just like the fluctuations in
resource input, time-periodic. They also show that stable coexistence is possible even if
m ̸= cg

K2−K1+1 , and furthermore, the time spent in transient state increases with increase of
the amplitude C of the fluctuations around r.
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Comparison of time and eigenvalues

Figure 4: The time for one species to go extinct in numerical simulations is compared with
1/λmax, where λmax denotes the maximum eigenvalue of the unstable steady state. Other
parameter values are K1 =

1
2 , K2 = 2, g = 1, c = 1, r = 10, n = 1, the same as Figures 2, 3

First, I investigate how systematically changing m affects e xtinction t imes ( Figure 6). 
Figure 6 compares extinction times at different values o f m  f or t he t hree c ases o f resource 
input that have been introduced. It can be seen that if the resource input is dependent on 
time, extinction times are much larger. For the cases when r(t) is dependent on time, there are 
some plateaus at 10000. These plateaus indicate those parameter values for which coexistence 
is stable and the simulation is terminated after 10000 time units as no extinction is detected.
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(a) constant r = 10, m = 1
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(b) r = r1(t) is a piecewise constant with a 100 unit
period, m = 0.395
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(c) r = r2(t) is sinusoidal with C = 5, m = 0.395
and r = 10
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Figure 5: Numerical simulations with constant and periodic resource availability. Other pa-
rameter values are K1 =

1
2 , K2 = 2, g = 1, n = 1, a = 5 and b = 15.
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Figure 6: The time until species extinction occurs in numerical simulations of (2.3) is compared
across the different resource input functions. Plateaus at t = 10000 signify stable coexistence.
Other parameter values are K1 = 1

2 , K2 = 2, g = 1, c = 1, n = 1, r = 10, a = 5, b = 15,
T = 100, C = 5.

From the model simulations (Figure 5), it can also be seen that changing C in the sinusoidal
regime also affects coexistence. As C becomes larger (Figure 7), the extinction time increases
and at some point, if C is sufficiently large, stable coexistence is possible (indicated by an
extinction time of 10000).
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Figure 7: Effect of changing the amplitude C on time to extinction. The time until species
extinction occurs in numerical simulations of (2.3) with resource input fluctuating in a sinu-
soidal manner are compared by changing C. Other parameter values are K1 = 1

2 , K2 = 2,
g = 1, c = 1, n = 1, m = 0.395, r = 10.

5. Discussion. Seasonality and other temporal variability in environmental conditions 
are often ignored in theoretical studies of consumer-resource dynamics utilising PDE/ODE 
models. This paper highlights the impact of seasonal fluctuations i n r esource i nput o n the 
coexistence of two species competing for the same resource. My analysis shows that seasonal 
resource input promotes coexistence of species if they have similar average fitness (defined by 
Eq (3.4)) by stabilising coexistence and prolonging the duration of the occurrence of meta-
stable coexistence states.
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If resource input is constant, stable coexistence is not possible and that is why metastabil-
ity takes an important role. The competitive exclusion principle [9] applies, but if both species 
have similar (but not identical) average fitness, the time to extinction is l arge. Therefore, co-
existence can be observed for a significant duration, despite its inherent i nstability. This is of 
potential significance for ecological field st udies. If  extinction of  a “weaker” species requires a 
long time, short durations of field studies may falsely identify metastable coexistence states as 
stable. The time to extinction becomes even larger under fluctuating resource input, making 
both species able to coexist in a transient state for longer. This enhances the importance of 
metastable states in seasonal climates. Mathematically, metastability is characterised by the 
small magnitude of an eigenvalue describing the linear growth rate of a perturbation to an 
equilibrium. I have indeed shown that there is a strong correlation between eigenvalue magni-
tude and transient times in the system. Therefore, eigenvalues are very useful to predict the 
time required for one species to competitively exclude the other.

The importance of metastable states in mathematical models models of ecological systems 
has been discussed previously (restricted to constant resource input) [8, 10]. However, the 
concept of metastability has also been reported from other types of mathematical models, 
such as the Cahn Hilliard equation [1, 2], microwave heating models [11], chemotactic models 
[18, 20], Burgers’ equation [3] and models of the Lotus effect [15].

On the other hand, in the case when resource input fluctuates, s table coexistence i s also 
possible if the species have similar average fitness. This h as b een s tudied b efore a nd i t has 
been discovered that coexistence is possible due to a “gleaner-opportunist trade-off” [ 4, 14]. 
It has been revealed that seasonal variations in resource input can stabilise coexistence if one 
species thrives in a lower resource input, due to lower minimum resource requirement (the 
“gleaner”), and if the other species is superior for higher resource input, due to a high ratio 
of maximum growth rate and death rate (the “opportunist”). In my results it can also be 
appreciated that there is a shift to the right for the m in regards to time to extinction; this is 
really interesting, however I have not been able to determine the cause of this shift.

In this paper the model with non-constant resource input was only analysed by conducting 
numerical simulations. However, analytical results could be achieved in the future by analysing 
the linear stability of the equilibria through a calculation of Floquet multipliers [13, 23]. This 
would allow me to analyse the case with seasonal rainfall more analytically and in a more 
formal way, which would result in a better comparison with the linear stability analysis I have 
done for the constant resource input case.
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